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Introduction

The connection between L-functions and arithmetic must surely be one of the most
profound in mathematics. From Dirichlet’s discovery that infinitely many primes
occur in an arithmetic progression, right through to Wiles’ celebrated proof of
Fermat’s Last Theorem, the applications of L-series to number theory seem to be
limitless.

This book is concerned with the special values of L-functions of modular forms.
The twentieth century saw many deep conjectures made about the interrelation
between L-values and associated arithmetic invariants. Moreover, the last few years
have seen a lot of these predictions proved correct, though much is still shrouded
in mystery. Very frequently modular forms can be grouped together into families
parametrised by a single analytic variable, and it is their properties which we intend
to study here. Whilst we shall be primarily interested in the arithmetic of the
whole family itself, the control theory often tells us something valuable about each
individual member.

What then do we mean by a modular form? Let k and N be positive integers.
An analytic function fk : H ∪ {∞} −→ C is modular of weight k and level N if

fk

(
az + b

cNz + d

)
= (cNz + d)k fk(z)

at all integers a, b, c, d ∈ Z such that 1 + bcN = ad. In particular, the quadruple
(a, b, c, d) = (1, 1, 0, 1) clearly satisfies this condition, so we must have the identity
fk(z + 1) = fk(z) for all z ∈ H. Moreover, if fk(z) is appropriately bounded as z
approaches the cusps, we call fk a modular form.

It follows that fk is a periodic function of z, with a Fourier expansion

fk(z) =
∞∑

n=0

an(fk)qn where q = exp(2πiz).

Hecke proved that for a fixed level N and weight k, the space of modular forms is
finitely-generated over C. He introduced a system of operators ‘the Hecke algebra’,
under whose action a basis of eigenforms can always be found.

N.B. It is very far from being true that every modular form occurring in nature
hides deep secrets. For example, the Eisenstein series

Eisk(z) :=
∑

(0,0) �=(m,n)∈Z×Z

1

(mz + n)k
for integers k > 2

whilst indispensable tools in the analytic theory, tell us precious little about the
arithmetic of Diophantine equations.
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2 Introduction

We’ll concern ourselves exclusively with the study of newforms of weight k ≥ 2,
a precise definition of which can be found in the next chapter. For the moment,
we just mention that a newform fk vanishes at the cusp ∞, so the constant term
a0(fk) in its Fourier expansion must be zero. The complex L-function

L(fk, s) :=
∞∑

n=1

an(fk).n−s

converges in the right-half plane Re(s) > k
2 + 1, and can be analytically continued

to the whole of the complex numbers. In contrast to the rather crude nature of
Eisenstein series, newforms encode a lot of useful arithmetic data.

Let us fix an integer s0 ∈ {1, ..., k − 1}, and assume that L(fk, s0) is non-zero.
The conjectures of Bloch and Kato relate the value of the L-function at s = s0

with the order of a mysterious group IIIk = III(fk; s0), which can be defined
cohomologically. For their conjecture to make any sense, it is essential that the
quantity #IIIk be finite. In the special case where the weight k = 2, the object
III2 is the Tate-Shafarevich group of a modular elliptic curve which has f2 as
its associated newform; the Bloch-Kato Conjecture then reduces to the famous
conjectures of Birch and Swinnerton-Dyer (see Chapter I for details).

Beilinson, and then subsequently Kato, discovered that the critical values of the
L-function are governed by certain cohomology classes, which we now refer to as
Kato-Beilinson zeta-elements.

Our first main result is purely technical, but nonetheless vital:

Theorem 0.1. The space of zeta-elements generates the algebraic modular symbol

associated to the cuspidal eigenform fk.

Let’s see what the implications of this theorem are in deformation theory.

So far the weight k of our newforms has remained fixed, but we can relax this.
We shall allow k to vary over the whole of the p-adic integers Zp, although only at
positive integers can one say anything meaningful about the behaviour of newforms.
Let p > 3 denote a prime number, and write Λ for the power series ring Zp[[X]].
Hida showed that whenever the pth-Fourier coefficient is a p-adic unit, these modular
forms come in ordinary families

f =
∞∑

n=1

an(f; X) qn ∈ Λ[[q]]

where at infinitely many weights k ≥ 2, the expansion

fk =
∞∑

n=1

an

(
f; (1 + p)k−2 − 1

)
qn ∈ Zp[[q]]

is a classical eigenform of weight k.
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Introduction 3

This means we are no longer dealing with just a single Bloch-Kato Conjecture,
rather a continuum of statements relating the quantities

the special value L(fk, s0)
Bloch-Kato

←→ the p-part of #IIIk.

We consider only the p-primary part of IIIk above, because the choice of prime p
is fundamental to the original deformation.

Not surprisingly, this raises a whole host of arithmetic questions:

Q1. Is there a p-adic analytic L-function of k interpolating these special values?

Q2. What is the underlying object governing these Tate-Shafarevich groups IIIk?

Q3. Can the Bloch-Kato Conjecture be formulated for the whole p-ordinary family,

so that each individual conjecture is simply a manifestation at weight k?

We shall look for answers to all these questions.

As a first step, we find an analytic parametrisation for the Galois cohomology of
the representations interpolating

{
fk

}
k≥2

. Let F denote an abelian extension of Q.

Theorem 0.2. The étale Coleman exact sequence over F ⊗ Zp deforms along the

universal p-ordinary representation ρuniv
∞ : GQ → GL2

(
Zp[[X]]

)
.

The proof is based on the following generalisation of Theorem 0.1:

Theorem 0.3. The weight-deformation of the zeta-elements over Zp[[X]], generates

the universal Λ-adic modular symbol associated to the family f.

Of course, there is no reason at all why the point s = s0 should have remain fixed.
If we allow it to vary in exactly the same manner as the weight k varied, one can
consider special values at all points of the critical strip, simultaneously.
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4 Introduction

In terms of the deformation theory, this amounts to adding a second variable to
the power series ring Λ, which means we are now working over Zp[[X, Y ]] instead.
The whole picture becomes clearer when we allow this extra cyclotomic variable Y
because the full force of Iwasawa theory is at our disposal.

Our intention is to study Selmer groups associated to the following three lines:
the vertical line s = 1, the central line s = k/2, and the boundary line s = k − 1.
Let’s consider s = 1 and s = k − 1 first.

Theorem 0.4. The Selmer groups along both s = 1 and s = k−1 are Λ-cotorsion,

over all abelian extensions F of the rational numbers Q.

It is worthwhile remarking that the cotorsion of the cyclotomic Selmer group along
the horizontal line k = 2 was recently proven by Kato, and in the CM case Rubin.
This remains one of the crown jewels in the Iwasawa theory of elliptic curves.

Unfortunately for the central line s = k/2, things are less clear cut.

Conjecture 0.5. The Selmer group along s = k/2 should have Λ-corank equal to

the generic order of vanishing of Lp

(
fk, k/2

)
for even integers k.

Greenberg predicted that the order of vanishing along s = k/2 was either almost
always zero, or almost always one. Without knowing whether this statement holds
true in general, alas 0.5 is destined to remain only a conjecture at best.

Granted we know something about the structure of these three Selmer groups,
one can then compute the leading terms of their characteristic power series.

Theorem 0.6. There are explicit formulae relating the Iwasawa invariants along

s = 1, s = k/2 and s = k − 1 to the p-part of the BSD Conjecture.

The author apologises profusely for stating the result in such a vacuous manner –
for the full statements, we refer the reader to Theorems 9.18 and 10.1 in the text.
To obtain these formulae is by no means trivial. If the function L

(
f2, s

)
vanishes at

the point s = 1 it is necessary to define analogues over Λ of the elliptic regulator,
which in turn involves constructing ‘p-adic weight pairings’ on an elliptic curve.

When combined, the results 0.1–0.6 allow us to deduce the arithmetic behaviour
of the two-variable Selmer group over Zp[[X, Y ]], at the critical point (1, 2):

Theorem 0.7. The leading term of the algebraic two-variable p-adic L-function

at (s, k) = (1, 2) is equal to the order of III2, multiplied by some

readily computable Λ-adic Tamagawa numbers.

In particular, this last theorem shows how the p-primary part of III is completely
controlled by the arithmetic of the Hida family that lifts the classical eigenform f2
(c.f. Section 10.3 for the precise formulae).
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Introduction 5

The organisation of this book is as follows. The first chapter is meant to be purely
introductory, containing a very brief review of elliptic curves and modular forms.
In Chapter II we recall the work of Perrin-Riou and Kato on the theory of Euler
systems for modular forms. Then in Chapter III we describe a brand new method
for constructing p-adic L-functions using these tools. The main advantage of our
constructions is that each Euler system is assigned a modular symbol, and there is
a particularly nice deformation theory for these symbols.

Once we have a working model in place for the cyclotomic variable Y , it is
then time to introduce the weight variable X. In Chapter IV we provide a short
description of Hida’s ordinary deformation theory, which exerts strict control over
the modular forms occurring in the family. The two chapters that follow contain
the technical heart of the book. We develop a theory of two-variable Euler systems
over Zp[[X, Y ]], in terms of the Λ-deformation of the space of modular symbols.
Since there are already ambiguities present in certain of the objects considered, we
will give a construction compatible with the analytic theory of Greenberg-Stevens
and Kitagawa.

The remainder of the book is completely devoted to a study of the arithmetic of
p-ordinary families. In Chapter VII we explain how to associate Selmer groups over
a one-variable deformation ring Λ = Zp[[X]], and hence compute their Λ-coranks.
In the next two chapters we prove formulae for the p-part of the Tate-Shafarevich
group of an elliptic curve (under the assumption that the number field is abelian).
Finally, Chapter X ties everything together in what is rather grandly called the
“Two-Variable Main Conjecture”. This statement is now over the larger power
series ring Zp[[X, Y ]], and our previous Euler characteristic computations allow us
to formulate the conjecture without error terms.

The reader who has done a graduate-level course in algebraic number theory,
should have no trouble at all in understanding most of the material. A passing
acquaintance with algebraic geometry could also be helpful. However, someone
with a number theory background could easily skip the first couple of chapters, and
the battle-hardened Iwasawa theorist could probably dive straight into Chapter IV.

Acknowledgements: Firstly, the author is greatly indebted to Adrian Iovita for
explaining his generalisation of Bmax, and to Denis Benois for sharing his knowledge
of the dual exponential map. He also thanks Paul Smith for writing Appendix C,
and for both his and John Cremona’s computer experiments.
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and his work colleagues at the University of Nottingham. He thanks D.P.M.M.S.
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Lastly, many thanks to Nigel Hitchin and the team at Cambridge University Press,
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List of Notations

(a) For a field K we write K for its separable algebraic closure. At each prime
number p, let μpn denote the group of pn-th roots of unity living inside of K.

If M is a Zp[Gal(K/K)]-module and the integer j ≥ 0, then ‘M(j)’ denotes the

Tate twist M ⊗Zp

(
lim←−n

μpn

)⊗j
. On the other hand, if j < 0 then it denotes the

twist M ⊗Zp
HomZp

(
lim←−n

μ⊗−j
pn , Zp

)
.

(b) Throughout we shall fix embeddings Q →֒ C and Q →֒ Qp at each prime p.

We write Cp for the completion of Qp with respect to the p-adic metric (it is
an algebraically closed field). Thus we may consider all Dirichlet characters

ψ : (Z/MZ)× → Q
×

as taking values in both C× and C×
p under our embeddings.

(c) The maximal unramified extension Qnr
p of the p-adic numbers, has Galois group

Gal
(
Qnr

p /Qp

)
∼= Gal

(
Fp/Fp

)
. The arithmetic Frobenius element Frobp : x �→ xp

in the latter group can be considered as generating Gal
(
Qnr

p /Qp

)
topologically.

Moreover, we abuse notation and write ‘Frobp’ for any of its lifts to Gal
(
Qp/Qp

)
,

which are only well-defined modulo the inertia group Ip.

(d) For a ring R we denote the ith-étale cohomology group Hi
ét

(
Spec(R), −

)
by

Hi
ét(R, −), or sometimes just by Hi(R, −). Assume further that R is an

integral domain with field of fractions K, and write j : Spec(K) → Spec(R) for
the inclusion morphism. Then for any sheaf A of abelian groups on Spec(K),
we abbreviate Hi

(
R, j∗(A)

)
simply by Hi(R, A).

(e) Given an integer level N ≥ 1, let Γ0(N) denote the group of unimodular matrices(
a b
c d

)
satisfying the congruence c ≡ 0 ( mod N). Similarly, the subgroup

Γ1(N) consists of matrices satisfying c ≡ 0 ( mod N) and a ≡ d ≡ 1 ( mod N).

If Φ = Γ0(N) or Γ1(N), then Sk(Φ) is the space of cusp forms of weight k on Φ.
Finally, for each primitive Dirichlet character ǫ : (Z/NZ)× → C×, we will write
Sk

(
Γ0(N), ǫ

)
to indicate the ǫ-eigenspace

{
f ∈ Sk

(
Γ1(N)

)
such that f

∣∣∣
k

(
a b
c d

)
= ǫ(d)f for all

(
a b
c d

)
∈ Γ0(N)

}
.
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CHAPTER I

Background

Although the study of elliptic curves can be traced back to the ancient Greeks,
even today there remain surprisingly many unanswered questions in the subject.
The most famous are surely the conjectures of Birch and Swinnerton-Dyer made
almost half a century ago. Their predictions have motivated a significant portion
of current number theory research, however they seem as elusive as they are ele-
gant. Indeed the Clay Institute included them as one of the seven millenium
problems in mathematics, and there is a million dollar financial reward for their
resolution.

This book is devoted to studying the Birch, Swinnerton-Dyer (BSD) conjecture
over the universal deformation ring of an elliptic curve. A natural place to begin
is with a short exposition of the basic theory of elliptic curves, certainly enough
to carry us through the remaining chapters. Our main motivation here will be to
state the BSD conjecture in the most succinct form possible (for later reference).
This seems a necessary approach, since the arithmetic portion of this work entails
searching for their magic formula amongst all the detritus of Galois cohomology,
i.e. we had better recognise the formula when it finally does appear!

After defining precisely what is meant by an elliptic curve E, we introduce its
Tate module Tap(E) which is an example of a two-dimensional Galois represen-
tation. The image of the Galois group inside the automorphisms of Tap(E) was
computed by Serre in the late 1960’s. We next explain how to reduce elliptic
curves modulo prime ideals, which then enables us to define the L-function of
the elliptic curve E. This L-function is a pivotal component in the BSD formula
in §1.4.

One of the highlights of the subject is the Mordell-Weil theorem, which ass-
erts that the group of rational points on an elliptic curve is in fact finitely-generated.
We shall sketch the proof of this famous result, primarily because it involves
the application of ‘height pairings’ which will be invaluable tools in later chap-
ters. Lastly, the connection between elliptic curves and modular forms is cov-
ered in §1.5. These important objects are introduced from a purely algebraic
standpoint, because this gives us greater flexibility when visualising Beilinson’s
K2-elements.

The excellent volumes of Silverman [Si1,Si2] cover just about everything you
would want to know about the fundamental theory of elliptic curves, and about
two thirds of this chapter is no more than a selective summary of his first tome.
For the complex analytic theory there is the book of Knapp [Kn], which covers the
connection with modular forms in some detail. A gentler introduction is the volume
of Silverman-Tate [ST], and of course Cassels’ text [Ca1] is a classic.
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8 Background

1.1 Elliptic curves

We say that E is an elliptic curve if it is a smooth projective curve of genus one,
equipped with a specified base-point OE . Furthermore, E is said to be defined
over a field K if the underlying curve is, and in addition the base-point OE has
K-rational coordinates. Since every elliptic curve may be embedded as a cubic in
projective space, we can equally well picture it in Weierstrass form

E : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3

where the a1, a2, a3, a4, a6 all lie inside K. Under this identification, the origin OE

will be represented by the point at infinity (X, Y, Z) = (0, 1, 0).

If the characteristic of K is neither 2 nor 3, one can always change coordinates
to obtain (birationally) a simpler affine equation

E : y2 = x3 + Ax + B

where again A, B are elements of K. The non-singularity of our curve is then
equivalent to the cubic x3 + Ax + B possessing three distinct roots, i.e. to the
numerical condition

Δ(E) = −16(4A3 + 27B2) �= 0.

Remark: The above quantity is called the discriminant of E and depends on that
particular choice of Weierstrass equation. On the other hand, the j-invariant

j(E) := 1728 ×
4A3

4A3 + 27B2

is independent of this choice, and classifies elliptic curves up to isomorphism.

The principal reason why the theory of elliptic curves is so rewarding is because
the points on an elliptic curve are endowed with the structure of an abelian group.
If P1 and P2 are two such points on E, then their sum P3 = “P1 + P2” is the
unique point satisfying

(P3) − (OE) ∼ (P1) + (P2) − 2(OE) inside Pic0(E),

the degree zero part of the divisor class group of E. In terms of the Weierstrass
equation y2 = x3 + Ax + B, it can be shown that the x-coordinate of P3 is

x
(
P3

)
= x

(
P1 + P2

)
=

(
y1 − y2

x1 − x2

)2

− (x1 + x2)

when P1 = (x1, y1) differs from P2 = (x2, y2), and if they are the same point

x
(
P3

)
= x

(
P1 + P1

)
=

x4
1 − 2Ax2

1 − 8Bx1 + A2

4x3
1 + 4Ax1 + 4B

.

www.cambridge.org/9780521728669
www.cambridge.org


Cambridge University Press
978-0-521-72866-9 — Elliptic Curves and Big Galois Representations
Daniel Delbourgo
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Elliptic curves 9

Geometrically three points sum to zero if and only if they lie on the same line, so
the additive inverse of P1 = (x1, y1) must be −P1 = (x1,−y1).

P

Q

"P+Q"

Figure 1.1

Adding the same point repeatedly to itself a fixed number of times gives rise to
an endomorphism of E, defined over K. More precisely, for an integer m ∈ Z we
denote by [×m] ∈ End(E) the map for which

[×m]P =

⎧
⎪⎨

⎪⎩

P + · · · + P if m > 0

OE if m = 0

−P − · · · − P if m < 0

“
∣∣m

∣∣-times ”

at all points P ∈ E.
Actually there are not that many possibilities for the endomorphism ring of E.

If the field K has characteristic zero then End(E) is either Z, or an order in an
imaginary quadratic field in which case we say that E has complex multiplication.
Note that if K has positive characteristic then End(E) could also be a maximal
order in a quaternion algebra.

Isogenies and the Tate module.

Suppose now that E′ is another elliptic curve defined over K. An isogeny between
E and E′ is a non-constant morphism φ : E → E′ of curves such that φ(OE) = OE′ .
In particular, φ is a group homomorphism whence φ(P1 + P2) = φ(P1) + φ(P2).
The kernel of φ will be a finite subgroup of E, and the degree of φ is its degree as
a finite map of curves.

The dual isogeny φ̂ : E′ → E is then characterized by the property that

φ̂ ◦ φ = [×n]E and φ ◦ φ̂ = [×n]E′ where n = deg(φ).

If λ : E → E′ and θ : E′ → E are two further isogenies, their duals satisfy

̂̂
φ = φ, φ̂ + λ = φ̂ + λ̂ and φ̂ ◦ θ = θ̂ ◦ φ̂.

www.cambridge.org/9780521728669
www.cambridge.org


Cambridge University Press
978-0-521-72866-9 — Elliptic Curves and Big Galois Representations
Daniel Delbourgo
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Background

Definition 1.1. The kernel of the isogeny [×m] : E → E is denoted by

E[m] := Ker
(
[×m]

)
=

{
P ∈ E such that [×m]P = OE

}
,

and consists of geometric points on E defined over a fixed algebraic closure K.

We also write Etors for the union
⋃

m≥1 E[m].

Remarks: (a) If the characteristic of K is zero or is coprime to m ≥ 1, then

E[m] ∼= Z/mZ × Z/mZ;

(b) If the characteristic of K equals p > 0, then

E[pn] ∼= Z/pnZ or {0} for all n ≥ 1;

if E[pn] is zero we call the elliptic curve supersingular, otherwise it is ordinary.

Let us fix a prime number p. The multiplication-by-p endomorphism induces a
transition map [×p] : E[pn+1] −→ E[pn] of finite p-groups, for all integers n ≥ 1.
The projective limit is called the p-adic Tate module of E, and is written as

Tap(E) = lim←−
n

E[pn].

Whenever the characteristic of K is coprime to p, we see from part (a) of the above
remark that there is a naive decomposition

Tap(E) ∼= Zp ⊕ Zp,

or in terms of Qp-vector spaces

Vp(E) := Tap(E) ⊗Zp
Qp

∼= Qp ⊕ Qp.

The advantage of studying torsion points on elliptic curves is that they provide us
with many examples of Galois representations, which we describe below.

Recall that E is an elliptic curve defined over K. In addition, we shall now
suppose our field K to be perfect. The action of the Galois group GK = Gal(K/K)
commutes with the group law on E, so leaves the finite subgroup E[pn] stable.
Provided the characteristic of K is coprime to p, one obtains a two-dimensional
representation

ρ
(n)
E,p : GK −→ Aut

(
E[pn]

)
∼= GL2

(
Z/pnZ

)

for all integers n ≥ 1. Passing to the limit over n yields

ρE,p : GK −→ Aut
(
Tap(E)

)
∼= GL2(Zp),

and we shall also write ρE,p : GK −→ Aut
(
Vp(E)

)
∼= GL2(Qp) for the associated

vector space Galois representation.
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