
Chapter 1

General introduction

These notes are an introduction to some of the theory of finite von Neumann
algebras and their von Neumann subalgebras, with the emphasis on maximal
abelian self-adjoint subalgebras (usually abbreviated masas). Assuming basic
von Neumann algebra theory, the notes are fairly detailed in covering the ba-
sic construction, perturbations of von Neumann subalgebras, general results on
masas and detailed ones on singular masas in II1 factors. Due to the large
volume of research on finite von Neumann algebras and their masas the au-
thors have been forced to be selective of the topics included. Nevertheless, a
substantial body of recent research has been covered.

Each chapter of the book has its own introduction, so the overview of the
contents below will be quite brief. We have also included a discussion of a
few important results which have been omitted from the body of the text. In
each case, we felt that the amount of background required for a reasonably
self-contained account was simply too much for a book of this kind.

We have tried to make the material accessible to graduate students who
have some familiarity with von Neumann algebras at the level of a first course
in the subject. The early chapters review some of this, but are best read by the
beginner with one of the standard texts, [104, 105, 187], to hand to fill in any
gaps.

1.1 Synopsis

The book falls naturally into five parts. The first of these comprises Chapters
2, 3, 4, 5, 6 and 8 in which we lay out some of the foundations of the subject.
The papers of Murray and von Neumann [116, 117, 202, 118] introduced the
subject of von Neumann algebras (then called Rings of Operators) and are still
influential today. The finite algebras are, roughly speaking, those that admit
a faithful normal tracial state, and are closest in spirit to the matrix algebras,
which are particular examples. Murray and von Neumann paid particular at-
tention to the finite algebras, and established the close connection to the theory
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2 CHAPTER 1. GENERAL INTRODUCTION

of discrete groups that persists today. They also introduced the crossed product
construction from a group acting by automorphisms of a von Neumann algebra,
notably an abelian one. In this way masas appear naturally in von Neumann
algebras. In principle, masas can always be constructed by using Zorn’s lemma,
but this is rarely enlightening. The important examples always make their ap-
pearance from some auxiliary algebraic structure, for example maximal abelian
subgroups of groups.

Chapter 2 classifies the masas in B(H), the algebra of bounded operators
on a separable Hilbert space. Although our focus is on II1 factors, these cannot
be studied in isolation, and various constructions will produce algebras of types
I and II∞ (but no type III factors will appear in these notes).

Chapter 3 gives an overview of the basic theory of finite von Neumann alge-
bras and of the standard constructions of tensor products and crossed products.
Since there is such a close connection to discrete groups, examples of masas aris-
ing from groups are presented, and the precursor to the conditional expectations
are discussed at the level of group algebras where they are very easy to under-
stand. An important characterisation of diffuse abelian algebras is given, and
the chapter ends with a brief discussion of hyperfiniteness. The fundamental
work of Connes, [36], on this topic is summarised without proofs.

The following chapter is devoted to the basic construction. This is an alge-
bra 〈N, eB〉 which arises from a von Neumann subalgebra B of a finite factor
N . It is of fundamental importance in the theory of subfactors and also in per-
turbation theory. A detailed exposition of its properties is given, including the
construction of its canonical semifinite trace (see also Appendix C for a different
approach to this construction). Some simple examples are included.

Chapters 5, 6 and 8 deal with various technical issues. The first of these
concerns the basic operators of von Neumann algebra theory—the unitaries,
projections and partial isometries. Various approximation results are proved,
and several important ‖·‖2-norm estimates are given, all to be used subsequently.
The next chapter continues in this spirit, and discusses various technical issues
concerning normalising unitaries as well as orthogonality in von Neumann alge-
bras. The background material is rounded out in Chapter 8 by presenting some
estimates for operators in type I∞ von Neumann algebras. We have avoided
any discussion of direct integrals in these notes, but the material of Chapter 8
is essentially this topic in an embryonic form.

Chapter 7 introduces the Pukánszky invariant of a masa. At one level, all
masas in separable II1 factors are the same since all are isomorphic to L∞[0, 1].
However, this ignores the relationship between a masa A and its containing fac-
tor N , and the invariant Puk(A) addresses this. The masa A and its reflection
JAJ in the commutant combine to generate an abelian algebra whose commu-
tant restricted to L2(N) � L2(A) decomposes as a direct sum of type In von
Neumann algebras for n in the range {1, 2, . . . ,∞}. Those integers that appear
then constitute Puk(A). There is a discussion of this invariant in the context of
group factors where everything can be related to the group structure, allowing
many examples to be presented. An alternative approach, based on important
work of Tauer, [190], from the 1960s, has enabled White, [207], to show that
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1.2. FURTHER RESULTS 3

all possible values of Puk(A) can be realised in certain factors including the
hyperfinite one. Space considerations have forced us to omit this work.

The third group of chapters concerns perturbations of masas. This topic
is split between Chapters 9 and 10, the first dealing with basic theory and
second with extensions to general subalgebras. The problem is to consider two
subalgebras A and B of a factor N which are close in an appropriate sense and
then to look for a partial isometry w such that wAw∗ ⊆ B. This creates a
spatial isomorphism between compressions of the two algebras. This theory has
played a decisive role in the resolution of some old questions in von Neumann
algebra theory. We expand on this below.

Chapters 11–16 present various special aspects of masas. The focus of Chap-
ter 11 is the theory of singular masas and we include a discussion of the Lapla-
cian masa in free group factors. Chapter 12 is devoted to the construction of
singular and semiregular masas in all finite factors. Chapter 13 explores the
topic of Cartan masas, which is closely connected to the theory of hyperfinite
subfactors, and there is also a discussion of property Γ and its relationship to
masas. Maximally injective masas and subfactors are presented in Chapter 14,
and the subsequent chapter looks at non-separable factors which can arise from
ultrapowers. The last chapter presents some recent work of Shen [171] on singly
generated algebras, a subject which relies heavily on the theory of masas.

The book concludes with three appendices. The first develops the theory
of ultrapowers and includes some further material on property Γ. The second
discusses the basic theory of unbounded operators. These types of operators
appear in the perturbations of Chapters 9 and 10, so this appendix covers just
that part of the theory which is used in these applications. The final appendix
gives a second approach to the existence of the trace in the basic construction,
first presented in Chapter 4.

1.2 Further results

There are three major results about masas which we have omitted from this
book, due to the amount of background material that would have been needed
to give a reasonably self-contained account of them.

The first of these is a uniqueness result for Cartan masas in the hyperfinite
factor R. No automorphism of R can satisfy φ(A) = B when A and B are
masas with distinct Pukánszky invariants, and such pairs do occur. However,
the result of Connes, Feldman and Weiss, [40], for Cartan masas is as follows:

Theorem 1.2.1. Let A and B be Cartan masas in the hyperfinite II1 factor R.
Then there exists an automorphism φ of R such that φ(A) = B.

The original proof in [40] is in the context of ergodic theory. A more operator-
theoretic proof is presented in [141].

The second theorem answers an old question concerning the existence of
Cartan masas in finite factors. The theory of free probability, [200], was devel-
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4 CHAPTER 1. GENERAL INTRODUCTION

oped as part of an investigation of the free group factors. In [199], this was used
by Voiculescu to obtain

Theorem 1.2.2. There do not exist Cartan masas in the free group factors
L(Fn), 2 ≤ n ≤ ∞.

This settled the existence question for the standard types of masas since it
had been shown earlier by Popa, [139, 140], that singular and semiregular masas
exist in all separable II1 factors (see Chapter 12).

The third problem that we wish to mention concerns the fundamental group,
which is a multiplicative subgroup of R

+ associated to any II1 factor. The
question is whether any subgroup can be the fundamental group of a II1 factor.
There had been some partial results that are discussed in Section 16.4, but the
definitive answer was obtained by Popa [149]:

Theorem 1.2.3. If G is a subgroup of R
+, then there is a II1 factor N whose

fundamental group in G. If G is countable, then N may be taken to be separable.

The proof depends on Gabariau’s work in ergodic theory [70], as well as the
perturbation results on masas discussed in Chapters 9 and 10.

Many mathematicians have made important contributions to the theory of
masas, but amongst these two names stand out: Jacques Dixmier and Sorin
Popa. This early work on masas in the 1950s is due to Dixmier, who did much
to establish this topic as a viable field of study. Many of the later developments,
in the periods 1980–1985 and from 2000 to the present, are due to Popa and
several of our chapters are drawn substantially from his work. Without the
fundamental contributions of these two researchers, this book could not have
been written.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-71919-3 - Finite von Neumann Algebras and Masas
Allan M. Sinclair and Roger R. Smith
Excerpt
More information

http://www.cambridge.org/9780521719193
http://www.cambridge.org
http://www.cambridge.org


Chapter 2

Masas in B(H)

2.1 Introduction

Our main objective in this chapter is to describe the maximal abelian self-adjoint
subalgebras (masas) of B(H) in Section 2.3. To avoid technicalities concerning
cardinalities, we will only discuss the case when H is separable. There are two
basic types of masas, discrete and diffuse. For the first, fix an orthonormal basis
{ξn}∞n=1 for H and let pn be the rank one projection onto Cξn, n ≥ 1. Then A,
the von Neumann algebra generated by these projections, is a masa, and has
many minimal projections. For the second type, let L∞[0, 1] act on L2[0, 1] as
multiplication operators. This is a masa, established below, but in contrast to
the first type, it has no minimal projections. Up to unitary equivalence, each
masa in B(H) will be a direct sum of the two types.

In Section 2.4, we discuss masas in type In von Neumann algebras, where
n ∈ N is arbitrary. These algebras have the form A ⊗ Mn for some abelian von
Neumann algebra A, where Mn denotes the algebra of scalar n × n matrices.
Each of these algebras contains an obvious diagonal masa A ⊗ Dn, where Dn is
the algebra of diagonal n× n matrices, and Theorem 2.4.3 establishes that this
is the only masa up to unitary equivalence. We then conclude the chapter by
introducing abelian projections and proving the useful result that they occur in
all masas in finite type I von Neumann algebras.

Before we embark on the study of masas, we recall in Section 2.2 some of
the standard theorems of von Neumann algebra theory. The ones chosen are
those which will be used many times in the succeeding pages of this book.

2.2 Standard theorems

There are many important theorems in operator algebras, but the four that
we recall here are of particular relevance to the topics of these notes. They
can be found in all of the textbooks in this field, and are restated here for the
reader’s convenience (see, for example, the books by Dixmier [48, 49], Kadison
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6 CHAPTER 2. MASAS IN B(H)

and Ringrose [104, 105], Pedersen [131], Sakai [167] and Takesaki [187]). All are
valid without restriction on the cardinality of the Hilbert space.

If a von Neumann algebra N is represented on a Hilbert space H, then a
net (xα) from N converges strongly to x ∈ N if limα ‖xαη − xη‖2 = 0 for all
vectors η ∈ H. If, in addition, limα x∗

α = x∗ strongly, then we say that xα → x
∗-strongly. These notions are distinct: if v denotes the adjoint of the unilateral
shift operator on �2(N), then limn→∞ vn = 0 strongly, while this is not so for
powers of v∗. Basic functional analysis shows that weak and strong closures of
convex sets coincide, giving a choice of how to state these results.

The first one, due to von Neumann, [201], describes the strong closure of a
∗-algebra of operators in purely algebraic terms.

Theorem 2.2.1 (The double commutant theorem). Let A be a ∗-algebra
of operators on a Hilbert space H and suppose that 1 is in the strong (or weak)
closure of A. Then the strong and weak closures of A are both equal to the
double commutant A′′. In particular, A is a von Neumann algebra if and only
if A = A′′.

The next theorem, due to Dixmier, [46], is a type of averaging result, and
such techniques will appear frequently in these notes, taking various forms. We
let Z denote the centre of a von Neumann algebra N , and the closure of the
convex set below is taken in the norm topology. Another way of describing
the theorem is to say that appropriately chosen convex combinations of unitary
conjugates of any fixed element approach the centre arbitrarily closely. The
simplicity of finite factors is one consequence of this result (see Theorem A.3.2).

Theorem 2.2.2 (The Dixmier approximation theorem). Let N be a
von Neumann algebra with unitary group U(N). For each x ∈ N ,

Z ∩ conv{uxu∗ : u ∈ U(N)} �= ∅.

The third theorem is due to Kaplansky [106]. The most important feature
for us is the norm estimate of the first part, since it is quite possible to have
nets which are unbounded in norm, but nevertheless converge strongly. Our
statement of the result combines the versions of [105, 187].

Theorem 2.2.3 (The Kaplansky density theorem). Let N ⊆ B(H) be a
von Neumann algebra and let A be a strongly dense ∗-subalgebra, not assumed
to be unital.

(i) If x ∈ N , then there exists a net (xα) from A converging ∗-strongly to x
and satisfying ‖xα‖ ≤ ‖x‖ for all α.

(ii) If x ∈ N is self-adjoint then the net in (i) may be chosen with the addi-
tional property that each xα is self-adjoint.

(iii) If u ∈ N is a unitary and A is a unital C∗-algebra, then there is a net
(uα) of unitaries from A converging ∗-strongly to u.
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2.2. STANDARD THEOREMS 7

The last of these theorems is due to Tomita and may be found in [105,
Theorem 11.2.16]. It is a consequence of another of Tomita’s theorems, [105,
Theorem 9.2.9], that has played a fundamental role in the modern development
of certain aspects of the theory. The simplicity of its statement is in contrast
to the difficulty of its proof.

Theorem 2.2.4 (Tomita’s commutant theorem). Let M ⊆ B(H) and
N ⊆ B(K) be von Neumann algebras. Then

(M⊗N)′ = M ′⊗N ′.

Early in the development of the subject, von Neumann introduced direct
integrals [203] which allowed him to decompose a von Neumann algebra on a
separable Hilbert space into a direct integral over the centre of factors (those
algebras with trivial centre). This focused attention on factors, the prevail-
ing view being that direct integral theory would extend results for factors to
separably acting von Neumann algebras, which is largely correct. Murray and
von Neumann introduced the type classification of factors in their seminal se-
ries of papers [116, 117, 118, 202]. There are algebras of types I, II1, II∞ and
III. The reader will find the original definitions in [105], which also contains
theorems making these equivalent to the following descriptions. Type I breaks
down further into In, n ≥ 1, and type I∞, and these correspond respectively to
the algebras Mn of n×n matrices over C, and to the algebras B(H) of bounded
operators on infinite dimensional Hilbert spaces H, one for each cardinality of
H. The II1 factors are those which are infinite dimensional and admit a finite
trace, and are often called finite factors. The II∞ factors are those which arise
from the tensor product of a type II1 with a type I∞, while any factor which
does not fall into the classes already described is called type III. The origi-
nal definitions also cover algebras with nontrivial centre and the direct integral
theory works well here: a separably acting von Neumann algebra is of type α
precisely when the factors in its direct integral decomposition are all of type α
(α ∈ {I, II1, II∞, III}). The type III algebras play no further role in these notes,
which mainly concern those of type II1. However, various constructions lead to
algebras of types I and II∞. As we will see, the trace is fundamental for finite
algebras, and we lose this when we move to the other two types. Fortunately,
both have densely defined semifinite traces, and considerable use will be made
of this.

All von Neumann algebras have identity elements, which we usually denote
by 1. We will often need to consider containments B ⊆ N of von Neumann
algebras, and we adopt the following convention. We always suppose that the
identities of N and B are equal unless either it is explicitly stated to the
contrary, or it is clearly not the case from the context (e.g. B = pNp for some
projection p ∈ N).
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8 CHAPTER 2. MASAS IN B(H)

2.3 Masas

The material in this section owes much to the presentation of these results to
be found in [104, Chapter 5].

Recall that a vector ξ is cyclic for a von Neumann algebra N ⊆ B(H) if the
subspace Nξ is norm dense in H. We say that ξ is separating for N if xξ = 0
implies that x = 0 when x ∈ N . The first lemma gives a useful relationship
between cyclic and separating vectors.

Lemma 2.3.1. Let N ⊆ B(H) be a von Neumann algebra. Then ξ ∈ H is
cyclic for N if and only if ξ is separating for N ′.

Proof. Suppose that ξ is cyclic for N , and let x′ ∈ N ′ be such that x′ξ = 0.
Then

x′xξ = xx′ξ = 0, x ∈ N, (2.3.1)

and so x′ = 0 since Nξ is dense in H. Thus ξ is separating for N ′.
Conversely, suppose that ξ is separating for N ′. Let p ∈ N ′ be the projection

onto the norm closed span of Nξ. Then pξ = ξ, so (1 − p)ξ = 0. Since ξ is
separating, p = 1, which says that ξ is cyclic for N .

Both examples of discrete and diffuse masas above have cyclic vectors. In
the first case ξ =

∑∞
n=1 ξn/2n is cyclic, while in the second case the constant

function 1 is cyclic for L∞[0, 1]. The situation would change if we allowed non-
separable Hilbert spaces. If S is an uncountable set then �∞(S) is a masa when
acting by multiplication on �2(S). Any vector in �2(S) has only a countable
number of non-zero entries, and thus no cyclic vector can exist. The obstruc-
tions, of course, are the cardinality S and the resulting dimension of �2(S).

Lemma 2.3.2. Let A ⊆ B(H) be a masa, where H is a separable Hilbert space.
Then there is a vector ξ ∈ H which is both cyclic and separating for A.

Proof. By Zorn’s lemma, choose a maximal set {ξn}∞n=1 of non-zero vectors
such that the subspaces Aξn, n ≥ 1, are pairwise orthogonal. The separability
of H allows us to enumerate this set. If η �= 0 was orthogonal to all of these
subspaces then Aη would be orthogonal to each Aξn, contradicting maximality.
Thus H =

⊕∞
n=1 Aξn. Let pn be the projection onto Aξn, n ≥ 1. Then

pn ∈ A′ = A. Let ξ =
∑∞

n=1 ξn/(2n‖ξn‖2) ∈ H. Then ξn = (2n‖ξn‖2pn)(ξ), so
ξn ∈ Aξ, n ≥ 1. It then follows that Aξn ⊆ Aξ, n ≥ 1, and so ξ is cyclic for A.
By Lemma 2.3.1, ξ is separating for A′, which equals A.

We now establish a converse to this result, by showing that any abelian von
Neumann algebra on a separable Hilbert space which has a cyclic vector must
be a masa. This then proves that the example L∞[0, 1] above is indeed a masa
on L2[0, 1]. We will require a preliminary lemma concerning tracial vectors. A
vector ξ ∈ H is said to be tracial for a von Neumann algebra N ⊆ B(H) if

〈xyξ, ξ〉 = 〈yxξ, ξ〉, x, y ∈ N. (2.3.2)

Note that if N is abelian then any vector is tracial for N .
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2.3. MASAS 9

Lemma 2.3.3. Let N ⊆ B(H) be a von Neumann algebra with a tracial cyclic
and separating vector ξ. Then there is a conjugate linear isometry J : H → H
with the following properties:

(i) t �→ Jt∗J , t ∈ B(H), defines an anti-isomorphism π : B(H) → B(H);

(ii) π maps N onto N ′ and N ′ onto N .

Proof. (i) For each x ∈ N ,

‖xξ‖2
2 = 〈xξ, xξ〉 = 〈x∗xξ, ξ〉 = 〈xx∗ξ, ξ〉 = ‖x∗ξ‖2

2, (2.3.3)

so we may define a conjugate linear isometry J : Nξ → Nξ by J(xξ) = x∗ξ,
x ∈ N . Since ξ is cyclic for N , this map extends to H, also denoted J . If we
define π : B(H) → B(H) by π(t) = Jt∗J then, for s, t ∈ B(H),

π(st) = Jt∗s∗J = Jt∗JJs∗J = π(t)π(s), (2.3.4)

using J2 = I. This proves (i).
(ii) Now consider x, y, z ∈ N . We have

(xπ(y) − π(y)x)zξ = xJy∗Jzξ − Jy∗Jxzξ

= xJy∗z∗ξ − Jy∗z∗x∗ξ

= xzyξ − xzyξ = 0. (2.3.5)

Letting z vary over N , we conclude that π(y) commutes with all x ∈ N , so
π(y) ∈ N ′. Thus π maps N to N ′.

Let y ∈ N ′ be self-adjoint and choose a sequence {xn}∞n=1 ∈ N such that
yξ = lim

n→∞
xnξ, possible because ξ is cyclic for N . Then {x∗

nξ}∞n=1 is Cauchy,
since x∗

nξ = Jxnξ, and so this sequence converges to η ∈ H. For z ∈ N ,

〈yξ − η, zξ〉 = lim
n→∞

(〈yξ, zξ〉 − 〈x∗
nξ, zξ〉)

= lim
n→∞

(〈z∗ξ, yξ〉 − 〈z∗x∗
nξ, ξ〉)

= lim
n→∞

(〈z∗ξ, yξ〉 − 〈x∗
nz∗ξ, ξ〉)

= lim
n→∞

(〈z∗ξ, yξ〉 − 〈z∗ξ, xnξ〉) = 0, (2.3.6)

where we have used the tracial property of ξ and the fact that y is self-adjoint
and commutes with z∗. Letting z vary, we conclude that yξ = η, and so yξ is
the limit of the sequence {((xn + x∗

n)/2)ξ}∞n=1. Replacing xn by (xn + x∗
n)/2,

we may assume that xn is self-adjoint. Then

Jyξ = lim
n→∞

Jxnξ = lim
n→∞

xnξ = yξ. (2.3.7)

A general element y ∈ N ′ may be written as y = y1 + iy2 with y1 and y2 self-
adjoint in N ′. From (2.3.7), we obtain Jyξ = y∗ξ. By Lemma 2.3.1, ξ is also
cyclic and separating for N ′, so we may repeat the argument of (2.3.5), this
time with x, y, z ∈ N ′, to conclude that π maps N ′ to N . Since π2 = I, it
follows easily that π defines an anti-isomorphismof N onto N ′, proving (ii).
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10 CHAPTER 2. MASAS IN B(H)

Theorem 2.3.4. Let A ⊆ B(H) be an abelian von Neumann algebra on a
separable Hilbert space H. Then A is a masa if and only if A has a cyclic
vector.

Proof. We have already shown in Lemma 2.3.2 that if A is a masa then it has a
cyclic vector. To show the converse, suppose that A has a cyclic vector ξ. Since
A is abelian, we have that A ⊆ A′, and ξ is also cyclic for A′. By Lemma 2.3.1,
ξ is separating for A, and it is of course tracial. By Lemma 2.3.3, there is a
surjective anti-isomorphism π : A → A′, showing that A′ is also abelian. Thus
A′ ⊆ (A′)′ = A, proving that A = A′. Then A is a masa.

Our next objective is to give a complete description of masas in B(H). We
have already met two types: L∞[0, 1] acting on L2[0, 1] and the masas of diagonal
operators relative to given orthonormal bases. A general masa will be a direct
sum of the two types (where either type may be missing), and the diagonal
masas are characterised by the cardinality of the orthonormal bases. We call
a masa diffuse (or continuous) if it has no minimal non-zero projections. If
it is generated by its minimal projections then we refer to it as discrete. The
following lemma is valid for all separably acting von Neumann algebras and so
we prove it in full generality, although we only apply it to masas. It will be
useful in describing diffuse masas.

Lemma 2.3.5. Let H be a separable Hilbert space and let N ⊆ B(H) be a
von Neumann algebra. Then there is a sequence {pn}∞n=1 of projections in N
which generates this von Neumann algebra.

Proof. The spectral theorem allows us to approximate a given self-adjoint oper-
ator by a finite linear combination of its spectral projections, and each operator
is in the span of two self-adjoint ones. Thus we may reduce to showing that N
is generated by a countable set of elements.

Fix a countable dense set of vectors {ξi}∞i=1 in H. Let n be a fixed integer,
and let

Sn = {(xξ1, . . . , xξn)T : x ∈ N, ‖x‖ ≤ 1} ⊆ Hn.

Then Sn is separable, and so there is a countable subset Fn of the unit ball
of N such that {(xξ1, . . . , xξn)T : x ∈ Fn} is norm dense in Sn. A simple
approximation argument then shows that

⋃∞
n=1 Fn is a countable strongly dense

subset of N , and thus generates the von Neumann algebra.

Lemma 2.3.6. Let A be a diffuse masa in B(H), where H is a separable Hilbert
space. Then A is unitarily equivalent to the masa L∞[0, 1] in B(L2[0, 1]).

Proof. For each λ ∈ [0, 1], define the projection fλ ∈ L∞[0, 1] to be χ[0,λ]. Since
the constant function 1 ∈ L2[0, 1] is a cyclic vector for the von Neumann algebra
B generated by these projections, Theorem 2.3.4 shows that B is a masa, and
thus coincides with L∞[0, 1]. We note that the set of fλ’s is totally ordered and
that fλfµ = fmin{λ,µ}. We will construct a set of projections indexed by [0,1]
inside A with similar properties, from which we will obtain the implementing
unitary.
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