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Lectures on Principal Bundles

V. Balaji

Chennai Mathematical Institute
H1, SIPCOT Information Technology Park

Padur Post, Siruseri-603 103
Tamil Nadu, India.

e-mail: balaji@cmi.ac.in

To Peter Newstead on his 65th birthday

1 Introduction

The aim of these lectures (†) is to give a brief introduction to princi-

pal bundles on algebraic curves towards the construction of the moduli

spaces of semistable principal bundles. The second section develops the

basic machinery on principal bundles and their automorphisms. At the

end of the second section, we give a proof of theorem of Grothendieck

on orthogonal bundles. The third section, after developing the notions

of semistability and stability, gives a modern proof of the main part

of Grothendieck’s theorem on classification of principal bundles on the

projective line. The last section gives an outline of the construction

of the moduli space of principal bundles on curves. The moduli space

was constructed by A.Ramanthan in 1976. The method outlined here

is from a construction in [BS]. These notes are a transcription of the

lectures given in Mexico and therefore have an air of informality about

them. I have consciously retained this informality despite criticism from

a learned referee on the lack of rigor in some places. Indeed(‡) “these

notes are almost exactly in the form in which they were first written

and distributed: as class notes, supplementing and working out my oral

lectures. As such, they are far from polished and ask a lot of the reader.

...Be that as it may, my hope is that a well-intentioned reader will still

be able to penetrate these notes and learn something of the subject”.

† These are notes of five lectures given in Mexico in November 2006 at CIMAT,
Guanajuato in the “College on Vector Bundles” which was held in honour of
Peter Newstead to celebrate his 65th birthday.

‡ Lifted from D.Mumford’s introduction to his “Lectures on curves on an algebraic
surface”
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Lectures on Principal Bundles 3

2 Basic notions and definitions

Throughout these notes, unless otherwise stated, we have the following

notations and assumptions:

(a) We work over an algebraically closed field k of characteristic zero

and without loss of generality we can take k to be the field of

complex numbers C.

(b) G will stand for a reductive algebraic group often the general

linear group GL(n) and H a subgroup of G. Their representations

are finite dimensional and rational.

(c) X is a smooth projective curve almost always in these notes.

2.1 Generalities on principal bundles

Definition 2.1. A principal G bundle π : E −→ X with structure

group G (or a G-bundle for short) is a variety E with a right G-action,

the action being free, such that π is G-equivariant, X being given the

trivial action. Further, the bundle π is locally trivial in the étale topol-

ogy. (In other words, for every x ∈ X, there exists a neighbourhood U

and an étale morphism U ′ −→ U such that, when E is pulled back to

U ′, it is trivial as G-bundle).

Remark 2.2. We remark that in our setting this definition of a principal

bundle is related to the definition of a principal bundle being locally

isotrivial, ([S]) i.e. for every x ∈ X, there exists a neighbourhood U

and a finite and unramified morphism U ′ −→ U such that, when E is

pulled back to U ′, it is trivial as G-bundle. In fact, these two definitions

coincide here because of the affineness of the group G. One could see

this as follows: since G is affine, we have an inclusion of G in GL(V )

as a closed subgroup. This implies that GL(V ) −→ GL(V )/G is locally

isotrivial in the sense of Serre ([S]). We now observe that any principal

G–bundle can be obtained from a principal GL(V )–bundle by a reduction

of structure group (see (2.5)). Further, any principal GL(V )–bundle

is actually locally trivial in the Zariski topology (see [S]). The local

isotriviality of the G–bundle now follows from that of the quotient map

GL(V ) → GL(V )/G. In this context cf ([M]).

Remark 2.3. In general in the literature, a principal homogeneous

space is defined to be locally trivial in the so-called fppf topology if the

base is not smooth. Again, we remark that in our setting this is not

needed even when the base is not smooth because we work with affine
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4 V. Balaji

groups as structure groups. This follows from arguments similar to the

one given above since any principal homogeneous space for the group

GL(V ) is locally trivial in the Zariski topology.

2.1.1 Some notations and conventions

(a) By a family of H bundles on X parametrised by T we mean a

principal H-bundle on X × T , which we also denote by {Et}t∈T .

We note that in general we may not have T to be smooth and

the definition of principal bundles should be seen in the light of

Remark 2.3.

(b) We recall the definitions of semisimple and reductive algebraic

groups. Given a linear algebraic group G, we define the radical

R(G) to be (
⋂

B)0 where the intersection runs over all Borel sub-

groups. Equivalently, R(G) is the maximal, normal, connected,

solvable subgroup of G. If R(G) = (e) then G is called semisim-

ple, and if Ru (G), the unipotent radical of G which consists of the

unipotent elements in R(G), is trivial, then G is called reductive.

(In this case R(G) will be a torus). Equivalently, (by consider-

ing the derived subgroup), G is semisimple (resp. reductive) if

and only if it has no connected abelian (resp. unipotent abelian),

normal subgroup other than (e).

(c) Let Y be any quasi projective G-variety and let E be a G-principal

bundle. For example Y could be a G-module. Then we denote

by E(Y ) the associated bundle with fibre type Y which is the

following object: E(Y ) = (E × Y )/G for the twisted action of G

on E × Y given by g.(e, y) = (e.g, g−1 .y).

(d) Any G-equivariant map φ : F1 −→ F2 will induce a morphism

E(φ) : E(F1) −→ E(F2).

(e) A section s : X −→ E(F ) is given by a morphism

s′ : E −→ F

such that, s′(e.g) = g−1 .s′(e) and s(x) = (e, s′(e)), where e ∈ E

is such that π(e) = x, where π : E −→ X.

Definition 2.4. If ρ : H −→ G is a homomorphism of groups the

associated bundle E(G), for the action of H on G by left multiplication

through ρ, is naturally a G–bundle. We denote this G–bundle often

by ρ∗(E) and we say this bundle is obtained from E by extension of

structure group.
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Definition 2.5. A pair (E, φ), where E is an H–bundle and φ :

E(G) −→ F is a G–bundle isomorphism, is said to give a reduction of

structure group of the bundle F to H. For convenience, we often omit

φ and simply say E is obtained from F by reduction of structure group.

Two H–reductions of structure group (E1 , φ1) and (E2 , φ2) are equiv-

alent or isomorphic if there is an H–bundle isomorphism f : E1 −→ E2

such that the following diagram commutes:

E1(G)
f (G )

��

φ1

��

E2(G)

φ2

��

F =
�� F

(1.1)

Remark 2.6. A principal G-bundle E on X has an H-structure or

equivalently a reduction of structure group to H if we are given a section

σ : X −→ E(G/H), where E(G/H) ≃ E ×G G/H. To see this, we

note the identification of the spaces E(G/H) ≃ E/H. Then by pulling

back the principal H–bundle E −→ E/H by σ, we get an H–bundle

EH ⊂ E, giving the required H-reduction. In other words, there is

a natural isomorphism EH (G) ≃ E. Thus, we get a correspondence

between sections of E(G/H) and H–reductions of E.

To see the other direction, let EH be an H–bundle and consider the

natural inclusion EH →֒ EH (G) = E given by z −→ (z, 1G ), where of

course (z, 1G ) is identified with (zh, h−1) for h ∈ H. Going down by an

action of H we get a map X −→ EH (G)/H = E(G/H). This gives the

required section of E(G/H).

Remark 2.7. Note that a reduction of structure group of E to H ⊂ G

can be realised by giving a G-map s : E −→ G/H satisfying the property

s(e.g) = g−1s(e). In this sense, the reduction EH defined above can be

seen to be the inverse image of the identity coset in G/H by the map s.

Remark 2.8. In the case of G = GL(n), when we speak of a principal

G-bundle we identify it often with the associated vector bundle by taking

the associated vector bundle for the standard representation.

Remark 2.9. A GL(n)–bundle is completely determined by the associ-

ated vector bundle E(V ) (where V is the canonical n-dimensional space

on which GL(n) acts) as its bundle of frames. Let V be a vector bundle

on X with fibre the vector space V . Then consider the union
⋃

x∈X

Isom(V,Vx)
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6 V. Balaji

where Isom(V,Vx) are simply isomorphisms between the vector spaces

V and Vx .

Note that there is a natural action of GL(V ) on the right which is

easily seen to be free. This forms the total space of the principal GL(V )–

bundle E whose associated vector bundle E(V ) is isomorphic to V.

Similarly, a PGL(n)–bundle is equivalent to a projective bundle, i.e.

an isotrivial bundle with Pn as fibre.

Proposition 2.10. Let E1 and E2 be two H–bundles. Giving an

isomorphism of the H–bundles Ei is equivalent to giving a reduction of

structure group of the principal H×H–bundle E1 ×X E2 to the diagonal

subgroup ∆H ⊂ H × H.

Proof: A reduction of structure group to the diagonal ∆ gives a ∆–

bundle E∆ . Now observe that the projection maps on H × H, when

restricted to the diagonal, give isomorphisms of ∆ ≃ H. Viewing the

bundle E∆ ⊂ E1 ×X E2 as included in the fibre product, and using the

two projections to E1 and E2 , we get isomorphisms from E1 ≃ E∆ ≃ E2 .

The converse is left as an exercise.

Definition 2.11. Let P be a G–bundle. Consider the canonical adjoint

action of G on itself, i.e g · g′ = gg′g−1 . Then we denote the associated

bundle P ×G G by Ad(P).

Observe that because of the presence of an identity section, the asso-

ciated fibration Ad(P ) is in fact a group scheme over X.

Proposition 2.12. The sections Γ (X,Ad(P )) are precisely the

G–bundle automorphisms of P .

Proof: Let σ : X −→ Ad(P ) be a section. We view the section σ

as remarked above as an equivariant map σ : P −→ G. Then by its

definition, we have the following equivariance relation:

σ(p.g) = g−1 · σ(p) = g−1σ(p)g

Define the morphism:

fσ : P −→ P

given by

fσ (p) = p.σ(p)

∀p ∈ P . The equivariance property for σ implies that fσ (p.g) = fσ (p).g

and hence its an H–morphism. Clearly it gives an automorphism of P .
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For the converse, let f : P −→ P be an H–bundle automorphism.

Define σ as follows:

f(p) = p.σ(p)

Note that the H–equivariance property of f implies the equivariance

property of σ which therefore defines a section of Ad(P ).

Remark 2.13. Let E be a reduction of structure group of the principal

G–bundle P to the subgroup H. Then as we have remarked above, we

can represent E as a pair (P, φ) where φ : X −→ P (G/H) is a section

of the associated fibration. Let σ be an automorphism of the G–bundle

P . Then, σ also acts as an automorphism on the associated fibration

P (G/H). This gives an action of the group Aut(P ) on the set of all

H–reductions of P .

Two H–reductions E and F of a principal G–bundle are equivalent (i.e

give isomorphic H–bundles) if and only if there exists an automorphism

σ of P which takes E to F in the above sense.

To illustrate this phenomenon I give below a theorem due to Grothen-

dieck ([G]).

Theorem 2.14. Let X be a smooth projective complex variety and let

H = O(n) ⊂ G = GL(n) be the standard inclusion. Then the canonical

map induced by extension of structure groups

{Isom classes of H−bundles} −→ {Isom classes of G−bundles}

is injective. In other words, a G–bundle P has, if any, a unique reduction

of structure group to H upto equivalence.

Proof: The proof of this theorem is quite beautiful and I will give it

in full. Its also of importance to observe that the theorem is false for

the inclusion SO(n) ⊂ SL(n)!

Let S be the space of symmetric n×n–matrices which are non-singular.

Then G acts on S as follows:

A.X := AXAt

The action is known (by the Spectral theorem for non-degenerate qua-

dratic forms) to be transitive and the isotropy subgroup at I is the

standard orthogonal group H = O(n). i.e S ≃ G/H as a G–space. The

more important fact is that there is a canonical inclusion of S in G.

If q : G −→ G/H is the canonical quotient map then identifying the
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8 V. Balaji

quotient with S, the map q is given by

q(A) = AAt

and then the restriction of the map to S →֒ G is given by the map

qS (A) = A2 on the space of symmetric matrices.

S
i n c lu s io n

��

qS

��

G

q

��

S =
�� G/H

(1.2)

Let PH be a fixed reduction of structure group of P to H and let

E be any other reduction of P which is therefore given by a section

σ : X −→ P (G/H). Since we already have a reduction, we can express

the new reduction σ as:

σ : X −→ PH (G/H)

Consider the group scheme Ad(P ) = P (G). Since P has a H–reduction,

we can view this group scheme as PH (G), where H →֒ G acts on G by

conjugation i.e h · g = h.g.h−1 .

We also observe that the associated fibration PH (G/H) taken with

the natural left action of H on G via its inclusion or by the conjugation

action of H on G is identical. In other words, we can view the morphism

associated to the canonical quotient map G −→ G/H for the associated

fibrations PH (G) and PH (G/H) as being induced by the conjugation

action of H on G and G/H. Note that this is special to our situation

since we have a H–reduction PH to start with.

We thus get the map:

φ : PH (G) −→ PH (G/H)

Observe again that the inclusion S →֒ G is an H–morphism for the

conjugation action of H. (Since H = O(n), At = A−1).

Viewing the spaces in the diagram above as a diagram of H–spaces

for the conjugation action we have the following diagram of associated

spaces:

PH (S)
i n c lu s io n

��

qS

��

PH (G)

φ

��

PH (S) =
�� PH (G/H)

(1.3)
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We now note that to prove that the reduction of P given by σ is

equivalent to the one given by PH , we need to give an automorphism

which takes one to the other. An automorphism is giving a section

of P (G) or equivalently of PH (G). Its easy to check that, giving such

an automorphism is giving a section γ : X −→ PH (G) such that the

following diagram commutes:

PH (G)
φ

�� PH (G/H)

X

γ

��

σ
��

�
�

�
�

�
�

�
�

�
�

�

(1.4)

We now recall the following interpolation statement:

Lemma 2.15. The characteristic polynomial of a non-singular matrix

A can be used to get a square root of A.

Proof: By an interpolation exercise, we can construct a polynomial

h(t) such that h(t)2 − t is divisible by f(t), i.e h2(t) − t = f(t)g(t) for

some polynomial g(t). Since f(A) = 0 by the Cayley-Hamilton theorem,

we get h(A)2 = A, i.e. h(A) provides a square root of A.

Now identify PH (G/H) with PH (S), which is a bundle of non-singular

symmetric matrices. The section σ gives a characteristic polynomial

f(t) with coefficients being regular functions on X. Since X is projec-

tive these coefficients are therefore constant. Since these coefficients are

constant, we can use the characteristic polynomial to get the square root

of the section σ.

Take h(t) as above. Then define

η(x) := h(σ(x))

This provides a section of PH (S) such that φ ◦ η = σ since φ on S is

the squaring operation. The composition η : X −→ PH (S) →֒ PH (G)

gives the required γ.

Remark 2.16. The reader should try and understand the proof in

Grothendieck’s paper. The main idea, as suggested by Prof Ramanan,

is to compare a pair of equivalent non-degenerate quadratic forms on

a vector space. When this is carried out over a family, together with

choosing a square root (over X) it is essentially the classical proof. The

reader can note that the proof given above works for all characteristics

different from 2. The proof given here applies the definitions developed

here and also naturally generalises the problem in the following sense.
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In general one could work with a symmetric space G/H, where the

subgroup H is given by the fixed points of an involution on G. For

example, the proof generalises immediately to the case of the symplectic

group. It also suggests that one could look for natural conditions for the

map to be an inclusion.

Remark 2.17. It fails for SO(n) ⊂ SL(n). In fact, it fails for n = 2.

This can be seen as follows: SO(2) ≃ Gm . Hence SO(2) principal

bundles can be identified with Gm -bundles and hence with line bundles.

Extension of structure group of a SO(2)–bundle to SL(2) is equivalent

to taking a line bundle L to L ⊕ L∗, which is an SL(2)–bundle. This

has clearly two inequivalent reductions L and L∗.

Remark 2.18. Olivier Serman ([O]) has shown that the map studied

in the above theorem actually extends to an embedding of the moduli

spaces of S–equivalence class of semistable orthogonal principal bundles

into the moduli space of semistable principal GL(n)–bundles (see Section

4 below for the definitions).

3 Principal bundles, basic properties

Definition 3.1. A vector bundle V is said to be semistable (resp stable)

if for every sub-bundle W ⊂ V ,

deg(W )

rk(W )
≤

deg(V )

rk(V )
.

Lemma 3.2. Let V and W be semistable vector bundles on X of degree

zero. Then V ⊗ W is semistable of degree zero.

Proof. Any semistable bundle on X of degree zero has a Jordan-Holder

filtration such that its associated graded is a direct sum of stable bundles

of degree zero. Note that the filtration is not unique but the associated

graded is so. Hence the tensor product V ⊗W gets a filtration such that

its associated graded is a direct sum of tensor products of stable bundles

of degree zero. We see easily that this reduces to proving the lemma

when V and W are stable of degree zero. Then by the Narasimhan-

Seshadri theorem, V ⊗ W is defined by a unitary representation of the

fundamental group (namely the tensor product of the irreducible unitary

representations which define V and W respectively), which implies that

V ⊗ W is semistable (see [NS]).
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