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FOREWORD
T. W. Korner

My copy of Hardy’s Pure Mathematics is the eighth edition, printed in
1941. It must have been one of the first books that my father bought
as an almost penniless refugee student in England, and the pencilled
notations show that he read most of it. It was the first real mathematics
book that I attempted to read and, though much must have passed over
my head, | can still feel the thrill of reading the construction of the
real numbers by Dedekind cuts. One hundred years after it was first
published, CUP is issuing this Centenary edition, not as an act of piety,
but because A Course In Pure Mathematics remains an excellent seller,
bought and read by every new generation of mathematicians.

During most of the nineteenth century, mathematics stood supreme
among the subjects studied at Cambridge. Exposure to the absolute
truths of mathematics was an essential part of an intellectual education.
The most able students could measure themselves against their oppo-
nents in mathematical examinations (the Tripos) which tested speed,
accuracy and problem-solving abilities to the utmost. However, it was
a system directed entirely towards the teaching of undergraduates. In
Germany and France there were research schools in centres like Berlin,
Gottingen and Paris. In England, major mathematicians like Henry
Smith and Cayley remained admired but isolated.

An education that produced Maxwell, Kelvin, Rayleigh and Stokes
cannot be dismissed out of hand, but any mathematical school which
concentrates on teaching and examining runs the risk of becoming old-
fashioned. (Think of the concours for the Grandes Ecoles in our day.) It
is possible that, even in applied mathematics, the Cambridge approach
was falling behind Europe. It is certain that, with a few notable but iso-
lated exceptions, pure mathematical research hardly existed in Britain.
Hardy took pleasure in repeating the judgement of an unnamed Euro-
pean colleague that the characteristics of English mathematics had been
‘occasional flashes of insight, isolated achievements su [cieht to show
that the ability is really there, but for the most part, amateurism, igno-
rance, incompetence and triviality.’

When Hardy arrived as a student at Cambridge, reform was very much
in the air.
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Vi Foreword

I had of course found at school, as every future mathematician
does, that | could often do things much better than my teachers;
and even at Cambridge | found, though naturally much less fre-
quently, that I could sometimes do things better than the college
lecturers. But | was really quite ignorant, even when | took the
Tripos, of the subjects on which | have spent my life; and | still
thought of mathematics as essentially a ‘competitive’ subject. My
eyes were first opened by Professor Love, who taught me for a few
terms and gave me my first serious conception of analysis. But
the great debt which | owe to him — he was after all primarily an
applied mathematician — was his advice to read Jordan’s famous
Cours d’analyse; and | shall never forget the astonishment with
which I read this remarkable work, the first inspiration for so many
mathematicians of my generation, and learnt for the first time as
I read it what mathematics really meant.

[A Mathematician’s Apology]

Ever since Newton, mathematicians had struggled with the problem of
putting the calculus on as sound a footing as Euclid’s geometry. But what
were the fundamental axioms on which the calculus was to be founded?
How should concepts like a dilerkntiable function be defined? Which
theorems were ‘obvious’ and which ‘subtle’? Until these questions were
answered, all calculus textbooks would have to mix accurate argument
with hand waving. Sometimes the author would be aware of gaps and
resort to rhetoric ‘Persist and faith will come to you.” More frequently,
author and reader would sleepwalk hand in hand through the di Ccullty —
most lecturers will be aware how fatally easy it is to convince an audience
of an erroneous proof provided you are convinced of it yourself.

The first edition of Jordan’s work (1882-87) belonged to this old tra-
dition but the second edition (1893-96) wove together the work of rig-
orisers like Weierstrass to produce a complete and satisfactory account
of the calculus. The impact on Cambridge of Jordan and of the new
‘continental’ analysis was immense. Young and Hobson, men who had
expected to spend their lifetimes in the comfortable routine of under-
graduate teaching, suddenly threw themselves into research and, still
more remarkably, became great mathematicians.

This impact can be read in three books which are still in print today.
We read them now in various revised editions, but all were first written
by young men determined to challenge a century of tradition. The first
was Whittaker’'s A Course of Modern Analysis (1902) (later editions
by Whittaker and Watson), which showed that the special functions
which formed the crown jewels of the old analysis were best treated by
modern methods. The second was Hobson’s The Theory of Functions
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Foreword Vii

of a real variable (1907), which set out the new analysis for profes-
sional mathematicians. The third is the present text, first published in
1908 and intended for ‘first year students...whose abilities reach or
approach . ..scholarship standard’.

The idea of such a text may appear equally absurd to those who deal
with the mass university system of today and to those whose view of the
old university system is moulded by Brideshead Revisited or Sinister
Street. However, although most of the students in Cambridge came from
well-o Cbhckgrounds, some came from poorer backgrounds and needed to
distinguish themselves whilst some of their richer companions wished to
distinguish themselves. Most of the mathematically able students came
from a limited number of schools where they often received an outstand-
ing mathematical education. (Read, for example, Littlewood’s account
of his mathematical education in A Mathematician’s Miscellany.)

Hardy’s intended audience was small and it is not surprising that CUP
made him pay £15 out of his own pocket for corrections. This audi-
ence was, however, an audience fully accustomed through the study of
Euclidean geometry both to follow and, even more importantly, to con-
struct long chains of reasoning. It was also trained in fast and accurate
manipulations, both in algebra and calculus, within a problem-solving
context. The modern writer of a first course in analysis must address an
audience with much less experience of proof, substantially lower alge-
braic fluency and little experience of applying calculus to interesting
problems in mechanics and geometry. Spivak’s Calculus is outstanding,
but Hardy can illustrate his text with much richer exercises. (The reader
should note that questions like Example 1.1, which appear to be simple
statements are, in fact, invitations to prove those statements.)

Cambridge and Oxford used Hardy’s Pure Mathematics, and the two
universities dominated the British mathematical scene. (Before World
War 11, almost every mathematics professor in the British Isles was
Cambridge or Oxford trained.) For the next 70 years, Hardy’s book
defined the first analysis course in Britain. Analysis texts could have
borne titles like: ‘Hardy made easier’, ‘An introduction to Hardy’ or
‘Hardy slimmed down’. Burkill’s First Course in Analysis represents an
outstanding example in the latter class.

In the last 40 years, Hardy’s model has been put under strain from two
di [erent directions. The expansion of the university system has brought
more students into mathematics, but the new students are less well pre-
pared and less willing to study mathematics for its own sake. It is clear
that ‘Hardy diluted’ cannot be appropriate for such students. On the
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viii Foreword

other hand, the frontiers of mathematics have continued to advance and
an analysis course for future researchers must prepare them to meet
such things as manifolds and infinite dimensional spaces. Dieudonné’s
Foundations of Modern Analysis and Kolmogorov and Fomin’s Intro-
ductory Real Analysis represent two very diLerent but equally inspiring
approaches to the problem.

As new topics enter the syllabus, old ones have to be removed. Today’s
best students get ‘Hardy stripped to the bone’ followed by a course on
metric and topological spaces. They are taught speedily and e [ciehtly,
but some things have been lost. The TGV carries you swiftly across
France, but isolates you from the land and its people. We claim to give
our students the experience of mathematics, but provide plenty of ‘rou-
tine exercises’ and relegate ‘the more di [cullt proofs’ to appendices.
Perhaps later generations of mathematicians may judge our teaching as
harshly as Hardy and his generation judged the teaching of their Cam-
bridge predecessors.

Hardy’s book begins with a presentation of the properties of the real
number system. In the first edition this is done axiomatically, but, in the
second and later editions, Hardy constructs the real numbers starting
from the rationals. Bertrand Russell says that there are two methods of
presenting mathematics, the postulational and the constructive, with the
postulational method having all the advantages of theft over honest toil,
but a modern course would either leave the construction until much later
or omit it altogether. Hardy allows the reader to skip the construction,
but the reader should do at least some of the exercises that conclude
the chapter. The next two chapters present material that the modern
undergraduate would be expected to have met before embarking on a
course of analysis.

The course proper starts with Chapter 1V and V which introduce
the notion of a limit. The treatment is is more leisurely than would be
found in a modern introduction, but the reader who hurries through it
is throwing away the advantage of listening to a great analyst talking
about the elements of his subject. In one or two places the notation is
definitely old-fashioned (as foreshadowed in the footnote in §71 divergent
now means simply not convergent). It is easy, however, to make the
transfer to modern notation later. More importantly, the reader should
note that the theorems in §101 to §107 lie much deeper than those that
precede them. Wherever Hardy makes use of the classes L and R of §17
he is appealing to the basic properties of the real numbers and the reader
should pay close attention to the argument.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521720557
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-72055-7 - A Course of Pure Mathematics: Tenth Edition
G. H. Hardy

Frontmatter

More information

Foreword iX

Chapter VI introduces di Lerentiation and integration. Here, the most
subtle arguments are to be found in §122 leading to the mean value
theorem in §126. Until §161, Hardy considers integration as the inverse
operation to di Lerkntiation (though he gives the link to area informally
in §148) but in this section he defines the definite integral and completes
his presentation of the foundations of the calculus. Once the foundations
have been laid, he goes on to develop the standard methods and theo-
rems of the calculus and give a rigorous account of the trigonometric,
exponential and logarithmic function, both in the real and complex case.

In his Mathematical Thought from Ancient to Modern Times Kline
dismisses the 100-year struggle of Bolzano, Cauchy, Abel, Dirichlet,
Weierstrass, Cantor, Peano and others to rigorise analysis with the words
‘the theorems of analysis only had to be more carefully formulated. . . all
that rigour did was to substantiate what mathematicians had always
known to be the case’. In fact, the rigorisation process revealed that
several things that mathematicians had always known to be the case
were, in fact, false. It is not true that every maximisation problem has
a solution, it is not true that any continuous function must be di Ceren-
tiable except at a few exceptional points, it is not true that the boundary
of a region is a negligible part of it, it is not true that every su Lciehtly
smooth function is equal to its Taylor series, .. ..

Still more importantly, the process of rigourisation revealed the under-
lying structure of the real line and produced new tools (such as the
Heine-Borel theorem of §106) to exploit that structure. In the decade
that Hardy wrote his text, the study of the notion of area by Cantor,
Peano, Jordan and Borel reached its apotheosis in the work of Lebesgue.
Armed with the new tool of the Lebesgue integral and clear under-
standing of foundations, analysis entered on a golden century to which
Hardy was to contribute such gems as the Hardy spaces and the Hardy—
Littlewood maximal theorem.

| wrote a great deal during...[1900-1910], but very little of any
importance; there are not more than four or five papers which |
can still remember with some satisfaction. The real crises of my
career came in 1911, when | began my long collaboration with
Littlewood, and in 1913 when | discovered Ramanujan.

[A Mathematician’s Apology]

For its author and for his audience, A Course in Pure Mathematics
represented not an end but a beginning.

Hardy published about 350 papers, including nearly 100 with Lit-
tlewood, but his contributions to mathematics did not stop there. He
taught and inspired generations of research students. As one of them
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writes about Hardy’s lectures, ‘Whatever the subject was, he pursued it
with an eager single-mindedness which the audience found irresistible.
One felt, temporarily at least, that nothing else in the world but the
proof of those theorems mattered. There could be no more inspiring
director of the work of others. He was always at the head of a team of
researchers, both colleagues and students, whom he provided with an
inexhaustible stock of ideas on which to work.” Tichmarsh adds, and
others confirm, that ‘He was an extremely kind-hearted man, who could
not bear any of his students to fail in their researches.’

Pblya recalled how Hardy ... valued clarity, yet what he valued most
in mathematics was not clarity but power, surmounting great obsta-
cles that others abandoned in despair.” Pblya also recalled how much
Hardy loved jokes and told an anecdote which illustrated both aspects
of Hardy’s character.

In working with Hardy, | once had an idea of which he approved.
But afterwards | did not work su [Cciehtly hard to carry out that
idea, and Hardy disapproved. He did not tell me so, of course, yet
it came out when he visited a zoological garden in Sweden with
Marcel Riesz. In a cage there was a bear. The cage had a gate,
and on the gate there was a lock. The bear sni[ed at the lock, hit
it with his paw, then growled a little, turned around and walked
away. ‘He is like Polya’, said Hardy. ‘He has excellent ideas, but
does not carry them out.’

In Hardy’s presidential address to the London Mathematical Society
in 1928 he was able to boast that he had sat through every word of every
lecture of every meeting of every paper since he became secretary in 1917.
He oversaw the foundation of the Journal of the London Mathematical
Society and revived the Quarterly Journal at Oxford. The satisfactory
state of the London Mathematical Society’s finances today is the result
of Hardy’s bequest of a substantial fortune and the royalties of his books.

Hardy wrote or co-wrote several other classics. Perhaps the most
remarkable is Inequalities with Littlewood and Podlya. In this book
authors magically provide a coherent view of a subject which, though it
lies at the heart of analysis, seems impossible to organise.

Hardy’s A Mathematician’s Apology is both a mathematical and a
literary triumph and remains unequalled as a meditation on the life of
a pure mathematician. It is also a defence of rationality and the free life
of the intellect at a time when they were terribly threatened.

However, in my view, the most enchanting of his books is Number
Theory (written with E. M. Wright). If | had to choose one book to
take to a desert island, | would take Zygmund’s Trigonometric Series if
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I thought I might be rescued, but Hardy and Wright’s Number Theory
if I knew that | was never coming back.

To read Hardy is to read a mathematician fully aware of his own
abilities but who treats you as a natural equal. May this book give as
much pleasure to you as it has given to me.

T. W. Korner
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PREFACE TO THE TENTH EDITION

TuE changes in the present edition are as follows:

1. An index has been added. Hardy had begun a revision of
an index compiled by Professor S. Mitchell; this has been com-
pleted, as far as possible on Hardy’s lines, by Dr T. M. Flett.

2. The original proof of the Heine-Borel Theorem (pp. 197-
199) has been replaced by two alternative proofs due to Professor
A. S. Besicovitch.

3. Example 24, p. 394 has been added to.

August, 1950 J.E.LITTLEWOOD

PREFACE TO THE SEVENTH EDITION

THE changes in this edition are more important than in any
since the second. The book has been reset, and this has given
me the opportunity of altering it freely.

I have cancelled what was Appendix II (on the ‘O, o, ~’
notation), and incorporated its contents in the appropriate
places in the text. I have rewritten the parts of Chs. VI and VII
which deal with the elementary properties of differential
coefficients. Here I have found de la Vallée-Poussin’s Cours
d’analyse the best guide, and I am sure that this part of the
book is much improved. These important changes have naturally
involved many minor emendations.

I have inserted a large number of new examples from the
papers for the Mathematical Tripos during the last twenty years,
which should be useful to Cambridge students. These were
collected for me by Mr E. R. Love, who has also read all the
proofs and corrected many errors.
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PREFACE x1iii

The general plan of the book is unchanged. I have often felt
tempted, re-reading it in detail for the first time for twenty
years, to make much more drastic changes both in substance
and in style. It was written when analysis was neglected in
Cambridge, and with an emphasis and enthusiasm which seem
rather ridiculous now. If I were to rewrite it now I should not
write (to use Prof. Littlewood’s simile) like ‘a missionary talking
to cannibals’, but with decent terseness and restraint; and,
writing more shortly, I should be able to include a great deal
more. The book would then be much more like a T'raité d’analyse
of the standard pattern.

It is perhaps fortunate that I have no time for such an
undertaking, since I should probably end by writing a much
better but much less individual book, and one less useful as an
introduction to the books on analysis of which, even in England,
there is now no lack.

November, 1937 G. H. H.

EXTRACT FROM THE PREFACE
- TO THE FIRST EDITION

THIs book has been designed primarily for the use of first year
students at the Universities whose abilities reach or approach
something like what is usually described as ‘scholarship standard’.
I hope that it may be useful to other classes of readers, but it is
this class whose wants I have considered first. It is in any case
a book for mathematicians: I have nowhere made any attempt
to meet the needs of students of engineering or indeed any class
of students whose interests are not primarily mathematical.

I regard the book as being really elementary. There are plenty
of hard examples (mainly at the ends of the chapters): to these 1
have added, wherever space permitted, an outline of the solution.
But I have done my best to avoid the inclusion of anything that
involves really difficult ideas.

September, 1908 G. H. H.
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