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Cayley’s Theorems

As for everything else, so for a mathematical theory: beauty can be perceived
but not explained.
. –Arthur Cayley

An introduction to group theory often begins with a number of examples
of finite groups (symmetric, alternating, dihedral, ...) and constructions
for combining groups into larger groups (direct products, for exam-
ple). Then one encounters Cayley’s Theorem, claiming that every finite
group can be viewed as a subgroup of a symmetric group. This chapter
begins by recalling Cayley’s Theorem, then establishes notation, termino-
logy, and background material, and concludes with the construction and
elementary exploration of Cayley graphs. This is the foundation we use
throughout the rest of the text where we present a series of variations on
Cayley’s original insight that are particularly appropriate for the study
of infinite groups.

Relative to the rest of the text, this chapter is gentle, and should
contain material that is somewhat familiar to the reader. A reader who
has not previously studied groups and encountered graphs will find the
treatment presented here “brisk.”

1.1 Cayley’s Basic Theorem

You probably already have good intuition for what it means for a group
to act on a set or geometric object. For example:

• The cyclic group of order n – denoted Zn – acts by rotations on a
regular n-sided polygon.
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2 Cayley’s Theorems

• The dihedral group of order 2n – denoted Dn – also acts on the reg-
ular n-sided polygon, where the elements either rotate or reflect the
polygon.

• We use Symn to denote the symmetric group of all permutations
of [n] = {1, 2, . . . , n}. (More common notations are Sn and Σn.)
By its definition, Symn acts on this set of numbers, as does its
index 2 subgroup, the alternating group An, consisting of the even
permutations.

• Matrix groups, such GLn(R) (the group of invertible n-by-n matrices
with real number entries), act on vector spaces.

Because the general theme of this book is to study groups via actions,
we need a bit of notation and a formal definition.

Convention 1.1. If X is a mathematical object (such as a regular poly-
gon or a set of numbers), then we use Sym(X) to denote all bijections
from X to X that preserve the indicated mathematical structure. For
example, if X is a set, then Sym(X) is simply the group of permutations
of the elements of X. In fact, if n = |X| then Sym(X) ≈ Symn. More-
over, if X and X ′ have the same cardinality, then Sym(X) ≈ Sym(X ′).
If X is a regular polygon, then angles and lengths are important, and
Sym(X) will be composed of rotations and reflections (and it will in fact
be a dihedral group). Similarly, if X is a vector space, then Sym(X) will
consist of bijective linear transformations.

What we are referring to as “Sym(X)” does have a number of different
names in different contexts within mathematics. For example, if G is a
group, then the collection of its symmetries is referred to as Aut(G), the
group of automorphisms. If we are working with the Euclidean plane, R

2,
and are considering functions that preserve the distance between points,
then we are looking at Isom(R2), the group of isometries of the plane.

It is quite useful to have individual names for these groups, as their
names highlight what mathematical structures are being preserved. Our
convention of lumping these various groups all together under the name
“Sym” is vague, but we believe that in context it will be clear what
is intended, and we like the fact that this uniform terminology empha-
sizes that these various situations where groups arise are not all that
different.1 One egregious example, which highlights the need to be care-

1 In his book, Symmetry, Hermann Weyl wrote: “[W]hat has indeed become a guid-
ing principle in modern mathematics is this lesson: Whenever you have to deal
with a structure-endowed entity Σ try to determine its group of automorphisms,
the group of those element-wise transformations which leave all structural relations
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1.1 Cayley’s Basic Theorem 3

ful in using our convention, comes from the integers. If the integers are
thought of as simply a set, containing infinitely many elements, then
Sym(Z) is an infinite permutation group, which contains Symn for any
n. On the other hand, if Z denotes the group of integers under addition,
then Sym(Z) ≈ Z2. (The only non-trivial automorphism of the group of
integers sends n to −n for all n ∈ Z.)

Definition 1.2. An action of a group G on a mathematical object X

is a group homomorphism from G to Sym(X). Equivalently, it is a map
from G × X → X such that

1. e · x = x, for all x ∈ X; and
2. (gh) · x = g · (h · x), for all g, h ∈ G and x ∈ X.

We denote “G acts on X” by G � X.
If one has a group action G � X, then the associated homomorphism

is a representation of G. The representation is faithful if the map is
injective. In other words, it is faithful if, given any non-identity element
g ∈ G, there is some x ∈ X such that g · x �= x.

Example 1.3. The dihedral group Dn is the symmetry group of a
regular n-gon. As such, it also permutes the vertices of the n-gon, hence
there is a representation Dn → Symn. As every non-identity element of
Dn moves at least (n − 2) vertices, this representation is faithful.

Remark 1.4 (left vs. right). In terms of avoiding confusion, this is
perhaps the most important remark in this book. Because not all groups
are abelian, it is very important to keep left and right straight. All of
our actions will be left actions (as described above). We have chosen to
work with left actions since it matches function notation and because
left actions are standard in geometric group theory and topology.

Groups arise in a number of different contexts, most commonly as
symmetries of any one of a number of possible mathematical objects X.
In these situations, one can often understand the group directly from
our understanding of X. The dihedral and symmetric groups are two
examples of this. However, groups are abstract objects, being merely
a set with a binary operation that satisfies a certain minimal list of
requirements. Cayley’s Theorem shows that the abstract notion of a
group and the notion of a group of permutations are one and the same.

undisturbed. You can expect to gain a deep insight into the constitution of Σ in
this way.” Our use of Sym(Σ) instead of Aut(Σ) is a small notational deviation
from Weyl’s recommendation.
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4 Cayley’s Theorems

Theorem 1.5 (Cayley’s Basic Theorem). Every group can be faithfully
represented as a group of permutations.

Proof. The objects that G permutes are the elements of G. In this proof
we use “SymG” to denote Sym(G), to emphasize that “G” denotes the
underlying set of elements, not the group. The permutation associated
to g ∈ G is defined by left multiplication by g. That is, g �→ πg ∈ SymG

where πg(h) = g · h for all h ∈ G. This is a permutation of the elements
of G, since if g · h = g · h′, then by left cancellation, h = h′. Denote the
map taking the element g to the permutation πg by π : G → SymG.

To check that π is a group homomorphism we need to verify that
π(gh) = π(g) · π(h). In other words, we need to show that πgh = πg · πh.
We do this by evaluating what each side does to an arbitrary element of
G. We denote the arbitrary element by “x”, thinking of it as a variable.
The permutation πgh takes x �→ (gh) · x, and successively applying πh

then πg sends x �→ h · x �→ g · (h · x). Thus checking that φ is a homo-
morphism amounts to verifying the associative law: (gh) · x = g · (h · x).
As this is part of the definition of a group, the equation holds.

In order to see that the map is faithful it suffices to show that no
non-identity element is mapped to the trivial permutation. One can do
this by simply noting that if g ∈ G\{e}, then g · e = g, hence πg(e) = g,
and so πg is not the identity (or trivial) permutation.

The proof of Cayley’s Basic Theorem constructs a representation
of G as a group of permutations of itself. Before moving on we should
examine what these permutations look like in some concrete situa-
tions. We first consider Sym3, the group of all permutations of three
objects.

Notation 1.6 (cycle notation). In describing elements of Symn we use
cycle notation, and multiply (that is, compose permutations) right to
left. This matches with our intuition from functions where f ◦g(x) means
that you first apply g then apply f , and it is consistent with our use of
left actions. Here is a concrete example: (12)(35) ∈ Sym5 is the ele-
ment that transposes 1 and 2, as well as 3 and 5; the element (234)
sends 2 to 3, 3 to 4 and 4 to 2; the product (12)(35) · (234) = (12534).
(The product is not (13542), which is the result of multiplying left
to right.)
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1.1 Cayley’s Basic Theorem 5

Example 1.7. The group Sym3 has six elements, shown as disjoint
vertices in Figure 1.1. The permutations described by Cayley’s Basic
Theorem – for the elements (12) and (123) – are also shown.

(13) (23)

I

(12)

(132) (123)

(13) (23)

I

(12)

(132) (123)

Fig. 1.1. The permutation of Sym3 induced by (12) is shown on the left, and
the permutation induced by (123) is shown on the right.

(0,–1)

(0,0) (1,0) (2,0)

(2,1)(1,1)(0,1)(–1,1)

(–1,0)

(–1,–1) (2,–1)(1,–1)

Fig. 1.2. The action of (2, 1) on Z ⊕ Z.

Example 1.8. In most introductions to group theory, Cayley’s Basic
Theorem is stated for finite groups. But we made no such assumption in
our statement and the same proof as is given for finite groups works for
infinite groups. Consider for example the direct product of two copies
of the group of integers, G = Z ⊕ Z. Here elements are represented by
pairs of integers, and the binary operation is coordinatewise addition:
(a, b)+(c, d) = (a+ c, b+d). In Figure 1.2 we have arranged the vertices
corresponding to elements of G as the integral lattice in the plane. The
arrows indicate the permutation of the elements of Z⊕Z induced by the
element (2, 1).
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6 Cayley’s Theorems

1.2 Graphs

One of the key insights into the study of groups is that they can be
viewed as symmetry groups of graphs. We refer to this as “Cayley’s
Better Theorem,” which we prove in Section 1.5.2. In this section we
establish some terminology from graph theory, and in the following
section we discuss groups acting on graphs.

Definition 1.9. A graph Γ consists of a set V (Γ) of vertices and a
set E(Γ) of edges, each edge being associated to an unordered pair of
vertices by a function “Ends”: Ends(e) = {v, w} where v, w ∈ V . In
this case we call v and w the ends of the edge e and we also say v and
w are adjacent.

We allow the possibility that there are multiple edges with the same
associated pair of vertices. Thus for two distinct edges e and e′ it can be
the case that Ends(e) = Ends(e′). We also allow loops, that is, edges
whose associated vertices are the same. Graphs without loops or multiple
edges are simple graphs.

Graphs are often visualized by making the vertices points on paper and
edges arcs connecting the appropriate vertices. Two simple graphs are
shown in Figure 1.3; a graph which is not simple is shown in Figure 1.4.

Fig. 1.3. The complete graph on five vertices, K5, and the complete bipartite
graph K3,4.

There are a number of families of graphs that arise in mathematics.
The complete graph on n vertices has exactly one edge joining each pair
of distinct vertices, and is denoted Kn. At the opposite extreme are the
null graphs, which have no edges.

A graph is bipartite if its vertices can be partitioned into two subsets –
by convention these subsets are referred to as the “black” and “white”
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1.2 Graphs 7

vertices – such that, for every e ∈ E(Γ), Ends(e) contains one black
vertex and one white vertex. The complete bipartite graphs are simple
graphs whose vertex sets have been partitioned into two collections, V◦
and V•, with edges joining each vertex in V◦ with each vertex in V•. If
|V◦| = n and |V•| = m then the corresponding complete bipartite graph
is denoted Kn,m.

The valence or degree of a vertex is the number of edges that contain
it. For example, the valence of any vertex in Kn is n − 1. If a vertex
v is the vertex for a loop, that is an edge e where Ends(e) = {v, v},
then this loop contributes twice to the computation of the valence of v.
For example, the valence of the leftmost vertex in the graph shown in
Figure 1.4 is six.

A graph is locally finite if each vertex is contained in a finite number
of edges, that is, if the valence of every vertex is finite.

An edge path, or more simply a path, in a graph consists of an alter-
nating sequence of vertices and edges, {v0, e1, v1, . . . , vn−1, en, vn} where
Ends(ei) = {vi−1, vi} (for each i). A graph is connected if any two ver-
tices can be joined by an edge path. In Figure 1.4 we have indicated an

a
3

jh
21

b

c

d

i

g
fe 4 5

Fig. 1.4. On top is a graph which is not simple, with its vertices labelled by
numbers and its edges labelled by letters. Below is the set of edges traversed in
an edge path, joining the vertex labelled 1 to the vertex labelled 3, is indicated.

edge path from the leftmost vertex to the rightmost vertex. If vi is the
vertex labelled i and eα is the edge labelled α, then this path is:

{v1, ea, v1, ee, v4, eg, v5, eh, v2, eb, v1, ed, v2, ei, v3}
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8 Cayley’s Theorems

This notation is obviously a bit cumbersome and is only feasible when
the graphs are small and the paths are short. If the graph is a simple
graph, then one really only needs to list the sequence of vertices, which
is a small economy of notation. In general, we will not need this level of
specificity in dealing with edge paths in graphs.

A backtrack is a path of the form {v, e, w, e, v} where one has trav-
elled along the edge e and then immediately returned along e. A path
is reduced if it contains no backtracks.

A cycle or circuit is a non-trivial edge path whose first and last vertices
are the same, but no other vertex is repeated. The following paths in
the graph shown in Figure 1.4 are all cycles:

1. {v1, ee, v4, ef , v2, ec, v1},
2. {v1, eb, v2, ed, v1},
3. {v1, ea, v1}.

In Chapter 3 we study various groups that are closely connected to
trees. A tree is a connected graph with no cycles. If you have not encoun-
tered trees in a previous course, working through the following exercise
will help you gain some intuition for trees.

Exercise 1.10. Prove that the following conditions on a connected
graph Γ are equivalent.

1. Γ is a tree.
2. Given any two vertices v and w in Γ, there is a unique reduced

edge path from v to w.
3. For every edge e ∈ E(Γ), removing e from Γ disconnects the

graph. (Note: Removing e does not remove its associated ver-
tices.)

4. If Γ is finite then #V (Γ) = #E(Γ) + 1.

While there are a number of interesting results about finite trees, in
this book we shall be mainly interested in infinite trees. In particular,
in Chapter 3 we explore groups that act on certain infinite, symmetric
trees.

Definition 1.11 (regular and biregular trees). A regular m-tree is a tree
where every vertex has fixed valence m. For a given value of m there is
only one regular m-tree, which we denote Tm. Notice that, since every
vertex has valence m, the tree Tm is infinite when m ≥ 2.

A graph is biregular if it is bipartite, and all the vertices in one class
have fixed valence m and all the vertices in the other class have fixed
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1.2 Graphs 9

valence n. Thus, for example, the complete bipartite graphs are all bireg-
ular. Given the valences, there is a unique biregular tree, which we denote
by Tm,n. You can see an example in Figure 1.5.

Fig. 1.5. The biregular tree T2,3.

It is often convenient to think of graphs as geometric objects where
each edge is identified with the unit interval [0, 1], where 0 corresponds
to one of the associated vertices and 1 to the other. This convention
allows us to refer to midpoints of edges, for example. The graphs shown
in Figures 1.3, 1.4, and 1.5 have distorted this metric, meaning that if
you measured the lengths of the edges in a given figure, those lengths will
not all be the same. (This will occur in almost all of the graphs drawn
in this book.) In addition to allowing us to specify points on edges, this
geometric perspective allows us to think of paths as parametrized curves.
Our convention will be that, given an edge path

ω = {v0, e1, v1, e2, . . . , en, vn}

in a graph Γ, there is an associated function pω : [0, 1] → Γ where
pω(i/n) = vi and pω is linear when restricted to each of the subintervals
[i/n, (i + 1)/n].

Remark 1.12. Our view of graphs is more topological than combina-
torial. The reader who is a bit uneasy about our thinking of graphs as
geometric objects, where edges have lengths, might want to look up the
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10 Cayley’s Theorems

definition of CW complexes, as we are viewing graphs as 1-dimensional
CW complexes. We have not introduced this terminology or explicitly
used the associated definition as it requires an understanding of topo-
logical spaces and quotient topologies.

There is one final variation on graphs that we will encounter in this
text:

Definition 1.13. A directed graph consists of a vertex set V and an edge
set E of ordered pairs of vertices. Thus each edge has an initial vertex
and a terminal vertex. Graphically this direction is often indicated via
an arrow on the edge. In thinking of directed graphs geometrically we
assume that the initial vertex is identified with 0 ∈ [0, 1] and the terminal
vertex with 1 ∈ [0, 1].

If we say a directed graph is connected we mean the underlying undi-
rected graph is connected. (One can study “directed-connectedness” but
that will not be relevant for us.)

In addition to directions on the edges, there are other sorts of dec-
orations one can add to a graph. For example, one can have a set of
labels L and a function �V : V (Γ) → L that provides a labelling of the
vertices. Or one could label the edges via �E : E(Γ) → L, where the set
of labels might be the same or different than the labels for the vertices.
As an example, in Figure 1.4 we have shown a labelled graph where the
vertices have been labelled with numbers and the edges with lower case
letters.

1.3 Symmetry Groups of Graphs

Many important finite groups arise as symmetry groups of geometric
objects. The dihedral groups are the symmetry groups of regular n-gons;
the symmetric group Symn is isomorphic to the symmetry group of the
regular (n − 1)-dimensional simplex, for example the convex hull of

{(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} ⊂ R
n ;

the alternating subgroup An is isomorphic to the subgroup of symmetries
of the regular (n − 1)-dimensional simplex consisting of rotations in R

n.
In this section we explore a similar theme, namely, we explore sym-

metry groups of graphs.

Definition 1.14. A symmetry of a graph Γ is a bijection α taking ver-
tices to vertices and edges to edges such that if Ends(e) = {v, w}, then
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