Cambridge University Press

978-0-521-72788-4 - Probability and Information: An Integrated Approach
David Applebaum

Excerpt

More information

1

Introduction

1.1 Chance and information

Our experience of the world leads us to conclude that many events are unpredictable
and sometimes quite unexpected. These may range from the outcome of seemingly
simple games such as tossing a coin and trying to guess whether it will be heads or
tails to the sudden collapse of governments or the dramatic fall in prices of shares
on the stock market. When we try to interpret such events, it is likely that we will
take one of two approaches — we will either shrug our shoulders and say it was due
to ‘chance’ or we will argue that we might have have been better able to predict,
for example, the government’s collapse if only we’d had more ‘information’ about
the machinations of certain ministers. One of the main aims of this book is to
demonstrate that these two concepts of ‘chance’ and ‘information’ are more closely
related than you might think. Indeed, when faced with uncertainty our natural
tendency is to search for information that will help us to reduce the uncertainty in
our own minds; for example, think of the gambler about to bet on the outcome of
arace and combing the sporting papers beforehand for hints about the form of the
jockeys and the horses.

Before we proceed further, we should clarify our understanding of the concept of
chance. It may be argued that the tossing of fair, unbiased coins is an ‘intrinsically
random’ procedure in that everyone in the world is equally ignorant of whether the
result will be heads or tails. On the other hand, our attitude to the fall of govern-
ments is a far more subjective business — although you and I might think it extremely
unlikely, the prime minister and his or her close advisors will have ‘inside inform-
ation’ that guarantees that it’s a pretty good bet. Hence, from the point of view
of the ordinary citizen of this country, the fall of the government is not the out-
come of the play of chance; it only appears that way because of our ignorance of a
well-established chain of causation.

Irrespective of the above argument we are going to take the point of view in
this book that regards both the tossing of coins and the fall of governments as
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2 Introduction

falling within the province of ‘chance’. To understand the reasoning behind this
let us return once again to the fall of the government. Suppose that you are not
averse to the occasional flutter and that you are offered the opportunity to bet on the
government falling before a certain date. Although events in the corridors of power
may already be grinding their way inexorably towards such a conclusion, you are
entirely ignorant of these. So, from your point of view, if you decide to bet, then you
are taking a chance which may, if you are lucky, lead to you winning some money.
This book provides a tool kit for situations such as this one, in which ignorant
gamblers are trying to find the best bet in circumstances shrouded by uncertainty.

Formally, this means that we are regarding ‘chance’ as a relation between indi-
viduals and their environment. In fact, the basic starting point of this book will be a
person moving through life and encountering various clear-cut ‘experiences’ such
as repeatedly tossing a coin or gambling on the result of a race. So long as the
outcome of the experience cannot be predicted in advance by the person experien-
cing it (even if somebody else can), then chance is at work. This means that we are
regarding chance as ‘subjective’ in the sense that my prediction of whether or not
the government will fall may not be the same as that of the prime minister’s advisor.
Some readers may argue that this means that chance phenomena are unscientific,
but this results from a misunderstanding of the scientific endeavour. The aim of
science is to obtain a greater understanding of our world. If we find, as we do, that
the estimation of chances of events varies from person to person, then our science
would be at fault if it failed to reflect this fact.

1.2 Mathematical models of chance phenomena

Let us completely change track and think about a situation that has nothing whatever
to do with chance. Suppose that we are planning on building a house and the
dimensions of the rectangular base are required to be 50 feet by 25 feet (say).
Suppose that we want to know what the lengths of the diagonals are. We would
probably go about this by drawing a diagram as shown in Fig. 1.1, and then use
Pythagoras’ theorem to calculate

d = ((50)> + (25))/? = 55.91t.

25 ft

Fig. 1.1.
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1.2 Mathematical models of chance phenomena 3

Let us examine the above chain of reasoning a little more closely. First of all we
have taken the walls and floors of a real house that we are proposing to build, which
would consist of real bricks and mortar, and have represented these by an abstract
drawing consisting of straight lines on paper. Of course, we do this because we know
that the precise way in which the walls are built is irrelevant to the calculation we
are going to make. We also know that our walls and floorboards do not intersect in
exact straight lines but we are happy to use straight lines in our calculation in the
knowledge that any errors made are likely to be too tiny to bother us.

Our representation of the floorplan as a rectangle is an example of a mathematical
model —an abstract representation of part of the world built out of idealised elements.

The next stage of our analysis is the calculation of the diagonal length, and this
involves the realisation that there is a mathematical theory — in this case, Euclidean
geometry — which contains a rich compendium of properties of idealised structures
built from straight lines, and which we can use to investigate our particular model. In
our case we choose a single result from Euclidean geometry, Pythagoras’ theorem,
which we can immediately apply to obtain our diagonal length. We should be aware
that this number we have calculated is strictly a property of our idealised model
and not of a real (or even proposed) house. Nonetheless, the fantastic success rate
over the centuries of applying Euclidean geometry in such situations leads us to be
highly confident about the correspondence with reality.

The chain of reasoning which we have outlined above is so important that we
have highlighted it in Fig. 1.2.

Now let us return to the case of the experience of chance phenomena. We’ll
consider a very simple example, namely the tossing of a coin which we believe to

MATHEMATICAL
THEORY

abstraction application

MATHEMATICAL
MODEL

application

calculation

PREDICTION

Fig. 1.2.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/052172788X
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-72788-4 - Probability and Information: An Integrated Approach
David Applebaum

Excerpt

More information

4 Introduction

be fair. Just as it is impossible to find a real straight line in nature, so is it impossible
to manufacture a true ‘fair’ coin — indeed, it is an interesting exercise to speculate
how you would test that a coin that is claimed to be perfectly unbiased really is so.
I recommend that you think about this question carefully and return to reconsider
your answer after you’ve read Chapter 4. Whether or not you believe in the existence
of real fair coins, we are going to consider the behaviour of idealised fair coins as
a mathematical model of our real coins. The mathematical theory which then plays
the role of Euclidean geometry is called probability theory and the development of
the basic ideas of this theory is the goal of this book.

One of the main aims of probability theory is, as you might expect, the calculation
of probabilities. For example, most of you would agree I’m sure that the probability
of a fair coin returning heads is exactly one half. However, although everyone is
fairly confident about how to assign probabilities in simple cases like this, there is
a great deal of confusion in the literature about what ‘probability’ means.

We should be aware that probability is a mathematical term which we use
to investigate properties of mathematical models of chance phenomema (usually
called probabilistic models). So ‘probability’ does not exist out in the real world.
Nonetheless, the applications of the subject spread into nearly every corner of
modern life. Probability has been successfully applied in every scientific subject
(including the social sciences). It has been used to model the mutation of genes,
the spread of epidemics (including AIDS) and the changing prices of shares on the
stock market. It is the foundation of the science of statistics as well as of statist-
ical mechanics — the physical study of bulk properties of large systems of particles
such as gases. We will touch on both these subjects in this book, although our
main application will be to use probability to give mathematical meaning to the
concept of ‘information’, which is itself the foundation for the modern theory of
communication systems.

The precise definition of probability must wait until Chapter 4, where we will
see that it is a kind of generalised notion of ‘weight’ whereby we weigh events to
see how likely they are to occur. The scale runs from O to 1, where 1 indicates that
an event is certain to happen and O that it is impossible. Events with probabilities
close to one half are the most uncertain (see Chapter 6).

Just as we develop Pythagoras’ theorem in Euclidean geometry and then apply it
to mathematical models as we have described above, so we will develop a number
of techniques in this book to calculate probabilities, for example if we toss a fair
coin five times in a row, by using the binomial distribution (see Chapter 5), we find
that the probability of obtaining three heads is 15—6. If we now want to apply this
result to the tossing of real coins, then the situation is somewhat more complicated
than in our geometrical example above. The reason for this is of course that ‘chance’
is a much more complex phenomenon to measure than, say, the length of a wall. In
fact, the investigation of the correspondence between chance phenomena in the real
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1.3 Mathematical structure and mathematical proof 5

world and the predictions of probabilistic models really belongs to the domain of
statistics and so is beyond the scope of this book. Here we will be solely concerned
with developing methods of calculating probabilities and related concepts, such as
averages and entropies, which enable us to analyse probabilistic models as fully as
possible. This is the domain of the subject of probability theory.

The range of probability theory as we describe it in this book is much wider
than that considered by many other authors. Indeed, it is common for textbooks to
consider only chance situations which consist of ‘scientific’ experiments which can
be repeated under the same conditions as many times as one wishes. If you want to
know the probability of a certain outcome to such an experiment, I’'m sure you’ll
agree that the following procedure will be helpful; that is, you repeat the experiment
a large number of times (n, say) and you count the number of incidences of the
outcome in question. If this is m, you calculate the relative frequency m/n; for
example if a coin is tossed 100 times in succession and 60 heads are observed, then
the relative frequency of heads is 0.6.

Many mathematicians have attempted to define probability as some kind of limit
of relative frequencies, and it can’t be denied that such an approach has an appeal.
We will discuss this problem in greater detail in Chapters 4 and 8 — for now you
may want to think about how such a limit can be calculated in practice. The most
rational approach to the problem of relative frequencies is that advocated by the
Bayesian school (see Chapter 4). They argue that having made a probabilistic model
of a chance experiment, we use all the theoretical means at our disposal to assign
prior probabilities to all the possible outcomes. We then collect our observations in
the form of relative frequencies and use the knowledge gained from these to assign
new posterior probabilities. So relative frequencies are treated as evidence to be
incorporated into probability assignments.

1.3 Mathematical structure and mathematical proof

As probability is a mathematical theory, we need to be clear about how such theories
work. A standard way of developing mathematical theories has evolved which goes
back to Euclid’s geometry. This approach has been developed extensively during
the twentieth century and we are going to use it in this book.

First we should note that a mathematical theory is a systematic exposition of all
the knowledge we possess about a certain area. You may already be familiar with
some examples such as set theory or group theory. The essence of a mathematical
theory is to begin with some basic definitions, called axioms, which describe the
main mathematical objects we are interested in, and then use clear logical argu-
ments to deduce the properties of these objects. These new properties are usually
announced in statements called theorems, and the arguments that we use to con-
vince ourselves of the validity of these theorems are proofs. Sometimes it becomes
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6 Introduction

clear as the theory develops that some new concepts are needed in addition to those
given in the axioms, and these are introduced as definitions.

In probability theory the basic concept is that of a probability measure, for which
the axioms are given at the beginning of Chapter 4 (the axioms for the more general
concept of measure are given in Chapter 3). One of the most important additional
concepts, introduced in Chapter 5, is that of a random variable.

There are a number of standard techniques used throughout mathematics for
proving theorems. One of the most important is that of proof by mathematical
induction. We will use this extensively in the text and if you are not familiar with
it you may wish to read Appendix 1. Another useful technique is that of ‘proof by
contradiction’, and we will give a statement and example of how to use this below,
just to get you into the swing of things.

Let O be a proposition that you believe to be true but which you can’t prove
directly to be true. Let ~Q be the negation of Q (so that if, for example, Q is
the statement ‘I am the prime minister’, ~Q is the statement ‘I am not the prime
minister’). Clearly, either Q or ~Q (but not both) must hold. The method of the
proof is to demonstrate that if ~Q is valid, then there is a contradiction. Since
contradictions are forbidden in mathematics, ~ Q cannot be valid and so Q must be.

In the example given below, Q is the proposition ‘4/2 is an irrational number’,
so that ~Q is the proposition ‘,/2 is a rational number’. We feel free to use the fact
that the square root of an even number is always even.

Theorem 1.1 /2 is an irrational number.

Proof We suppose that /2 is rational so we must be able to write it in its lowest

terms as
a

S2=7.

Hence, a = /2b and squaring both sides, a? = 2b?, so that a? is even and hence
a is also even. If a is even, there must be a whole number c¢ (say) such thata = 2¢
and so a? = 4¢2.

Substituting for a? in the earlier equation a®> = 2b? yields 4c*> = 2b* and so
b? = 2¢2; hence b? and also b is even. Thus we can write b = 2d for some whole

number d. We now have
. 2c c

a
2=-=—==-.

b 2d d

But this contradicts the assumption that 7 was the expression for /2 in its

lowest terms. O

The symbol [J appearing above is commonly used in mathematics to signify ‘end
of proof”’.

We close this section by listing some additional mathematical nomenclature for
statements:
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1.4 Plan of this book 7

Lemma — this is usually a minor technical result which may be a stepping stone
towards a theorem.

Proposition — in between a lemma and a theorem. Sometimes it indicates a
theorem from a different branch of mathematics, which is needed so that it
can be applied within the current theory.

Corollary — a result that follows almost immediately from the theorem with very
little additional argument.

1.4 Plan of this book

This is an introductory account of some of the basic ideas of probability theory and
information theory. The only prerequisites for reading it are a reasonable ability at
algebraic manipulation and having mastered a standard introductory course in the
calculus of a single variable, although calculus is not used too often in the first seven
chapters. The main exception to this is the extensive use of partial differentiation
and, specifically, Lagrange multipliers in Section 6.4, but if you are not familiar
with these, you should first read Appendix 2 at the end of the book. You should also
brush up your knowledge of the properties of logarithms before starting Chapter 6.
have tried to avoid any use of rigorous mathematical analysis, but some sort of idea
of the notion of a limit (even if only an intuitive one) will be helpful. In particular,
if you find the discussion of integration in Section 8.3 too difficult, you can leave
it and all subsequent references to it without any great loss. For Chapter 9 you
will need to know the rudiments of double integration. Chapter 10 requires some
knowledge of matrix algebra and all of the material that you need from this area
is reviewed in Appendix 5. Two sections of the book, Sections 6.6 and 7.5, are
somewhat more difficult than the rest of the book and you may want to skip these
at the first reading.

At the end of each chapter you will find a set of exercises to work through. These
days many textbooks carry the health warning that ‘the exercises are an integral
part of the text’ and this book is no exception — indeed, many results are used freely
in the text that you are invited to prove for yourself in the exercises. Solutions to
numerical exercises and some of the more important theoretical ones can be found
at the end of the book. Exercises marked with a (x) are harder than average; you
may wish to skip these (and any other starred Section) at the first reading. You will
also find at the end of each chapter some guidance towards further reading if you
want to explore some of the themes in greater detail.

Now a brief tour through the book. Chapter 3 describes a number of counting
tricks that are very useful in solving probabilistic problems. In Chapter 3, we give
a brief account of set theory and Boolean algebra, which are the modern context of
probability theory. In particular, we learn how to ‘measure’ the ‘weight’ of a set. In
Chapter 4, we find that this measuring technique is precisely the mathematical tool
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8 Introduction

we need to describe the probability of an event. We also learn about conditioning
and independence and survey some of the competing interpretations of probability.
Discrete random variables are introduced in Chapter 5, along with their properties
of expectation and variance. Examples include Bernoulli, binomial and Poisson
random variables.

The concepts of information and entropy are studied in Chapter 6. Entropy is one
of the most deep and fascinating concepts in mathematics. It was first introduced
as a measure of disorder in physical systems, but for us it will be most import-
ant in a dual role as representing average information and degree of uncertainty.
We will present the maximum entropy principle, which employs entropy as a tool
in selecting (prior) probability distributions. Chapter 7 applies information the-
oretic concepts to the study of simple models of communication. We investigate
the effects of coding on the transmission of information and prove (in a simple
case) Shannon’s fundamental theorem on the (theoretical) conditions for optimal
transmission.

In the next two chapters we generalise to random variables with continuous
ranges. In particular, in Chapter 8 we establish the weak law of large numbers, exam-
ine the normal distribution and go on to prove the central limit theorem (perhaps
the most important result in the book). We also examine the continuous analogue
of entropy. Random vectors and their (multivariate) distributions are studied in
Chapter 9 and we use these to investigate conditional density functions. We are
then able to analyse a simple model of the communication of continuous signals.
So far all of the theoretical development and modelling has been ‘static’ in that there
has been no attempt to describe the passing of time. Chapter 10 addresses this prob-
lem by introducing (discrete-time) Markov chains, which form an important class
of random processes. We study these from both the probabilistic and information
theoretic viewpoints and one of the highlights is the derivation of a very attract-
ive and concise formula for the entropy rate of a stationary Markov chain. Some
readers may feel that they already know about probability and want to dive straight
into the information. They should turn straight to Chapters 6 and 7 and then study
Sections 8.7, 9.6, 9.7 and 10.6.

The concept of probability, which we develop in this book, is not the most general
one. Firstly, we use Boolean algebras rather than o -algebras to describe events. This
is a technical restriction which is designed to make it easier for you to learn the
subject, and you shouldn’t worry too much about it; more details for those who
want them are given at the end of Chapter 4. Secondly and more interestingly,
when we descend into the microscopic world of atoms, molecules and more exotic
particles, where nature reveals itself sometimes as ‘particles’ and other times as
‘waves’, we find that our observations are even more widely ruled by chance than
those in the everyday world. However, just as the classical mechanics of Newton
is no longer appropriate to the description of the physics in this landscape, and

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/052172788X
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-72788-4 - Probability and Information: An Integrated Approach
David Applebaum

Excerpt

More information

1.4 Plan of this book 9

we have instead to use the strange laws of quantum mechanics, so the ‘classical’
probability we develop in this book is no longer adequate here and in its place we
must use ‘quantum probability’. Although this is a rapidly growing and fascinating
subject, it requires knowledge of a great deal of modern mathematics, which is far
beyond the scope of this book and so must be postponed by the interested reader
for later study.
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2

Combinatorics

2.1 Counting

This chapter will be devoted to problems involving counting. Of course, everybody
knows how to count, but sometimes this can be quite a tricky business. Consider,
for example, the following questions:

(i) In how many different ways can seven identical objects be arranged in a row?
(i) In how many different ways can a group of three ball bearings be selected from
a bag containing eight?

Problems of this type are called combinatorial. If you try to solve them directly by
counting all the possible alternatives, you will find this to be a laborious and time-
consuming procedure. Fortunately, a number of clever tricks are available which
save you from having to do this. The branch of mathematics which develops these
is called combinatorics and the purpose of the present chapter is to give a brief
introduction to this topic.

A fundamental concept both in this chapter and the subsequent ones on probabil-
ity theory proper will be that of an ‘experience’ which can result in several possible
‘outcomes’. Examples of such experiences are:

(a) throwing a die where the possible outcomes are the six faces which can appear,
(b) queueing at a bus-stop where the outcomes consist of the nine different buses,
serving different routes, which stop there.

If A and B are two separate experiences, we write A o B to denote the combined
experience of A followed by B. So if we combine the two experiences in the
examples above, we will find that A o B is the experience of first throwing a die
and then waiting for a bus. A natural question to ask is how many outcomes there
are in A o B. This is answered by the following result.

10
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