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Random variables – without basic space

Götz Kersting

Fachbereich Informatik und Mathematik
Universität Frankfurt

D-60054 Frankfurt am Main, Germany

Abstract

The common definition of a random variable as a measurable function

works well ‘in practice’, but has conceptual shortcomings, as was pointed

out by several authors. Here we treat random variables not as derived

quantities but as mathematical objects, whose basic properties are given

by intuitive axioms. This requires that their target spaces fulfil a mini-

mal regularity condition saying that the diagonal in the product space is

measurable. From the axioms we deduce the basic properties of random

variables and events.

1.1 Introduction

In this paper we define the concept of a stochastic ensemble. It is our

intention thereby to give an intuitive axiomatic approach to the con-

cept of a random variable. The primary ingredient is a sufficiently rich

collection of random variables (with ‘good’ target spaces). The set of

observable events will be derived from it.

Among the notions of probability it is the random variable which in

our view constitutes the fundamental object of modern probability the-

ory. Albeit in the history of mathematical probability events came first,

random variables are closer to the roots of understanding nondetermin-

istic phenomena. Nowadays events typically refer to random variables

and are no longer studied for their own sake, and for distributions the sit-

uation is not much different. Moreover, random variables turn out to be

flexible mathematical objects. They can be handled in other ways than

events or distributions (think of couplings), and these ways often con-

form to intuition. ‘Probabilistic’, ‘pathwise’ methods gain importance

and combinatorial constructions with random variables can substitute

(or nicely prepare) analytic methods. It was a common belief that first
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14 Götz Kersting

of all the distributions of random variables matter in probability, but

this belief is outdated.

Today it is customary to adapt random variables to a context from

measure theory. Yet the feeling has persisted that random variables are

objects in their own right. This was manifest, when measure theory

took over in probability: According to J. Doob (interviewed by Snell

[9]) ‘it was a shock for probabilists to realize that a function is glorified

into a random variable as soon as its domain is assigned a probability

distribution with respect to which the function is measurable’. Later the

experts insisted that it is the idea of random variables which conforms to

intuition. Legendary is L. Breiman’s [2] statement: ‘Probability theory

has a right and a left hand. On the right is the rigorous foundational

work using the tools of measure theory. The left hand “thinks proba-

bilistically,” reduces problems to gambling situations, coin-tossing, and

motions of a physical particle’. In applications of probability the concept

of a random variable never lost its appeal. We may quote D. Mumford

[8]: ‘There are two approaches to developing the basic theory of proba-

bility. One is to use wherever possible the reduction to measure theory,

eliminating the probabilistical language . . . The other is to put the con-

cept of “random variable” on center stage and work with manipulations

of random variables wherever possible’. And, ‘for my part, I find the

second way . . . infinitely clearer’.

Example To illustrate this assertion let us consider different proofs of

the central limit theorem saying that (X1 + . . . + Xn )/
√

n is asymp-

totically normal for iid random variables X1, X2, . . . with mean 0 and

variance 1. There is the established analytic approach via characteristic

functions. In contrast let us recall a coupling method taken from [2],

which essentially consists in replacing X1, . . . , Xn one after the other by

independent standard normal random variables Y1, . . . , Yn . In more de-

tail this looks as follows: Let f : R → R be thrice differentiable, bounded

and with bounded derivatives. Then it is sufficient to show that

E
[

f
(X1 + · · · + Xn√

n

)

− f
(Y1 + · · · + Yn√

n

)]

converges to zero. The integrand may be expanded into

n
∑

i=1

[

f
( Zi√

n

)

− f
(Zi−1√

n

)]
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Random variables – without basic space 15

with Zi := X1 + · · · + Xi + Yi+1 + · · · + Yn . By means of two Taylor

expansions around Ui := X1 + · · ·+Xi−1 +Yi+1 + · · ·+Yn the summands

turn into

Xi − Yi√
n

f ′(Ui) +
X2

i − Y 2
i

2n
f ′′(Ui) + OP (n−3/2)

Taking expectations the first two terms vanish because of independence,

and a closer look at the remainder gives the assertion (see [2], page 168).

✷

From an architectural point of view these considerations and statements

suggest that we try to start from random variables in the presentation of

probability theory and therewith to bring intuition and methods closer

together – rather than to gain random variables as derived quantities

in the accustomed measure-theoretic manner. We like to show that this

can be accomplished without much technical effort. For this purpose we

may leave aside distributions in this paper.

Let us comment on the difference of our approach to the customary one

of choosing a certain σ-field E on some basic set Ω as a starting point

and then indentifying events and random variables with measurable sets

and measurable functions. In our view this is a set-theoretic model of

the probabilistic notions.

To explain this first by analogy let us recall how natural numbers are

treated in mathematics. There are two ways: Either one starts from the

well-known Peano axioms. Then the set of natural numbers is the object

of study, and a natural number is nothing more than an element of this

structured set. Or natural numbers are introduced by a set-theoretic

construction, e.g. 0 := ∅, 1 := {0}, . . . , n + 1 := n ∪ {n}, . . . (see [7]).

This setting exhibits aspects which are completely irrelevant for natural

numbers (such as n ∈ n+1 and n ⊂ n+1) and which stress that we are

dealing with a model of the natural numbers. Different models may each

have additional properties and structures which are actually irrelevant

(and to some extent misleading) for the study of natural numbers. It is

not important that they are ‘isomorphic’ in any respect.

Analoguous observations can be made in our context, if events and

random variables are represented by a measure space (Ω, E) and asso-

ciated measurable functions. Note the following: There are subsets of

Ω not belonging to E , which are totally irrelevant. To some extent this

is also true for the elements ω of Ω (as also Mumford [8] pointed out;
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16 Götz Kersting

already Caratheodory considered integration on spaces without points

in his theory of soma [3]). The ‘small omegas’ do not show up in any

relevant result of probability theory, and one could do without them, if

they were not needed to define measurable functions. Next the notion

of a random variable is ambiguous: There are random variables and

a.s. defined random variables, represented by measurable functions and

equivalence classes of measurable functions. This distinction, though un-

avoidable in the traditional setting, is somewhat annoying. Finally note

that probabilists leave aside the question of isomorphy of measurable

spaces.

All these observations indicate that measurable spaces and mappings

indeed make up a model of events and random variables. This is not

to say that such models should be avoided, but one should not overlook

that they might mislead. Aspects like the construction of non-Borel-sets

are of no relevance in probability and may distract beginners. Also one

should be cautious in giving the elements of Ω some undue relevance

(‘state of the world’), which may create misconceptions.

Example This example of possible misconception is taken from the

textbook [1] (Example 4.6 and 33.11). Let Ω = [0, 1], endowed with the

Borel-σ-field and Lebesgue-measure λ. Let F be the sub-σ-field of sets

B with λ(B) = 0 or 1. Then F presents an observer, who lacks informa-

tion. It is mistaken to argue that F presents full information, because

it contains all one-point sets such that the observer can recognize which

event {ω} takes place and which ‘state’ ω is valid. Therefore for any

Borel-set E ⊂ Ω the conditional probability λ(E|F) is λ(E) a.s., and in

general not 1E a.s. ✷

The eminent geometer H. Coxeter pinpoints such delusion due to mod-

els in stating: ‘When using models, it is desirable to have two rather

than one, so as to avoid the temptation to give either of them undue

prominence. Our . . . reasoning should all depend on the axioms. The

models, having served their purpose of establishing relative consistency,

are no more essential than diagrams’ (see Section 16.2 in [4]). Coxeter

has the circle and halfplane models of hyperbolic geometry in mind, but

certainly his remark applies more generally.

An axiomatic concept of random variables should avoid the asserted

flaws. The reader may judge our approach from this viewpoint. This

paper owes a lot to discussions with Hermann Dinges, who put forward
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related ideas already in [5] (jointly with H. Rost). For further discussion

we refer to H. Dinges [6] and D. Mumford [8].

The paper is organized as follows. In Section 1.2 we have a look

at those properties of events and random variables independent of a

measure-theoretic representation (this section may be skipped). In Sec-

tion 1.3 we discuss the class of measurable spaces which are suitable

to serve as target spaces of random variables. Section 1.4 contains the

axioms for general systems of random variables, which we call stochastic

ensembles. In Section 1.5 we derive events and deduce their properties

from these axioms. In Section 1.6 we discuss equality and a.s. equality

of random variables. In Section 1.7 we address convergence of random

variables in order to exemplify how to work within our framework of

axioms.

1.2 Events and random variables – an outline

Random variables and events rely on each other. Random variables can

be examined from the perspective of events, and vice versa. In this

introductionary section we describe this interplay in an non-systematic

manner and detached from the measure-theoretic model.

The field E of events is a σ-complete Boolean lattice. In particular:

• Each event E possesses a complementary event Ec .

• For any finite or infinite sequence E1, E2, . . . of events there exists its

union
⋃

n En and its intersection
⋂

n En .

• There are the sure and the impossible events Esure and Eimp.

Also E1 ⊂ E2, iff E1 ∩E2 = E1. Since events are no longer considered as

subsets of some space, unions and intersections have to be interpreted

here in the lattice-theoretic manner.

A random variable X first of all has a target space S equipped with a σ-

field B. Intuitively S is the set, where X may take its values. Collections

of random variables obey the following simple rules:

• To each random variable X with target space S and to each measur-

able ϕ : S → S′ a random variable with target space S′ is uniquely

associated, denoted by ϕ(X).

• To each sequence X1, X2, . . . of random variables with target spaces

S1, S2, . . . a random variable with target space S1 ×S2 × · · · equipped

with the product-σ-field is uniquely associated, denoted by (X1, X2, . . .).
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18 Götz Kersting

The corresponding calculation rules are obvious; we will come back to

them. We point out that not every measurable space is suitable as a

target space – a minimal condition will be given in the next section.

Uncountable products ⊗i∈I (Si ,Bi) of measurable spaces are in general

not admissible target spaces. This conforms to the fact that in prob-

ability an uncountable family of random variables (Xi)i∈I is at most

provisionally considered as a single random variable with values in the

product space, before proceeding to a better suited target space.

The connection between random variables and events is established by

the remark that to any random variable X and to any measurable subset

B of its target space S an event

{X ∈ B}

is uniquely associated. The events {X ∈ B} uniquely determine X,

where B runs through the measurable subsets of S. The calculation

rules are
{

X ∈
⋃

n

Bn

}

=
⋃

n

{X ∈ Bn},
{

X ∈
⋂

n

Bn

}

=
⋂

n

{X ∈ Bn},

{X ∈ Bc} = {X ∈ B}c , {X ∈ S} = Esure, {X ∈ ∅} = Eimp,

where B,B1, B2, . . . are measurable subsets of the target space of X.

If these properties hold, the mapping B 	→ {X ∈ B} is called a σ-

homomorphism. Moreover

{ϕ(X) ∈ B′} = {X ∈ B}, where B = ϕ−1(B′)

{(X1, X2, . . .) ∈ B1 × B2 × · · · } =
⋂

n

{Xn ∈ Bn}.

From the perspective of events the connection to random variables is as

follows: For any event E there is a random variable IE with values in

{0, 1}, the indicator variable of E, fulfilling

{IE = 1} = E, {IE = 0} = Ec .

For any infinite sequence E1, E2, . . . of disjoint events there is a random

variable N = min{n : En occurs} with values in {1, 2, . . . ,∞} such

that

{N = n} = En , {N = ∞} =
⋂

n

Ec
n .

For any infinite sequence E1, E2, . . . of events (disjoint or not) there is a

www.cambridge.org/9780521718219
www.cambridge.org


Cambridge University Press
978-0-521-71821-9 — Trends in Stochastic Analysis
Edited by Jochen Blath , Peter Mörters , Michael Scheutzow 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Random variables – without basic space 19

random variable X and measurable subsets B1, B2, . . . of its target space

such that

{X ∈ Bn} = En

for all n (see Section 1.5).

This is roughly all that mathematically can be stated about events and

random variables. A systematic treatment requires an axiomatic ap-

proach. There are two possibilities, namely to start from events or to

start from random variables.

Either the starting point is the field of events, which is assumed to

be a σ-complete Boolean lattice E . Then a random variable X with

target space (S,B) is nothing else but a σ-homomorphism from B to

E . It is convenient to denote it as B 	→ {X ∈ B} again. In this

approach some technical efforts are required to show that any sequence

X1, X2, . . . of random variables may be combined to a single random

variable (X1, X2, . . .).

Starting from random variables instead is closer to intuition in our

view. Also it circumvents the technical efforts just mentioned. This

approach will be put forward in the following sections.

1.3 Spaces with denumerable separation

Not every measurable space qualifies as a possible target space. We

require that there exists a denumerable system of measurable sets sep-

arating points.

Definition A measurable space (S,B) is called a measurable space with

denumerable separation (mSdS), if there is a denumerable C ⊂ B such

that for any pair x �= y of elements in S there is a C ∈ C such that

x ∈ C and y �∈ C.

Examples

(i) Any separable metric space together with its Borel-σ-algebra is

an mSdS. This includes the case of denumerable S and in fact

any relevant target space of random variables considered in prob-

ability.

(ii) If (S1,B1), (S2,B2), . . . is a sequence of mSdS, then also the prod-

uct space ⊗n (Sn ,Bn ) is an mSdS. Indeed, if C1, C2, . . . are the
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20 Götz Kersting

separating systems, then

C :=
⋃

n

{S1 × · · · × Sn−1 × Cn × Sn+1 × · · · : Cn ∈ Cn}

is denumerable and separating in the product space.

(iii) An uncountable product of measurable spaces is not an mSdS (up

to trivial cases). The reason is that this product-σ-field does not

contain one-point sets (see below). ✷

An mSdS (S,B) has two important properties. Firstly one point subsets

{x} are measurable, since

{x} =
⋂

C∈C , x∈C

C

for all x ∈ S. Secondly the ‘diagonal’

D := {(x, y) ∈ S2 : x = y}
is measurable in the product space (S2,B2), since

D =
⋂

C∈C

C × C ∪ Cc × Cc . (1.1)

These properties are crucial for target spaces of random variables. Re-

markably the second one is characteristic for mSdS.

Proposition 1.1 A measurable space (S,B) is an mSdS, if and only if

D ∈ B2.

Proof. It remains to prove that D ∈ B2 implies the existence of a

denumerable separating system C. Let

F :=
⋃

C

σ(C) ⊗ σ(C),

where σ(C) is the σ-field generated by C and the union is taken over all

denumerable C ⊂ B. F is a sub-σ-field of B ⊗ B containing all B1 × B2

with B1, B2 ∈ B, thus

B ⊗ B =
⋃

C

σ(C) ⊗ σ(C).

By assumption it follows that D ∈ σ(C) ⊗ σ(C) for some denumerable

C ⊂ B. We show that C ∪ {Cc : C ∈ C} is a separating system. Let

x, y ∈ S, x �= y. Then D does not belong to the σ-field

G := {B ∈ σ(C) ⊗ σ(C) : {(x, x), (y, x)} ⊂ B or {(x, x), (y, x)} ⊂ Bc}.
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It follows that G �= σ(C) ⊗ σ(C), thus there are B1, B2 ∈ σ(C) such that

B1 × B2 /∈ G. Thus B1 contains x or y, but not both, and consequently

is not an element of the σ-field

H := {B ∈ σ(C) : {x, y} ⊂ B or {x, y} ⊂ Bc}.
Thus H �= σ(C), therefore there is a C ∈ C such that x or y are elements

of C, but not both. This finishes the proof. ✷

The property of denumerable separation proves useful also in the study

of σ-homomorphisms between measurable spaces.

Proposition 1.2 Let (S,B) be a mSdS, let (Ω, E) be a measurable space

and let h : B → E be a σ-homomorphism. Then there is a unique mea-

surable function η : Ω → S such that η−1(B) = h(B) for all B ∈ B.

Proof. First we prove that h is not only a σ-homomorphism but a

τ -homomorphism, that is

h(B) =
⋃

x∈B

h({x}) (1.2)

for all B ∈ B. For the proof let {C1, C2, . . .} be a separating system of

B. Because h is a σ-homomorphism,

h(B) =
⋂

n

h(B ∩ Cn ) ∪ h(B ∩ Cc
n ).

Since we consider sets here, this expression may be further transformed

by general distributivity: Denoting C+
n := Cn and C−

n := Cc
n

h(B) =
⋃

χ

⋂

n

h(B ∩ Cχ(n)
n ) =

⋃

χ

h
(

B ∩
⋂

n

Cχ(n)
n

)

,

where the union is taken over all mappings χ : N → {+,−}. Since

{C1, C2, . . .} is a separating system,
⋂

n C
χ(n)
n contains at most one el-

ement, and for each x ∈ S there is exactly one χ such that {x} =
⋂

n C
χ(n)
n . Therefore (1.2) follows.

In particular Ω =
⋃

x∈S h({x}). This enables us to define η by means

of

η(ω) = x :⇔ ω ∈ h({x}),
that is η−1({x}) = h({x}). From (1.2)

h(B) =
⋃

x∈B

η−1({x}) = η−1(B).
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