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Abstract

This survey article is devoted to general results in combinatorial enumer-

ation. The first part surveys results on growth of hereditary properties of

combinatorial structures. These include permutations, ordered and un-

ordered graphs and hypergraphs, relational structures, and others. The

second part advertises four topics in general enumeration: 1. counting

lattice points in lattice polytopes, 2. growth of context-free languages, 3.

holonomicity (i.e., P -recursiveness) of numbers of labeled regular graphs

and 4. ultimate modular periodicity of numbers of MSOL-definable

structures.

1 Introduction

We survey some general results in combinatorial enumeration. A problem

in enumeration is (associated with) an infinite sequence P = (S1 , S2 , . . . )

of finite sets Si . Its counting function fP is given by fP (n) = |Sn |, the

cardinality of the set Sn . We are interested in results of the following

kind on general classes of problems and their counting functions.

Scheme of general results in combinatorial enumeration. The

counting function fP of every problem P in the class C belongs to the

class of functions F . Formally, {fP | P ∈ C} ⊂ F .

The larger C is, and the more specific the functions in F are, the stronger

the result. The present overview is a collection of many examples of this

scheme.
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One can distinguish general results of two types. In exact results,

F is a class of explicitly defined functions, for example polynomials or

functions defined by recurrence relations of certain type or functions

computable in polynomial time. In asymptotic results, F consists of

functions defined by asymptotic equivalences or asymptotic inequali-

ties, for example functions growing at most exponentially or functions

asymptotic to n(1−1/k)n+o(n) as n → ∞, with the constant k ≥ 2 being

an integer.

The sets Sn in P usually constitute sections of a fixed infinite set.

Generally speaking, we take an infinite universe U of combinatorial

structures and introduce problems and classes of problems as subsets

of U and families of subsets of U , by means of size functions s : U →
N0 = {0, 1, 2, . . . } and/or (mostly binary) relations between structures

in U . More specifically, we will mention many results falling within the

framework of growth of downsets in partially order sets, or posets.

Downsets in posets of combinatorial structures. We consider

a nonstrict partial ordering (U,≺), where ≺ is a containment or a sub-

structure relation on a set U of combinatorial structures, and a size

function s : U → N0 . Problems P are downsets in (U,≺), meaning that

P ⊂ U and A ≺ B ∈ P implies A ∈ P , and the counting function of P

is

fP (n) = #{A ∈ P | s(A) = n}.

(More formally, the problem is the sequence of sections (P ∩ U1 , P ∩
U2 , . . . ) where Un = {A ∈ U | s(A) = n}.) Downsets are exactly the

sets of the form

Av(F ) := {A ∈ U | A �≻ B for every B in F}, F ⊂ U.

There is a one-to-one correspondence P 
→ F = min(U\P ) and F 
→
P = Av(F ) between the family of downsets P and the family of an-

tichains F , which are sets of mutually incomparable structures under ≺.

We call the antichain F = min(U\P ) corresponding to a downset P the

base of P .

We illustrate the scheme by three examples, all for downsets in posets.

1.1 Three examples

Example 1. Downsets of partitions. Here U is the family of par-

titions of [n] = {1, 2, . . . , n} for n ranging in N, so U consists of finite

sets S = {B1 , B2 , . . . , Bk} of disjoint and nonempty finite subsets Bi of
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N, called blocks, whose union B1 ∪ B2 ∪ · · · ∪ Bk = [n] for some n in

N. Two natural size functions on U are order and size, where the order,

‖S‖, of S is the cardinality, n, of the underlying set and the size, |S|, of

S is the number, k, of blocks. The formula for the number of partitions

of [n] with k blocks

S(n, k) := #{S ∈ U | ‖S‖ = n, |S| = k} =
k

∑

i=0

(−1)i(k − i)n

i!(k − i)!

is a classical result (see [111]); S(n, k) are called Stirling numbers. It is

already a simple example of the above scheme but we shall go further.

For fixed k, the function S(n, k) is a linear combination with rational

coefficients of the exponentials 1n , 2n , . . . , kn . So is the sum S(n, 1) +

S(n, 2)+· · ·+S(n, k) counting partitions with order n and size at most k.

We denote the set of such partitions {S ∈ U | |S| ≤ k} as U≤k . Consider

the poset (U,≺) with S ≺ T meaning that there is an increasing injection

f :
⋃

S → ⋃

T such that every two elements x, y in
⋃

S lie in the same

block of S if and only if f(x), f(y) lie in the same block of T . In other

words, S ≺ T means that
⋃

T has a subset X of size ‖S‖ such that

T induces on X a partition order-isomorphic to S. Note that U≤k is

a downset in (U,≺). We know that the counting function of U≤k with

respect to order n equals a11
n + · · · + akkn with ai in Q. What are

the counting functions of other downsets? If the size is bounded, as

for U≤k , they have similar form as shown in the next theorem, proved

by Klazar [77]. It is our first example of an exact general enumerative

result.

Theorem 1.1 (Klazar). If P is a downset in the poset of partitions

such that maxS∈P |S| = k, then there exist a natural number n0 and

polynomials p1(x), p2(x), . . . , pk (x) with rational coefficients such that

for every n > n0 ,

fP (n) = #{S ∈ P | ‖S‖ = n} = p1(n)1n + p2(n)2n + · · · + pk (n)kn .

If maxS∈P |S| = +∞, the situation is much more intricate and we are far

from having a complete description but the growths of fP (n) below 2n−1

have been determined (see Theorem 2.17 and the following comments).

We briefly mention three subexamples of downsets with unbounded size,

none of which has fP (n) in the form of Theorem 1.1. If P consists of all

partitions of [n] into intervals of length at most 2, then fP (n) = Fn , the

nth Fibonacci number, and so fP (n) = b1α
n + b2β

n where α =
√

5−1
2 ,
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β =
√

5+1
2 and b1 = α√

5
, b2 = β√

5
. If P is given as P = Av({C})

where C = {{1, 3}, {2, 4}} (the partitions in P are so called noncrossing

partition, see the survey of Simion [106]) then fP (n) = 1
n+1

(

2n
n

)

, the nth

Catalan number which is asymptotically cn−3/24n . Finally, if P = U ,

so P consists of all partitions, then fP (n) = Bn , the nth Bell number

which grows superexponentially.

Example 2. Hereditary graph properties. Here U is the uni-

verse of finite simple graphs G = ([n], E) with vertex sets [n], n ranging

over N, and ≺ is the induced subgraph relation; G1 = ([n1 ], E1) ≺ G2 =

([n2 ], E2) means that there is an injection from [n1 ] to [n2 ] (not necessar-

ily increasing) that sends edges to edges and nonedges to nonedges. The

size, |G|, of a graph G is the number of vertices. Problems are downsets

in (U,≺) and are called hereditary graph properties. The next theo-

rem, proved by Balogh, Bollobás and Weinreich [18], describes counting

functions of hereditary graph properties that grow no faster than expo-

nentially.

Theorem 1.2 (Balogh, Bollobás and Weinreich). If P is a hereditary

graph property such that for some constant c > 1, fP (n) = #{G ∈
P | |G| = n} < cn for every n in N, then there exists a natural numbers k

and n0 and polynomials p1(x), p2(x), . . . , pk (x) with rational coefficients

such that for every n > n0 ,

fP (n) = p1(n)1n + p2(n)2n + · · · + pk (n)kn .

The case of superexponential growth of fP (n) is discussed below in The-

orem 2.11.

In both examples we have the same class of functions F , linear com-

binations p1(n)1n + p2(n)2n + · · ·+ pk (n)kn with pi ∈ Q[x]. It would be

nice to find a common extension of Theorems 1.1 and 1.2. It would be

also of interest to determine if the two classes of functions realizable as

counting functions in both theorems coincide and how they differ from

Q[x, 2x , 3x , . . . ].

Example 3. Downsets of words. Here U is the set of finite words

over a finite alphabet A, so U = {u = a1a2 . . . ak | ai ∈ A}. The

size, |u|, of such a word is its length k. The subword relation (also

called the factor relation) u = a1a2 . . . ak ≺ v = b1b2 . . . bl means that

bi+1 = a1 , bi+2 = a2 , . . . , bi+k = ak for some i. We associate with an

infinite word v = b1b2 . . . over A the set P = Pv of all its finite subwords,

thus Pv = {brbr+1 . . . bs | 1 ≤ r ≤ s}. Note that Pv is a downset in
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(U,≺). The next theorem was proved by Morse and Hedlund [92], see

also Allouche and Shallit [7, Theorem 10.2.6].

Theorem 1.3 (Morse and Hedlund). Let P be the set of all finite sub-

words of an infinite word v over a finite alphabet A. Then fP (n) =

#{u ∈ P | |u| = n} is either larger than n for every n in N or is

eventually constant. In the latter case the word v is eventually periodic.

The case when P is a general downset in (U,≺), not necessarily com-

ing from an infinite word (cf. Subsection 2.4), is discussed below in

Theorem 2.19.

Examples 1 and 2 are exact results and example 3 combines a tight

form of an asymptotic inequality with an exact result. Examples 1

and 2 involve only countably many counting functions fP (n) and, as

follows from the proofs, even only countably many downsets P . In ex-

ample 3 we have uncountably many distinct counting functions. To

see this, take A = {0, 1} and consider infinite words v of the form

v = 10n1 10n2 10n3 1 . . . where 1 ≤ n1 < n2 < n2 < . . . is a sequence

of integers and 0m = 00 . . . 0 with m zeros. It follows that for distinct

words v the counting functions fPv
are distinct; Proposition 2.1 presents

similar arguments in more general settings.

1.2 Content of the overview

The previous three examples illuminated to some extent general enumer-

ative results we are interested in but they are not fully representative

because we shall cover a larger area than the growth of downsets. We

do not attempt to set forth any more formalized definition of a general

enumerative result than the initial scheme but in Subsections 2.4 and

3.4 we will discuss some general approaches of finite model theory based

on relational structures. Not every result or problem mentioned here

fits naturally the scheme; Proposition 2.1 and Theorem 2.6 are rather

results to the effect that {fP | P ∈ C} is too big to be contained in a

small class F . This collection of general enumerative results is naturally

limited by the author’s research area and his taste but we do hope that

it will be of interest to others and that it will inspire a quest for further

generalizations, strengthenings, refinements, common links, unifications

etc.

For the lack of space, time and expertise we do not mention results

on growth in algebraic structures, especially the continent of growth in

groups; we refer the reader for information to de la Harpe [52] (and also
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to Cameron [43]). Also, this is not a survey on the class of problems

#P in computational complexity theory (see Papadimitriou [94, Chap-

ter 18]). There are other areas of general enumeration not mentioned

properly here, for example 0-1 laws (see Burris [42] and Spencer [109]).

In the next subsection we review some notions and definitions from

combinatorial enumeration, in particular we recall the notion of Wilfian

formula (polynomial-time counting algorithm). In Section 2 we review

results on growth of downsets in posets of combinatorial structures. Sub-

section 2.1 is devoted to pattern avoiding permutations, Subsections 2.2

and 2.3 to graphs and related structures, and Subsection 2.4 to relational

structures. Most of the results in Subsections 2.2 and 2.3 were found by

Balogh and Bollobás and their coauthors [11, 13, 12, 15, 14, 16, 17, 18,

19, 20, 21]. We recommend the comprehensive survey of Bollobás [30]

on this topic. In Section 3 we advertise four topics in general enumer-

ation together with some related results. 1. The Ehrhart–Macdonald

theorem on numbers of lattice points in lattice polytopes. 2. Growth

of context-free languages. 3. The theorem of Gessel on numbers of la-

beled regular graphs. 4. The Specker–Blatter theorem on numbers of

MSOL-definable structures.

1.3 Notation and some specific counting functions

As above, we write N for the set {1, 2, 3, . . . }, N0 for {0, 1, 2, . . . } and [n]

for {1, 2, . . . , n}. We use #X and |X| to denote the cardinality of a set.

By the phrase “for every n” we mean “for every n in N” and by “for large

n” we mean “for every n in N with possibly finitely many exceptions”.

Asymptotic relations are always based on n → ∞. The growth constant

c = c(P ) of a problem P is c = lim sup fP (n)1/n ; the reciprocal 1/c is

then the radius of convergence of the power series
∑

n≥0 fP (n)xn .

We review several counting sequences appearing in the mentioned re-

sults. Fibonacci numbers (Fn ) = (1, 2, 3, 5, 8, 13, . . . ) are given by the

recurrence F0 = F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2. They

are a particular case Fn = Fn,2 of the generalized Fibonacci numbers

Fn,k , given by the recurrence Fn,k = 0 for n < 0, F0,k = 1 and

Fn,k = Fn−1,k + Fn−2,k + · · · + Fn−k,k for n > 0. Using the nota-

tion [xn ]G(x) for the coefficient of xn in the power series expansion of

the expression G(x), we have

Fn,k = [xn ]
1

1 − x − x2 − · · · − xk
.
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Standard methods provide asymptotic relations Fn,2 ∼ c2(1.618 . . . )n ,

Fn,3 ∼ c3(1.839 . . . )n , Fn,4 ∼ c4(1.927 . . . )n and generally Fn,k ∼ ckαn
k

for constants ck > 0 and 1 < αk < 2; 1/αk is the least positive root of the

denominator 1−x−x2 −· · ·−xk and α2 , α3 , . . . monotonically increase

to 2. The unlabeled exponential growth of tournaments (Theorem 2.21)

is governed by the quasi-Fibonacci numbers F ∗
n defined by the recurrence

F ∗
0 = F ∗

1 = F ∗
2 = 1 and F ∗

n = F ∗
n−1 + F ∗

n−3 for n ≥ 3; so

F ∗
n = [xn ]

1

1 − x − x3

and F ∗
n ∼ c(1.466 . . . )n .

We introduced Stirling numbers S(n, k) in Example 1. The Bell num-

bers Bn =
∑n

k=1 S(n, k) count all partitions of an n-elements set and

follow the recurrence B0 = 1 and Bn =
∑n−1

k=0

(

n−1
k

)

Bk for n ≥ 1.

Equivalently,

Bn = [xn ]
∞
∑

k=0

xk

(1 − x)(1 − 2x) . . . (1 − kx)
.

The asymptotic form of the Bell numbers is

Bn = nn(1−log log n/ log n+O (1/ log n)) .

The numbers pn of integer partitions of n count the ways to express

n as a sum of possibly repeated summands from N, with the order of

summands being irrelevant. Equivalently,

pn = [xn ]

∞
∏

k=1

1

1 − xk
.

The asymptotic form of pn is pn ∼ cn−1 exp(d
√

n) for some constants

c, d > 0. See Andrews [8] for more information on these asymptotics

and for recurrences satisfied by pn .

A sequence f : N → C is a quasipolynomial if for every n we have

f(n) = ak (n)nk + · · · + a1(n)n + a0(n) where ai : N → C are periodic

functions. Equivalently,

f(n) = [xn ]
p(x)

(1 − x)(1 − x2) . . . (1 − xl)

for some l in N and a polynomial p ∈ C[x]. We say that the sequence f

is holonomic (other terms are P -recursive and D-finite) if it satisfies for

every n (equivalently, for large n) a recurrence

pk (n)f(n + k) + pk−1(n)f(n + k − 1) + · · · + p0(n)f(n) = 0
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with polynomial coefficients pi ∈ C[x], not all zero. Equivalently, the

power series
∑

n≥0 f(n)xn satisfies a linear differential equation with

polynomial coefficients. Holonomic sequences generalize sequences satis-

fying linear recurrences with constant coefficients. The sequences S(n, k),

Fn,k , and F ∗
n for each fixed k satisfy a linear recurrence with constant co-

efficients and are holonomic. The sequences of Catalan numbers 1
n+1

(

2n
n

)

and of factorial numbers n! are holonomic as well. The sequences Bn

and pn are not holonomic [112]. It is not hard to show that if (an ) is

holonomic and every an is in Q, then the polynomials pi(x) in the re-

currence can be taken with integer coefficients. In particular, there are

only countably many holonomic rational sequences.

Recall that a power series F =
∑

n≥0 anxn with an in C is alge-

braic if there exists a nonzero polynomial Q(x, y) in C[x, y] such that

Q(x, F (x)) = 0. F is rational if Q has degree 1 in y, that is, F (x) =

R(x)/S(x) for two polynomials in C[x] where S(0) �= 0. It is well known

(Comtet [50], Stanley [112]) that algebraic power series have holonomic

coefficients and that the coefficients of rational power series satisfy (for

large n) linear recurrence with constant coefficients.

Wilfian formulas. A counting function fP (n) has a Wilfian formula

(Wilf [117]) if there exists an algorithm that calculates fP (n) for every

input n effectively, that is to say, in polynomial time. More precisely, we

require (extending the definition in [117]) that the algorithm calculates

fP (n) in the number of steps polynomial in the quantity

t = max(log n, log fP (n)).

This is (roughly) the minimum time needed for reading the input and

writing down the answer. In the most common situations when exp(nc) <

fP (n) < exp(nd) for large n and some constants d > c > 0, this amounts

to requiring a number of steps polynomial in n. But if fP (n) is small

(say log n) or big (say doubly exponential in n), then one has to work

with t in place of n. The class of counting functions with Wilfian formu-

las includes holonomic sequences but is much more comprehensive than

that.

2 Growth of downsets of combinatorial structures

We survey results in the already introduced setting of downsets in posets

of combinatorial structures (U,≺). The function fP (n) counts structures

of size n in the downset P and P can also be defined in terms of for-

bidden substructures as P = Av(F ). Besides the containment relation
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≺ we employ also isomorphism equivalence relation ∼ on U and will

count unlabeled (i.e., nonisomorphic) structures in P . We denote the

corresponding counting function gP (n), so

gP (n) = #({A ∈ P | s(A) = n}/∼)

is the number of isomorphism classes of structures with size n in P .

Restrictions on fP (n) and gP (n) defining the classes of functions F
often have the form of jumps in growth. A jump is a region of growth

prohibited for counting functions—every counting function resides ei-

ther below it or above it. There are many kinds of jumps but the most

spectacular is perhaps the polynomial–exponential jump from polyno-

mial to exponential growth, which prohibits counting functions satisfy-

ing nk < fP (n) < cn for large n for any constants k > 0 and c > 1. For

groups, Grigorchuk constructed a finitely generated group having such

intermediate growth (Grigorchuk [70], Grigorchuk and Pak [69], [52]),

which excludes the polynomial–exponential jump for general finitely gen-

erated groups, but a conjecture says that this jump occurs for every

finitely presented group. We have seen this jump in Theorems 1.1 and

1.2 (from polynomial growth to growth at least 2n ) and will meet new

examples in Theorems 2.4, 2.17, 2.18, 2.21, and 3.3.

If (U,≺) has an infinite antichain A, then under natural conditions

we get uncountably many functions fP (n). This was observed several

times in the context of permutation containment and for completeness

we give the argument here again. These natural conditions, which will

always be satisfied in our examples, are finiteness, for every n there are

finitely many structures with size n in U , and monotonicity, s(G) ≥
s(H) & G ≺ H implies G = H for every G,H in U . (Recall that G ≺ G

for every G.)

Proposition 2.1. If (U,≺) and the size function s(·) satisfy the mono-

tonicity and finiteness conditions and (U,≺) has an infinite antichain

A, then the set of counting functions fP (n) is uncountable.

Proof. By the assumption on U we can assume that the members of

A have distinct sizes. We show that all the counting functions fAv(F )

for F ⊂ A are distinct and so this set of functions is uncountable. We

write simply fF instead of fAv(F ) . If X,Y are two distinct subsets of

A, we express them as X = T ∪ {G} ∪ U and Y = T ∪ {H} ∪ V so

that, without loss of generality, m = s(G) < s(H), and G1 ∈ T,G2 ∈ U

implies s(G1) < s(G) < s(G2) and similarly for Y (the sets T,U, V may
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be empty). Then, by the assumption on ≺ and s(·),

fX (m) = fT ∪{G}(m) = fT (m) − 1 = fT ∪{H }∪V (m) − 1 = fY (m) − 1

and fX �= fY .

An infinite antichain thus gives not only uncountably many downsets

but in fact uncountably many counting functions. Then, in particu-

lar, almost all counting functions are not computable because we have

only countably many algorithms. Recently, Albert and Linton [4] signif-

icantly refined this argument by showing how certain infinite antichains

of permutations produce even uncountably many growth constants, see

Theorem 2.6.

On the other hand, if every antichain is finite then there are only

countably many functions fP (n). Posets with no infinite antichain are

called well quasiorderings or shortly wqo. (The second part of the wqo

property, nonexistence of infinite strictly descending chains, is satisfied

automatically by the monotonicity condition.) But even if (U,≺) has

infinite antichains, there still may be only countably many downsets

P with slow growth functions fP (n). For example, this is the case in

Theorems 1.1 and 1.2. It is then of interest to determine for which

growth uncountably many downsets appear (cf. Theorem 2.5). The

posets (U,≺) considered here usually have infinite antichains, with two

notable wqo exceptions consisting of the minor ordering on graphs and

the subsequence ordering on words over a finite alphabet.

2.1 Permutations

Let U denote the universe of permutations represented by finite se-

quences b1b2 . . . bn such that {b1 , b2 , . . . , bn} = [n]. The size of a permu-

tation π = a1a2 . . . am is its length |π| = m. The containment relation on

U is defined by π = a1a2 . . . am ≺ ρ = b1b2 . . . bn if and only if for some

increasing injection f : [m] → [n] one has ar < as ⇐⇒ bf (r) < bf (s) for

every r, s in [m]. Problems P are downsets in (U,≺) and their counting

functions are fP (n) = #{π ∈ P | |π| = n}. The poset of permutations

(U,≺) has infinite antichains (see Aktinson, Murphy, and Ruškuc [10]).

For further information and background on the enumeration of downsets

of permutations see Bóna [34].

Recall that c(P ) = lim sup fP (n)1/n . We define

E = {c(P ) ∈ [0,+∞] | P is a downset of permutations}
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