
Introduction

Style: 1b. the shadow-producing pin of a sundial.
2c. the custom or plan followed in spelling,
capitalization, punctuation, and typographic
arrangement and display.

– Webster’s New Collegiate Dictionary

The syntax of a programming language tells you what code
it is possible to write – what machines will understand. Style
tells you what you ought to write – what humans reading
the code will understand. Code written with a consistent,
readable style is robust, maintainable, and contains fewer bugs.
Code written with no regard to style contains more bugs,
and it may simply be thrown away and replaced rather than
supported and extended.

Attending to style is particularly important when developing
software as a team. Consistent style facilitates communication
because it enables team members to read and understand each
other’s work more easily. The value of consistent program-
ming style increases dramatically with the number of people
working with the code and with the amount of code in the
project.

Two style guides are classics: Strunk and White’s The Elements
of Style and Kernighan and Plauger’s The Elements of Program-
ming Style. These small books work because they are simple: a
list of rules, each containing an explanation and examples of
correct, and sometimes incorrect, use. This book follows the
same pattern.

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73258-1 - The Elements of MATLAB® Style
Richard K. Johnson
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521732581


2 THE ELEMENTS OF MATLAB STYLE

Some of the advice in this book may seem obvious to you,
particularly if you have been writing and reading code for a
long time. You may disagree with some of the specific sug-
gestions about formatting, naming, or usage. Some guidelines
will require trade-offs, for example, making identifiers mean-
ingful, easy to read, and of modest length. The most important
message is that you practice consistency. Departures should
be a conscious choice.

What I tried to do here is distill decades of development expe-
rience into an easily accessible set of heuristics that encour-
age consistent coding practice (and hopefully help you avoid
some coding traps along the way). The idea is to provide a
clear standard to follow so you can spend your time solving
the customer problems instead of worrying, or even arguing,
about things such as naming conventions and formatting.

Issues of style are becoming increasingly important as the
MATLAB language changes and its use becomes more wide-
spread. Usage has grown from small-scale demonstration or
prototype code to large and complex production code devel-
oped by teams. In the early versions, all variables were double-
precision matrices; now many data types are available and
useful. Integration with Java is standard, and Java classes can
appear in MATLAB code. The MATLAB language now has
its own object-oriented features. These changes have made
clear code writing more important and more challenging.

The goal of these guidelines is to help you produce code
that is more likely to be correct, understandable, sharable,
maintainable, and extendable. Here is the test: when people
look at your code, will they see what you are doing? The spirit
of this book can be pithily expressed as “Avoid write-only
code.”

Several practices can help you become more productive with
these guidelines. Understand the motivation. There will be

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73258-1 - The Elements of MATLAB® Style
Richard K. Johnson
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521732581


INTRODUCTION 3

times when you do not want to follow a guideline. Under-
standing the motivation will help you decide what to do.
Choose the guidelines that work for you. Be consistent. Using
some set of guidelines consistently is better than inconsistent
practice.

Follow the guidelines while writing code. Do not expect to go
back and apply them later. They are not just window dressing.
They really do help. Make the guidelines part of the code
inspection process. Teach them to new programmers. Adopt
them incrementally if that works better in your situation.

Disclaimer
I dramatically simplified the code samples used in this book
to highlight the concepts related to a particular guideline and
to fit the relatively narrow text width of the book. In many
cases, these code fragments do not conform to the conventions
described elsewhere in this book. Do not treat these fragments
as definitive examples of real code!

Some elements of the MATLAB product change from release
to release. The guidelines in this book apply to recent releases,
but some of the details may apply only to the most recent.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73258-1 - The Elements of MATLAB® Style
Richard K. Johnson
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521732581


1.

General Principles

Good software gets the immediate job done. But great soft-
ware, written with a consistent and readable style, is predicta-
ble, robust, maintainable, supportable, and extensible. A few
general principles provide the foundation for great software.

1. Avoid Causing Confusion
Avoid doing things that would be an unpleasant surprise to
other software developers. The interfaces and the behavior
exhibited by your software must be predictable and consistent.
If they are not, then the documentation must clearly identify
and justify any unusual instances of use or behavior.

To minimize the chances that anyone would encounter some-
thing surprising in your software, you should emphasize the
following characteristics in its design, implementation, pack-
aging, and documentation:

Simplicity Meet the expectations of your users with
simple functions, classes, and methods.

Clarity Ensure that each variable, function, class,
and method has a clear purpose.

Completeness Provide at least the minimum functionality
that any reasonable user would expect to find
and use.

Consistency Design similar entities with a similar look
and behavior. Create and apply consistent
standards whenever possible.

4

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73258-1 - The Elements of MATLAB® Style
Richard K. Johnson
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521732581


GENERAL PRINCIPLES 5

Robustness Provide predictable, documented behavior
in response to errors and exceptions. Do not
hide errors, and do not force users to detect
errors.

2. Avoid Throw-Away Code
Apply these rules to any code you write, not just code destined
for production. All too often, some piece of prototype or
experimental code will make its way into a finished product.
Even if your code never makes it into production, someone
else may still have to read it.

Anyone who must look at your code will appreciate your pro-
fessionalism and foresight at having applied consistent rules
from the start. That person may well be you, looking at the
code, trying to figure it out long after you wrote it.

3. Help the Reader
People who read your code are not passive. They actively
try to interpret and organize it in their brains. You can help
the reader by making your naming consistent with meaning,
by using layout consistent with logical organization, and by
supplying additional relevant information. You may well be
that reader, even while writing the code.

4. Maintain the Style of the Original
When modifying existing software that works, your changes
should usually follow the style of the original code. Do not
attempt to rewrite the old software just to make it match a
new style. Rewriting old code simply to change its style may
result in the introduction of costly, yet avoidable defects. The
use of different styles within a single source file produces code
that is more difficult to read and comprehend.

If the existing style is problematic, then consider changing
the style of the entire file to make it consistent. Use of Smart

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73258-1 - The Elements of MATLAB® Style
Richard K. Johnson
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521732581


6 THE ELEMENTS OF MATLAB STYLE

Indent to clarify structure through layout is relatively safe.
Carefully changing the comments for compatibility with the
Help browser is also worth considering. If you make changes,
then be sure to run regression tests and any existing software
that interacts with the module.

5. Document Style Deviations
No standard is perfect, and no standard is universally appli-
cable. Sometimes you will find yourself in a situation where
you need to deviate from an established standard. If so, then
strive for clarity and consistency.

Before you decide to ignore a rule, you should first make
sure you understand why the rule exists and what the conse-
quences are if the rule is not applied. If you decide you must
violate a rule, then document why you have done so. Some
organizations will have reasons to deviate from some of these
guidelines, but most organizations will benefit from adopting
written style guidelines.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73258-1 - The Elements of MATLAB® Style
Richard K. Johnson
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521732581


2.

Formatting

Graphic designers have long known that the appropriate use
of space around and within text can enhance the reading
experience. Use layout, white space, and visual organization
to clarify relationships and avoid straining the reader’s short-
term memory. When you modify your code, preserve layout
and spacing to make sure that its format is correct. Code that
is easy to scan and read is more likely to be correct.

Layout
The purpose of layout is to help the reader understand the
code. It should accurately and consistently represent the log-
ical structure of the code. Indentation is particularly helpful
for revealing code structure and patterns to provide context
for individual statements.

6. Keep Content Within the First Eighty Columns
Avoid writing code in long lines. Short lines are easier to read
than long ones. In general, the readability of text decreases
as column width increases. The recommended eighty-column
width is a common dimension for editors, terminal emulators,
printers, and debuggers.

Readability improves if unintentional line breaks and horizon-
tal scrolling are avoided when passing a file between program-
mers. Limiting lines to eighty columns also makes side-by-side
viewing in two windows easier.

7

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73258-1 - The Elements of MATLAB® Style
Richard K. Johnson
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521732581


8 THE ELEMENTS OF MATLAB STYLE

7. Split Long Code Lines at Graceful Points
A long line is one that exceeds the suggested eighty-column
limit. If you have two or more statements on one line, then
write each on a line of its own. If a line is too long because
it contains a complicated expression, then rewrite the code
to make one or more subexpressions on separate lines. Give
the subexpressions meaningful names. Keep parenthetical ele-
ments together, if possible. The statement

if isnan(thisValue)&(thisValue>=initial
Threshold) &∼ismember(value,valueArray)

:
end

should be replaced by something like

valueIsPresent = ∼isnan(thisValue);
valueIsValid = thisValue >= initialThreshold;
valueIsNew = ∼ismember(thisValue, valueArray);
if (valueIsPresent && valueIsValid && valueIsNew)

:
end

If the line is still too long, then wrap it at a point that is
most easily readable. In general, break after a comma, right
parenthesis, string terminator, or space. For example,

thisComment = ['All values above ' ...
int2str(threshold) ' are discarded.'];

If the line is still too long, then wrap after an operator:

currentThreshold = baseValue+thisOffset- ...
thisFudgeFactor;

8. Indent Statement Groups Three or Four Spaces
Good indentation is probably the single best way to reveal
program structure. It can set off groups of statements from

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73258-1 - The Elements of MATLAB® Style
Richard K. Johnson
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521732581


FORMATTING 9

other code. It can also clarify the beginning and end of loops
or conditional statements.

Indentation of one space is too small to be clearly visible, so
indentation of two spaces is sometimes suggested to reduce the
number of line breaks required to stay within eighty columns
for nested statements. However, two-character indentation is
marginally visible, and in any case, MATLAB code is usually
not deeply nested.

Indentation larger than four spaces can make nested code
difficult to read because it increases the chance that the lines
must be split. Indentation of four spaces is the current default
in the MATLAB Editor; three was the default in some previous
versions.

Do not rely on counting spaces for indentation. Establish your
standard in the Editor Preferences menu. Match both the tab
size and indent size settings to achieve consistent display.

9. Indent Consistently with the MATLAB Editor
The MATLAB Editor automatically provides indentation that
clarifies code structure and is consistent with most recom-
mended practices for C++ and Java. If you use a different
editor, then set it and your MATLAB Editor to produce con-
sistent indenting so that you can easily transfer code.

Indentation problems when using the Editor usually occur
when the code is not written in sequence, for example, when
code is inserted with copy and paste or another case is added
after a selection construct is initially written. Use the Smart
Indent feature in the Text menu to provide uniform indenta-
tion at the right places.

10. Do Not Use Hard Tabs
If you use the MATLAB Editor, then select the option “Tab
key inserts spaces” in the Preferences menu. If you use a
different editor, then do not rely on hard tabs for indentation.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73258-1 - The Elements of MATLAB® Style
Richard K. Johnson
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521732581


10 THE ELEMENTS OF MATLAB STYLE

Hard tabs can easily produce different amounts of indentation
when displayed in different editors.

11. Put Only One Executable Statement
in a Line of Code
This practice improves readability and allows the JIT/
Accelerator to improve performance. Putting multiple state-
ments on one line for conditional constructs or loops lacks
an indentation cue for the reader. It may also produce lines
that are too long. One line conditional constructs also tend
to leave out the often important else code.

Replace the conditional

if beta >= delta, alpha = beta; end

with

if beta >= delta
alpha = beta;

end

Replace the one line loop

for k = 1:10, y = k.^2; end;

with an indented loop.

for k = 1:nValues
y = k.^2;

end

12. Define Each Variable on a Separate Line
Using one line for multiple definitions tends to produce over-
crowded expressions, variable names that are too short, and
unnecessary literal numbers.

Replace

rows=10; cols=5; array=zeros(10,5);

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-73258-1 - The Elements of MATLAB® Style
Richard K. Johnson
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/9780521732581

