Contents

Introduction ... 1
List of Notations 6

Chapter I

Background ... 7
 1.1 Elliptic curves 8
 1.2 Hasse-Weil L-functions 15
 1.3 Structure of the Mordell-Weil group 18
 1.4 The conjectures of Birch and Swinnerton-Dyer 22
 1.5 Modular forms and Hecke algebras 26

Chapter II

p-Adic L-functions and Zeta Elements 31
 2.1 The p-adic Birch and Swinnerton-Dyer conjecture 31
 2.2 Perrin-Riou’s local Iwasawa theory 34
 2.3 Integrality and (φ, Γ)-modules 39
 2.4 Norm relations in K-theory 43
 2.5 Kato’s p-adic zeta-elements 46

Chapter III

Cyclotomic Deformations of Modular Symbols 50
 3.1 \mathbb{Q}-continuity 50
 3.2 Cohomological subspaces of Euler systems 56
 3.3 The one-variable interpolation 60
 3.4 Local freeness of the image 64

Chapter IV

A User’s Guide to Hida Theory 70
 4.1 The universal ordinary Galois representation 70
 4.2 Λ-adic modular forms 72
 4.3 Multiplicity one for I-adic modular symbols 76
 4.4 Two-variable p-adic L-functions 80

vii
Contents

Chapter V
Crystalline Weight Deformations 86
5.1 Cohomologies over deformation rings 87
5.2 \(p \)-Ordinary deformations of \(B_{\text{cris}} \) and \(D_{\text{cris}} \) 92
5.3 Constructing big dual exponentials 96
5.4 Local dualities 101

Chapter VI
Super Zeta-Elements 108
6.1 The \(\mathcal{R} \)-adic version of Kato’s theorem 109
6.2 A two-variable interpolation 118
6.3 Applications to Iwasawa theory 128
6.4 The Coleman exact sequence 132
6.5 Computing the \(\mathcal{R}[\Gamma] \)-torsion 137

Chapter VII
Vertical and Half-Twisted Arithmetic 141
7.1 Big Selmer groups 142
7.2 The fundamental commutative diagrams 147
7.3 Control theory for Selmer coranks 159

Chapter VIII
Diamond-Euler Characteristics: the Local Case 165
8.1 Analytic rank zero 166
8.2 The Tamagawa factors away from \(p \) 169
8.3 The Tamagawa factors above \(p \) (the vertical case) 173
8.4 The Tamagawa factors above \(p \) (the half-twisted case) 180
8.5 Evaluating the covolumes 183

Chapter IX
Diamond-Euler Characteristics: the Global Case 191
9.1 The Poitou-Tate exact sequences 192
9.2 Triviality of the compact Selmer group 197
9.3 The \(p \)-adic weight pairings 201
9.4 Commutativity of the bottom squares 208
9.5 The leading term of \(\mathcal{H}_F(T_{\infty,E}) \) 214
9.6 Variation under the isogeny \(\vartheta : E \to \mathcal{C}_{\text{min}} \) 219
Contents

Chapter X
Two-Variable Iwasawa Theory of Elliptic Curves
10.1 The half-twisted Euler characteristic formula
10.2 The p-adic height over a double deformation
10.3 Behaviour of the characteristic ideals
10.4 The proof of Theorems 10.8 and 10.11
10.5 The main conjectures over weight-space
10.6 Numerical examples, open problems

Appendices
A: The Primitivity of Zeta Elements
B: Specialising the Universal Path Vector
C: The Weight-Variable Control Theorem (by Paul A. Smith)
\hspace{1cm} C.1 Notation and assumptions
\hspace{1cm} C.2 Properties of affinoids
\hspace{1cm} C.3 The cohomology of a lattice \mathbb{L}
\hspace{1cm} C.4 Local conditions
\hspace{1cm} C.5 Dualities via the Ext-pairings
\hspace{1cm} C.6 Controlling the Selmer groups

Bibliography
Index