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I

Jordan Domains

To begin we construct harmonic measure and solve the Dirichlet problem in

the upper half-plane and the unit disc. We next prove the Fatou theorem on

nontangential limits. Then we construct harmonic measure on domains bounded

by Jordan curves, via the Riemann mapping theorem and the Carathéodory

theorem on boundary correspondence. We review two topics from classical

complex analysis, the hyperbolic metric and the elementary distortion theory for

univalent functions. We conclude the chapter with the theorem of Hayman and

Wu on lengths of level sets. Its proof is an elementary application of harmonic

measure and the hyperbolic metric.

1. The Half-Plane and the Disc

Write H = {z : Imz > 0} for the upper half-plane and R for the real line. Sup-

pose a < b are real. Then the function

» = »(z) = arg

�

z 2 b

z 2 a

"

= Im log

�

z 2 b

z 2 a

"

is harmonic on H, and » = Ã on (a, b) and » = 0 on R \ [a, b].

»

a b

z

Figure I.1 The harmonic function »(z).
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2 I. Jordan Domains

Viewed geometrically, »(z) = Re×(z) where ×(z) is any conformal mapping

from H to the strip {0 < Rez < Ã} which maps (a, b) onto {Rez = Ã} and

R \ [a, b] into {Rez = 0}. Let E ¢ R be a finite union of open intervals and

write E =
�n

j=1(aj , bj ) with bj21 < aj < bj . Set

»j = »j (z) = arg

�

z 2 bj

z 2 aj

"

and define the harmonic measure of E at z * H to be

Ë(z, E, H) =

n
�

j=1

»j

Ã
. (1.1)

Then

(i) 0 < Ë(z, E, H) < 1 for z * H,

(ii) Ë(z, E, H) ³ 1 as z ³ E, and

(iii) Ë(z, E, H) ³ 0 as z ³ R \ E .

The function Ë(z, E, H) is the unique harmonic function on H that satisfies (i),

(ii), and (iii). The uniqueness of Ë(z, E, H) is a consequence of the following

lemma, known as Lindelöf’s maximum principle.

Lemma 1.1 (Lindelöf). Suppose the function u(z) is harmonic and bounded

above on a region � such that � �= C. Let F be a finite subset of "� and

suppose

lim sup
z³·

u(z) f 0 (1.2)

for all · * "� \ F. Then u(z) f 0 on �.

Proof. Fix z0 /* �. Then the map 1/(z 2 z0) transforms � into a bounded

region, and thus we may assume � is bounded. If (1.2) holds for all · * "�,

then the lemma is the ordinary maximum principle. Write F = {·1, . . . , ·N },

let · > 0, and set

u·(z) = u(z) 2 ·

N
�

j=1

log

�

diam(�)

|z 2 ·j |

"

.

Then u· is harmonic on � and lim supz³· u·(z) f 0 for all · * "�. Therefore

u· f 0 for all ·, and

u(z) f lim
·³0

·

N
�

j=1

log

�

diam(�)

|z 2 ·j |

"

= 0. �
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1. The Half-Plane and the Disc 3

Lindelöf [1915] proved Lemma 1.1 under the weaker hypothesis that "� is

infinite. See also Ahlfors [1973]. Exercise 3 and Exercise II.3 tell more about

Lindelöf’s maximum principle.

Given a domain � and a function f * C("�), the Dirichlet problem for

f on � is to find a function u * C(�) such that �u = 0 on � and u|"� = f .

Theorem 1.2 treats the Dirichlet problem on the upper half-plane H .

Theorem 1.2. Suppose f * C(R * {>}). Then there exists a unique function

u = u f * C(H * {>}) such that u is harmonic on H and u|"H = f .

Proof. We can assume f is real valued and f (>) = 0. For · > 0, take disjoint

open intervals Ij = (tj , tj+1) and real constants cj , j = 1, . . . , n, so that the

step function

f·(t) =

n
�

j=1

cj
Ç

Ij

satisfies
�

� f· 2 f
�

�

L>(R)
< ·. (1.3)

Set

u·(z) =

n
�

j=1

cjË(z, Ij , H).

If t * R \
�

" Ij , then

lim
H�z³t

u·(z) = f·(t)

by (ii) and (iii). Therefore by (1.3) and Lemma 1.1,

sup
H

�

�u·1(z) 2 u·2(z)
�

� < ·1 + ·2.

Consequently the limit

u(z) c lim
·³0

u·(z)

exists, and the limit u(z) is harmonic on H and satisfies

sup
H

|u(z) 2 u·(z)| f 2·.

We claim that

lim sup
z³t

|u·(z) 2 f (t)| f · (1.4)
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4 I. Jordan Domains

for all t * R. It is clear that (1.4) holds when t /*
�

" Ij . To verify (1.4) at the

endpoint tj+1 * " Ij + " Ij+1, notice that by (ii), (iii), and Lemma 1.1,

sup
H

�

�

�

�

cjË(z, Ij , H) + cj+1Ë(z, Ij+1, H) 2

�

cj + cj+1

2

"

Ë(z, Ij * Ij+1, H)

�

�

�

�

f

�

�

�

�

cj 2 cj+1

2

�

�

�

�

,

while

lim
z³tj+1

�

cj + cj+1

2

"

Ë(z, Ij * Ij+1, H) =
cj + cj+1

2
.

Hence all limit values of u·(z) at tj+1 lie in the closed interval with endpoints

cj and cj+1, and then (1.3) yields (1.4) for the endpoint tj+1.

Now let t * R. By (1.4)

lim sup
z³t

|u(z) 2 f (t)| f sup
z*H

|u(z) 2 u·(z)| + lim sup
z³t

|u·(z) 2 f (t)| f 3·.

The same estimate holds if t = >. Therefore u extends to be continuous on H

and u|"H = f . The uniqueness of u follows immediately from the maximum

principle. �

For a < b, elementary calculus gives

Ë(x + iy, (a, b), H) =
1

Ã

�

tan21
� x 2 a

y

�

2 tan21
� x 2 b

y

�

"

=

� b

a

y

(t 2 x)2 + y2

dt

Ã
.

If E ¢ R is measurable, we define the harmonic measure of E at z * H to be

Ë(z, E, H) =

�

E

y

(t 2 x)2 + y2

dt

Ã
. (1.5)

When E is a finite union of open intervals this definition (1.5) is the same as

definition (1.1). For z = x + iy * H, the density

Pz(t) =
1

Ã

y

(x 2 t)2 + y2

is called the Poisson kernel for H . If f * C(R * {>}), the proof of Theo-

rem 1.2 shows that

u f (z) =

�

R

f (t)Pz(t)dt,

and for this reason u f is also called the Poisson integral of f .
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1. The Half-Plane and the Disc 5

Note that the harmonic measure Ë(z, E,�) is a harmonic function in its first

variable z and a probability measure in its second variable E . If z1, z2 * H then

0 < C21 f
Ë(z1, E, H)

Ë(z2, E, H)
f C < >,

where C depends on z1 and z2 but not on E . This inequality, known as Har-

nack’s inequality, is easily proved by comparing the kernels in (1.5).

Now let D be the unit disc {z : |z| < 1} and let E be a finite union of open

arcs on "D. Then we define the harmonic measure of E at z in D to be

Ë(z, E, D) c Ë(×(z), ×(E), H), (1.6)

where × is any conformal map of D onto H. This harmonic function satisfies

conditions analogous to (i), (ii), and (iii), so that by Lemma 1.1 the definition

(1.6) does not depend on the choice of ×. It follows by the change of variables

×(z) = i(1 + z)/(1 2 z) that

Ë(z, E, D) =

�

E

1 2 |z|2

|ei» 2 z|2

d»

2Ã
.

An equivalent way to find this function is by a construction similar to (1.1).

This construction is outlined in Exercise 1.

Theorem 1.3. Let f (ei» ) be an integrable function on "D and set

u(z) = u f (z) =

� 2Ã

0

f (ei» )
1 2 |z|2

|ei» 2 z|2

d»

2Ã
. (1.7)

Then u(z) is harmonic on D. If f is continuous at ei»0 * "D, then

lim
D�z³ei»0

u(z) = f (ei»0). (1.8)

Clearly (1.8) also holds if the integrable function f is changed on a measure

zero subset of "D \ {ei»0}. The function u = u f is called the Poisson integral

of f and the kernel

Pz(») =
1

2Ã

1 2 |z|2

|ei» 2 z|2

is the Poisson kernel for the disc. If f * C("D) then

U (z) =

�

u f (z), z * D

f (z), z * "D

is the solution of the Dirichlet problem for f on D.

In the special case when f (ei» ) is continuous, Theorem 1.3 follows from

Theorem 1.2 and a change of variables. Conversely, Theorem 1.3 shows that
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6 I. Jordan Domains

Theorem 1.2 can be extended to f * L1(dt/(1 + t2)), again by changing vari-

ables.

Proof of Theorem 1.3. We may suppose f is real valued. From the identity

Re
�ei» + z

ei» 2 z

�

= 2Ã Pz(»),

we see that u is the real part of the analytic function

� 2Ã

0

f (ei» )
ei» + z

ei» 2 z

d»

2Ã
,

and therefore that u is a harmonic function. One can also see u is harmonic by

differentiating the integral (1.7).

Suppose f is continuous at ei»0 and let · > 0. Then

| f (ei» ) 2 f (ei»0)| < ·

on an interval I = (»1, »2) containing »0. Setting

u·(z) =

�

[0,2Ã ]\I

1 2 |z|2

|ei» 2 z|2
f (ei» )

d»

2Ã
+ f (ei»0)Ë(z, I, D),

we have

|u(z) 2 u·(z)| =

�

�

�

�

�

I

1 2 |z|2

|ei» 2 z|2
( f (ei» ) 2 f (ei»0))

d»

2Ã

�

�

�

�

f ·Ë(z, I, D) f ·.

However, limz³ei»0 u·(z) = f (ei»0) by the definition of u·. Therefore

lim sup
z³ei»0

|u(z) 2 f (ei»0)| < ·,

and (1.8) holds when f is continuous at ei»0 . �

2. Fatou’s Theorem and Maximal Functions

When f * L1("D) the limit (1.8) can fail to exist at every · * "D; see Ex-

ercise 7. However, there is a substitute result known as Fatou’s theorem, in

which the approach z ³ · is restricted to cones. For · * "D and ³ > 1, we

define the cone

�³(· ) =
�

z : |z 2 · | < ³(1 2 |z|)
�

.

The cone �³(· ) is asymptotic to a sector with vertex · and angle 2 sec21(³) that

is symmetric about the radius [0, · ]. The cones �³(· ) expand as ³ increases.
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2. Fatou’s Theorem and Maximal Functions 7

�³(· )
0

z

·

³

2 sec21 ³

Figure I.2 The cone �³(· ).

A function u(z) on D has nontangential limit A at · * "D if

lim
�³(· )�z³·

u(z) = A (2.1)

for every ³ > 1. A good example is the function u(z) = e
z+1
z21 . This function u(z)

is continuous on "D \ {1}, and |u(· )| = 1 on "D \ {1}, but u(z) has nontangen-

tial limit 0 at · = 1. With fixed ³ > 1, the nontangential maximal function

of u at · is

u7
³(· ) = sup

�³(· )

|u(z)|.

If u has a finite nontangential limit at · , then u7
³(· ) < > for every ³ > 1.

We write |E | for the Lebesgue measure of E ¢ "D.

Theorem 2.1 (Fatou’s theorem). Let f (ei» ) * L1("D) and let u(z) be the

Poisson integral of f . Then at almost every · = ei» * "D,

lim
�³(· )�z³·

u(z) = f (· ) (2.2)

for all ³ > 1. Moreover, for each ³ > 1

�

�

�
{· * "D : u7

³(· ) > »}

�

�

�
f

3 + 6³

»
|| f ||1 . (2.3)

When u(z) is the Poisson integral of f * L1("D) the function u = u f is also

called the solution to the Dirichlet problem for f , even though u converges

to f on "D only nontangentially and only almost everywhere.

Inequality (2.3) says the operator L1("D) � f ³ u7
³ is weak-type 1-1. It

follows from (2.2) that u7
³(· ) < > almost everywhere, but (2.3) is a sharper,
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8 I. Jordan Domains

quantitative result. In the proof of the theorem we derive (2.2) from the estimate

(2.3).

The proof of Fatou’s theorem is a standard approximate identity argu-

ment from real analysis that derives almost everywhere convergence for all

f * L1("D) from

(a) an estimate such as (2.3) for the maximal function, and

(b) the almost everywhere convergence (2.2) for all functions in a dense subset

of L1("D), such as C("D).

See Stein [1970]. We will use this approximate identity argument again later.

Proof. As promised, we first assume (2.3) and show (2.3) implies (2.2). Fix ³

temporarily. We may assume f is real valued. Set

W f (· ) = lim sup
�³�z³·

|u f (z) 2 f (· )|.

Then W f (· ) f u7
³(· ) + | f (· )|. Chebyshev’s inequality gives

�

�{· : | f (· )| > »}
�

� f
|| f ||1

»
,

so that by (2.3),
�

�{· : W f (· ) > »}
�

� f
�

�{· : u7
³(· ) > »/2}

�

� +
�

�{· : | f (· )| > »/2}
�

�

f
8 + 12³

»
|| f ||1 .

(2.4)

Fix · > 0 and let g * C("D) be such that || f 2 g||1 f ·2. Now Wg(· ) = 0 by

Theorem 1.3, and hence

W f (· ) = W f 2g(· ).

Applying (2.4) to f 2 g then gives

�

�{· : W f (· ) > ·}
�

� f
(8 + 12³)·2

·
= (8 + 12³)·.

Therefore, for any fixed ³, (2.2) holds almost everywhere. Because the cones

�³ increase with ³, it follows that (2.2) holds for every ³ > 1, except for · in

a set of measure zero.

To prove (2.3) we will dominate the nontangential maximal function with a

second, simpler maximal function. Let f * L1("D) and write

M f (· ) = sup
I�·

1

|I |

�

I

| f |d»
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2. Fatou’s Theorem and Maximal Functions 9

for the maximal average of | f | over subarcs I ¢ "D that contain ·. The function

M f is called the Hardy–Littlewood maximal function of f . The function M f

is simpler than u7
³ because it features characteristic functions of intervals instead

of Poisson kernels.

Lemma 2.2. Let u(z) be the Poisson integral of f * L1("D) and let ³ > 1.

Then

u7
³(· ) f (1 + 2³)M f (· ). (2.5)

Proof. Assume · = 1. Fix z so that »0 = arg z has |»0| f Ã. Define

P7
z (») = sup

�

Pz(×) : |» | f |×| f Ã
�

=

§

«

«

«

¬

1

2Ã

1 + |z|

1 2 |z|
, |» | f |»0|

max(Pz(»), Pz(2»)), |»0| < |» | f Ã.

Pz(»)

P7
z (»)

2Ã Ã»02»0

Figure I.3 The function P7
z .

The function P7
z satisfies

(i) P7
z (») is an even function of » * [2Ã, Ã ],

(ii) P7
z (») is decreasing on [0, Ã ], and

(iii) P7
z (») g Pz(»).

The even function P7
z is the smallest decreasing majorant of Pz on [0, Ã ]. We

may assume f (ei» ) g 0, so that
�

f (ei» )Pz(»)d» f

�

f (ei» )P7
z (»)d».
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10 I. Jordan Domains

Then properties (i) and (ii) imply
�

f (ei» )P7
z (»)d» f ||P7

z ||1 M f (1) (2.6)

because P7
z is the increasing limit of a sequence of functions of the form

�

cj

�

1

2»j

Ç
(2»j ,»j )(»)

"

with cj g 0 and
�

cj f ||P7
z ||

1
.

P7
z (»)

2Ã Ã»0 »n0

Figure I.4 Approximating P7
z by a step function.

Now we claim that when z * �³(1),

||P7
z ||1 f (1 + 2³). (2.7)

Note that (iii), (2.6), and (2.7) imply (2.5). To prove (2.7) we first assume

2Ã/2 f »0 = arg z f Ã/2. Then by the law of sines,

|»0|

1 2 |z|
f ³

|»0|

|1 2 z|
f

Ã³

2

| sin »0|

|1 2 z|
=

Ã³

2

|sin ³|

1
f

Ã³

2
,

where ³ = arg(z 2 1)/z is explained by Figure I.2. If Ã/2 f |»0| f Ã and

z * �³(1), then |1 2 z| g 1 and

|»0|

1 2 |z|
f ³

|»0|

|1 2 z|
f Ã³.

Hence (see Figure I.3)

�P7
z �

1
= 2

� Ã

|»0|

Pz(»)d» +
2|»0|

2Ã

1 + |z|

1 2 |z|
f (1 + 2³).

That proves (2.7) and therefore Lemma 2.2. �
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