
Introduction

The idea of mimicking the propagation of biological epidemics to achieve dif-
fusion of useful information was first proposed in the late 1980s, the decade
that also saw the appearance of computer viruses. Back then, these viruses
propagated by copies on floppy disks and caused much less harm than their
contemporary versions. But it was already noticed that they evolved and sur-
vived much as biological viruses do, a fact that prompted the idea of putting
these features to good (rather than evil) use. The first application to be consid-
ered was synchronisation of distributed databases.
Interest in this paradigm received new impetus with the advent of peer-to-

peer systems, online social systems and wireless mobile ad hoc networks in
the early 2000s. All these scenarios feature a complex network with poten-
tially evolving connections. In such large-scale dynamic environments, epi-
demic diffusion of information is especially appealing: it is decentralised, and
it relies on randomised decisions which can prove as efficient as carefully made
decisions. Detailed accounts of epidemic algorithms can be found in papers by
Birman et al. [12] and Eugster et al. [33]. Their applications are manifold.
They can be used to perform distributed computation of global statistics in a
spatially extended environment (e.g. mean temperature seen by a collection
of sensors), to perform real-time delivery of video data streams (e.g. to users
receiving live TV via peer-to-peer systems over the internet) and to propagate
updates of dynamic content (e.g. to mobile phone users whose phone operating
system requires patching against vulnerabilities).
This book is meant as an introduction for applied mathematicians and com-

puter scientists to the study of epidemic propagation over complex networks.
The book’s first purpose is to provide the reader with an accessible introduc-
tion to the elementary models of epidemic propagation, and develop an under-
standing of the basic phase transition phenomena (also called threshold phe-
nomena) that are typical of epidemic behaviour. To this end it introduces the
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2 Introduction

relevant generic models, analytical tools, and mathematical results. This book
also aims to explain the role played by network topology in the propagation of
information.
This book can be used both to accompany courses for graduate students in

computer science and applied probability and to provide an overview of the
probabilistic techniques widely used to study random processes on complex
networks. It evolved from a graduate course given by the authors at Cambridge
University from 2005 to 2007. The mathematical prerequisites are reasonable
maturity in probability theory at undergraduate level. The main tools intro-
duced in the text consist of large deviations inequalities, coupling of stochastic
processes and Poisson approximation.
Readers who want to delve deeper will find thorough treatments of random

graphs in Bollobás [13] and Janson et al. [42]. The recent book by Durrett [28]
also expands on some of the material here, in several directions, in particular
on the behaviour of random walks on graphs. Andersson and Britton [3] deals
with epidemic modelling in the biological context. Specific suggestions for
further reading are also provided at the end of each chapter.

A tour of the book

The text is divided into two distinct but related parts: shapeless networks and
structured networks. The first part (Chapters 1–5) presents techniques for an-
alysing “homogeneous mixing” epidemic processes. In this setting the large
population in which the disease spreads has no particular (or totally random,
symmetric) topological structure; that is, each individual is the “neighbour” of
every other individual. The infection can therefore spread from any infected
individual to any healthy one. In particular, this part of the book introduces
branching processes, Erdős–Rényi random graphs and so-called Reed–Frost
epidemics. Issues such as ultimate outreach and time to global infection are
considered.
The second part (Chapters 6–9) covers recent results on the spread of epi-

demics in structured networks wherein individuals interact with a limited set
of neighbours, and where the corresponding topology can exhibit rich struc-
ture. It introduces models of such topologically structured networks, including
power-law random graphs and navigable small-world graphs. It gives explana-
tory models for the emergence of such structures, and addresses the impact
of structure on the behaviour of epidemics. It also touches upon the algorith-
mic issue of maximising outbreak as a function of the initial infectives. In
what follows we describe the content of the book in more detail and give some
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Introduction 3

perspective on the relevance of each topic to the analysis of epidemic processes
on networks.
Chapter 1 reviews elementary results on the Galton–Watson branching pro-

cess. Branching processes arise naturally in the study of epidemics, as they
provide an accurate description of epidemic behaviour in large, shapeless pop-
ulations, at least in the early stages of dissemination. They are arguably the
simplest class of model that exhibits a phase transition: the phenomenon by
which an infinitesimal variation of microscopic characteristics (here, the off-
spring distribution) can lead to a macroscopic change in system behaviour
(here, infinite survival of the epidemic).
The results of Chapter 1 are then exploited to establish a similar phase transi-

tion in a classical epidemic model, namely the Reed–Frost model. In particular,
Chapters 2–4 exploit a parallel between the Reed–Frost epidemic model and
Erdős–Rényi random graphs to gain insight into the behaviour of the former.
Chapter 2 describes a phase transition appearing in the fraction of ultimately
infected individuals. Chapter 3 identifies under which parameter ranges an epi-
demic starting from one infected individual eventually spreads to the whole
population. In Chapter 4 we derive an upper bound on the time needed for the
epidemic to reach the whole population. Chapter 5 describes a setting in which
the microscopic behaviour of the epidemic (how it spreads randomly in the
population) can be approximated by a set of differential equations describing
the macroscopic or mean-field dynamics of the system. It also introduces some
classical models of epidemic spread.
The chapters of the second part of the book cover more advanced topics.

These use some techniques introduced in the first part, in particular large devia-
tions inequalities, but are otherwise largely self-contained. Chapter 6 proposes
two models and corresponding analyses of the small-world phenomenon, in-
troducing the notion of navigability of a graph. Chapter 7 focuses on another
phenomenon observed in many real-world networks, namely the power-law
distribution of the degree sequence (or number of neighbours) of the graph.
The most salient feature of a sequence with a power-law distribution is that
it typically contains samples with very high values. In contrast, classical net-
work models such as the Erdős–Rényi graph have degree sequences highly
concentrated around their mean. Chapter 7 describes processes for generating
such power laws together with their analysis. Chapter 8 covers recent results
on the threshold behaviour of classical models of epidemics on general net-
works, identifying thresholds with graph properties of the underlying network
topology. Finally, Chapter 9 approaches the algorithmic optimisation problem
of maximising the spread of an epidemic on a general network by targeting
nodes that are likely to yield a large cascade of infections.
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PART I

SHAPELESS NETWORKS
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1

Galton–Watson branching processes

1.1 Introduction

The branching process model was introduced by Sir Francis Galton in 1873
to represent the genealogical descendance of individuals. More generally it
provides a versatile model for the growth of a population of reproducing in-
dividuals in the absence of external limiting factors. It is an adequate starting
point when studying epidemics since, as we shall see in Chapter 2, it describes
accurately the early stages of an epidemic outbreak. In addition, our treatment
of so-called dual branching processes paves the way for the analysis of the su-
percritical phase in Chapter 2. Finally, the present chapter gives an opportunity
to introduce large deviations inequalities (and notably the celebrated Chernoff
bound), which is instrumental throughout the book.
A Galton–Watson branching process can be represented by a tree in which

each node represents an individual, and is linked to its parent as well as its
children. The “root” of the tree corresponds to the “ancestor” of the whole
population. An example of such a tree is depicted in Figure 1.1.
In the following we consider three distinct ways of exploring the so-called

Galton–Watson tree, each well suited to establishing specific properties.
In the depth-first view, we start by exploring one child in the first generation,

then explore using the same method recursively the subtree of its descendants,
before we move to the next child of the first generation. This view is used to
establish fixed-point equations satisfied by quantities of interest, such as the
extinction probability or the probability distribution of the total population.
The breadth-first view stems from the standard breadth-first search of trees

and graphs. It consists of exploring first the children of the root, then the chil-
dren of these children, and so on. In other words, the population is explored
generation by generation. This method of exploration allows us to charac-
terise exactly the extinction probability. In particular we will show that the
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8 Galton–Watson branching processes

Generation 0

Generation 1

Generation 2

Generation 3

Figure 1.1 Galton–Watson branching process

population can either grow indefinitely (the supercritical case) or go extinct
(the subcritical case) depending on whether the mean number of children per
individual is above or below 1. This kind of behaviour, namely a qualitative
change in global behaviour driven by a tiny change in a system parameter, is
known as a phase transition and is widely studied in statistical physics. The
emergence of unlimited population growth as the mean number of children
goes above 1 is arguably the simplest example of phase transition. Several
other examples will be discussed and analysed throughout the book.

Finally, the one-by-one view consists of exploring individual nodes’ direct
children starting from the ancestor. It is used to introduce the notion of dual
branching processes. This duality property corresponds to a one-to-one map-
ping between supercritical and subcritical processes. We will also use one-by-
one exploration in our study of Erdős–Rényi graphs in Chapter 2. The one-by-
one view yields a description of the total population of branching processes in
terms of random walks, which in turn provides simple characterisations of the
total population size.

Let us now define formally the object of interest in this chapter. The Galton–
Watson branching process is characterised by the probability distribution of the
number of children (also called offspring) of each individual. It is a distribution
on N, denoted {pk}k∈N. Starting from one individual (ancestor) at generation 0
and denoting by Xn the number of individuals at generation n, one then has

Xn+1 =

Xn∑

i=1

ξn,i , (1.1)

where ξn,i is the number of children of the ith individual of the nth generation.
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1.2 Depth-first exploration 9

By assumption, the {ξn,i}i,n∈N are independent and identically distributed (i.i.d.),
distributed according to {pk}k∈N; that is, for all k ≥ 0, P(ξ = k) = pk.
Now draw the tree, as in Figure 1.1, where there is one edge from each

individual to each of its children. This is the so-called Galton–Watson tree.
In graph-theoretic terms it is an oriented tree spanning the descendants of the
ancestor and rooted at the ancestor. We shall denote this tree by T .

1.2 Depth-first exploration

Considering depth-first exploration of the tree T , we observe that for any child
of the root, the subtree rooted at this child has the same statistical proper-
ties as T . Thus conditional on X1 (the number of children of the ancestor), T
is obtained by connecting the root to the individual roots of X1 rooted trees,
T1, . . . ,TX1 , that are mutually independent, and distributed as T .
Denote by pext the extinction probability, i.e. the probability that after some

finite n, Xn = 0. Denote by |T | the number of nodes of the tree T . We thus
have

pext = P
(
|T | < ∞

)

=

∞∑

k=0

pk P
(
|T1| < ∞, . . . , |Tk | < ∞

)

=

∞∑

k=0

pk p
k
ext .

Thus, denoting by

φξ(s) :=
∑

k∈N
pks

k, s ∈ R

the generating function of the offspring distribution, the extinction probability
pext is a solution of the equation

x = φξ(x) . (1.2)

A similar argument yields the following result.

Theorem 1.1 (Total population) Consider X, the total population of the
branching process, given by X =

∑∞
k=0 Xk. Let φX denote its generating func-

tion. Then

φX(s) = sφξ
(
φX(s)

)
. (1.3)
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10 Galton–Watson branching processes

Proof Conditional on the event X1 = k, i.e. that there are k individuals in the
first generation, let X j, j = 1, . . . , k denote the total number of descendents
of the j th child in the first generation (also counting the j th child itself). The
variables (X j) j=1,...,k are i.i.d. with law equal to that of X. Moreover,

X = 1 +
k∑

j=1

X j .

Hence

φX(s) := E
(
sX
)

=
∑

k≥0
pk E
(
sX
∣∣∣ X1 = k

)

=
∑

k≥0
pk E
(
s1+
∑k

j=1 X j
∣∣∣ X1 = k

)

=
∑

k≥0
pksE

(
sX
)k
= sφξ

(
φX(s)

)
.

�

In Section 1.4 we provide a characterisation of the total population X in
terms of the sequence of numbers of children, {ξn,i}i,n∈N, and use it to obtain
explicit bounds on the probability that the total population exceeds any partic-
ular size.

1.3 Breadth-first exploration

The breadth-first view consists of drawing the tree generation after generation.
This viewpoint, which is reflected by the defining equation (1.1), allows us to
characterise exactly the extinction probability pext previously introduced. We
will study the existence of solutions of the equation s = φξ(s) on [0, 1] and
characterise them in terms of the offspring distribution {pk}k≥0.

Theorem 1.2 (Survival vs. extinction) The extinction probability pext is the
smallest solution of equation (1.2) in [0, 1]. Denoting by µ := E(ξ) the average
number of children per individual, one further has the following regimes:

(i) Subcritical regime: If µ < 1, then pext = 1.

(ii) Critical regime: If µ = 1 and p1 < 1, then pext = 1.

(iii) Supercritical regime: If µ > 1, then pext < 1.
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1.3 Breadth-first exploration 11

Proof Let p(n)ext = P(Xn = 0) be the probability that extinction has occurred
at or before the nth generation. The sequence of events ({Xn = 0})n≥0 is in-
creasing, i.e. {Xn = 0} ⊆ {Xn+1 = 0}, and converges as n goes to infinity to
the extinction event. Thus the probability p(n)ext := P(Xn = 0) must converge to
pext as n → ∞. Let φn(s) := E

(
sXn
)
. Then P(Xn = 0) = φn(0). Using the i.i.d.

property of the sequence of offspring of distinct individuals, we have

φn(s) = E
(
sXn
)
=

∞∑

k=0

E
(
sXn | X1 = k

)
pk

=

∞∑

k=0

(
E
(
sXn−1
))k
pk .

Taking s = 0 yields p(n)ext = φξ(p
(n−1)
ext ).

Let us prove that pext is the smallest solution of equation (1.2) in [0, 1]. Let
ψ ∈ [0, 1] be a solution of equation (1.2). First note that p(0)ext = 0 ≤ ψ. Then,
by induction and using the monotonicity of φξ on [0, 1] (which holds in view
of the expression φ′ξ(s) =

∑
k≥1 kpks

k−1), we have that p(n)ext ≤ ψ for n ≥ 0 and,
by taking the limit when n goes to infinity, pext ≤ ψ.
Let us now use this characterisation to establish properties of pext. Note first

that the function φξ is non-decreasing and convex (φ′′ξ (s) =
∑
k≥2 k(k−1)sk−2pk

is non-negative on [0, 1]), and such that its derivative φ′ξ(1) equals the average
number of children, µ. It is moreover strictly convex whenever p0 + p1 < 1.
In the case where p0 = 0, necessarily pext = 0 is the smallest solution. This

can also be seen directly: each individual has at least one child, so the process
survives forever.
Assume now that p0 > 0. Since {pk}k≥0 is a probability distribution, neces-

sarily p1 < 1.
Consider then the following cases.

(i) µ < 1: In this case φ′ξ(1) = µ < 1 so that, for small enough ε > 0,
φξ(1 − ε) ∼ 1 − µε > 1 − ε. Thus, by convexity of φξ, the only solution of
equation (1.2) is x = 1 so that pext = 1.

(ii) µ = 1: Here the previous assumption that p0 > 0 is equivalent to p1 < 1.
In this situation, p0 + p1 < 1 so that φξ is strictly convex. It is therefore
strictly above its tangent at x = 1, whose equation is y = 1 + µ(x − 1)
or equivalently y = x. Thus the only solution to equation (1.2) is again
x = 1.

(iii) µ > 1: In this case, for small enough ε > 0, φξ(1 − ε) ∼ 1 − µε < 1 − ε.
Thus by continuity of the function x → φξ(x) − x, which takes a positive
value p0 at x = 0 and a negative value at x = 1 − ε, there must exist a
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