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Automata-based presentations of

infinite structures

vince bárány1, erich grädel2 and sasha rubin3

1.1 Finite presentations of infinite structures

The model theory of finite structures is intimately connected to various fields

in computer science, including complexity theory, databases, and verification.

In particular, there is a close relationship between complexity classes and

the expressive power of logical languages, as witnessed by the fundamental

theorems of descriptive complexity theory, such as Fagin’s Theorem and the

Immerman-Vardi Theorem (see [78, Chapter 3] for a survey).

However, for many applications, the strict limitation to finite structures

has turned out to be too restrictive, and there have been considerable efforts to

extend the relevant logical and algorithmic methodologies from finite structures

to suitable classes of infinite ones. In particular this is the case for databases

and verification where infinite structures are of crucial importance [130]. Algo-

rithmic model theory aims to extend in a systematic fashion the approach and

methods of finite model theory, and its interactions with computer science,

from finite structures to finitely-presentable infinite ones.

There are many possibilities to present infinite structures in a finite manner. A

classical approach in model theory concerns the class of computable structures;

these are countable structures, on the domain of natural numbers, say, with a

finite collection of computable functions and relations. Such structures can be

finitely presented by a collection of algorithms, and they have been intensively
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studied in model theory since the 1960s. However, from the point of view of

algorithmic model theory the class of computable structures is problematic.

Indeed, one of the central issues in algorithmic model theory is the effective

evaluation of logical formulae, from a suitable logic such as first-order logic

(FO), monadic second-order logic (MSO), or a fixed point logic like LFP

or the modal ¿-calculus. But on computable structures, only the quantifier-

free formulae generally admit effective evaluation, and already the existential

fragment of first-order logic is undecidable, for instance on the computable

structure (N,+, · ).

This leads us to the central requirement that for a suitable logic L (depending

on the intended application) the model-checking problem for the class C of

finitely presented structures should be algorithmically solvable. At the very

least, this means that the L-theory of individual structures in C should be

decidable. But for most applications somewhat more is required:

Effective semantics: There should be an algorithm that, given a finite pre-

sentation of a structure A * C and a formula Ë(x̄) * L, expands the given

presentation to include the relation ËA defined by Ë on A.

This also implies that the class C should be closed under some basic oper-

ations (such as logical interpretations). Thus we should be careful to restrict

the model of computation. Typically, this means using some model of finite

automata or a very restricted form of rewriting.

In general, the finite means for presenting infinite structures may involve

different approaches: logical interpretations; finite axiomatisations; rewriting

of terms, trees, or graphs; equational specifications; the use of synchronous or

asynchronous automata, etc. The various possibilities can be classified along

the following lines:

Internal: a set of finite or infinite words or trees/terms is used to represent

the domain of (an isomorphic copy of) the structure. Finite automata/

rewriting-rules compute the domain and atomic relations (eg. prefix-

recognisable graphs, automatic structures).

Algebraic: a structure is represented as the least solution of a finite set

of recursive equations in an appropriately chosen algebra of finite and

countable structures (eg. VR-equational structures).

Logical: structures are described by interpreting them, using a finite col-

lection of formulae, in a fixed structure (eg. tree-interpretable structures).

A different approach consists in (recursively) axiomatising the isomor-

phism class of the structure to be represented.

Transformational: structures are defined by sequences of prescribed trans-

formations, such as graph-unraveling, or Muchnik’s iterations applied
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to certain fixed initial structures (which are already known to have a

decidable theory). Transformations can also be transductions, logical

interpretations, etc. [23]

The last two approaches overlap somewhat. Also, the algebraic approach can

be viewed generatively: convert the equational system into an appropriate

deterministic grammar generating the solution of the original equations [44].

The grammar is thus the finite presentation of the graph. One may also say

that internal presentations and generating grammars provide descriptions of

the local structure from which the whole arises, as opposed to descriptions

based on global symmetries typical of algebraic specifications.

Prerequisites and notation

We assume rudimentary knowledge of finite automata on finite and infinite

words and trees, their languages and their correspondence to monadic second-

order logic (MSO) [133, 79]. Undefined notions from logic and algebra (con-

gruence on structures, definability, isomorphism) can be found in any standard

textbook. We mainly consider the following logics L: first-order (FO), monadic

second order (MSO), and weak monadic second-order (wMSO) which has

the same syntax as MSO, but the intended interpretation of the set variables

is that they range over finite subsets of the domain of the structure under

consideration.

We mention the following to fix notation: infinite words are called Ì-words

and infinite trees are called Ì-trees (to distinguish them from finite ones);

relations computable by automata will be called regular; the domain of a

structure B is usually written B and its relations are written RB. An MSO-

formula Ç(X1, . . . , Xj , x1, . . . , xk) interpreted in B defines the set ÇB :=

{(B1, . . . , Bj , b1, . . . , bk) | Bi ¢ B, bi * B,B |= Ç(B1, . . . , Bj , b1, . . . , bk)}.

A wMSO-formula is similar except that the Bi range over finite subsets of B.

The full binary tree T2 is defined as the structure

�

{0, 1}7,suc0,suc1

"

where the successor relation suci consists of all pairs (x, xi). Tree automata

operate on "-labelled trees T : {0, 1}7 ³ ". Such a tree is identified with the

structure

�

{0, 1}7,suc0,suc1, {T
21(Ã )}Ã*"

"

.

Rabin proved the decidability of the MSO-theory of T2 and the following

fundamental correspondence between MSO and tree automata (see [132] for

an overview):
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For every monadic second-order formula ×(X) in the signature of T2 there is a

tree automaton A (and vice versa) such that

L(A) = {TX | T2 |= ×(X)} (1.1)

where TX denotes the tree with labels for each Xi .

Similar definitions and results hold for r-ary trees, in which case the domain

is [r]7 where [r] := {0, . . . , r 2 1}, and finite trees.

In section 1.2.2 and elsewhere we do not distinguish between a term and

its natural representation as a tree. Thus we may speak of infinite terms. We

consider countable, vertex- and edge-labelled graphs possibly having distin-

guished vertices (called sources), and no parallel edges of the same label. A

graph is deterministic if each of its vertices is the source of at most one edge

of each edge label.

Interpretations

Interpretations allow one to define an isomorphic copy of one structure in

another. Fix a logic L. A d-dimensional L-interpretation I of structure

B = (B; (RB

i )i) in structure A, denoted B fI

L
A, consists of the following

L-formulas in the signature of A,

– a domain formula �(x),

– a relation formula �Ri
(x1, . . . , xri

) for each relation symbol Ri , and

– an equality formula �(x1, x2),

where each �A

Ri
is a relation on �A, each of the tuples xi, x contain the same

number of variables, d, and �A is a congruence on the structure (�A, (�A

Ri
)i),

so that B is isomorphic to

(�A, (�A

Ri
)i) / �A .

If L is FO then the free x are FO and we speak of a FO interpretation. If

L is MSO (wMSO) but the free variables are FO, then we speak of a (weak)

monadic second-order interpretation.

We associate with I a transformation of formulas Ë �³ ËI . For illustration

we define it in the first-order case: the variable xi is replaced by the d-tuple

yi , (Ë * Ç)I by ËI * ÇI , (¬Ë)I by ¬ËI , (#xiË)I by #yi�(yi) ' ËI , and

(xi = xj )I is replaced by �(yi, yj ). Thus one can translate L formulas from

the signature of B into the signature of A.

Proposition 1.1.1 If B fI

L
A, say the isomorphism is f , then for every

formula Ë(x1, . . . , xk) in the signature of B and all k-tuples b of elements of
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B it holds that

B |= Ë(b1, . . . , bk) ñó A |= ËI(f (b1), . . . , f (bk))

In particular, if A has decidable L-theory, then so does B.

Set interpretations

WhenL is MSO (wMSO) and the free variables are MSO (wMSO) the interpre-

tation is called a (finite) set interpretation. In this last case, we use the notation

B fI
set A or B fI

fset A. We will only consider (finite) set interpretations of

dimension 1.

If finiteness of sets is MSO-definable in some structure A (as for linear

orders or for finitely branching trees) then every structure B having a finite-set

interpretation in A can also be set interpreted in A.

Example 1.1.2 An interpretation (N,+) fI

fset (N, 0,suc) based on the binary

representation is given by I = (×(X), ×+(X, Y,Z), ×=(X, Y )) with ×(X)

always true, ×= the identity, and ×+(X, Y,Z) is

#C "n [(Zn µ Xn · Yn · Cn) ' (C(sucn) µ ¿(Xn, Yn,Cn)) ' ¬C0]

where C stands for carry, · is exclusive or, and ¿(x0, x1, x2) is the majority

function, in this case definable as
"

i "=j xi ' xj .

To every (finite) subset interpretation I we associate, as usual, a transforma-

tion of formulas Ë �³ ËI , in this case mapping first-order formulas to (weak)

monadic second-order formulas.

Proposition 1.1.3 Let B fI

(f)set A be a (finite) subset interpretation with iso-

morphism f . Then to every first-order formula Ë(x1, . . . , xk) in the signature

of B one can effectively associate a (weak) monadic second-order formula

ËI(X1, . . . , Xk) in the signature of A such that for all k-tuples b of elements

of B it holds that

B |= Ë(b1, . . . , bk) ñó A |= ËI(f (b1), . . . , f (bk)).

Consequently, if the (weak) monadic-second order theory of A is decidable

then so is the first-order theory of B.

For more on subset interpretations we refer to [23].
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Figure 1.1 Relationship of graph classes and logical decidability boundaries.

1.2 A hierarchy of finitely presentable structures

This section provides an overview of some of the prominent classes of graphs

and their various finite presentations.

These developments are the product of over two decades of research in

diverse fields. We begin our exposition with the seminal work of Muller and

Schupp on context-free graphs, we mention prefix-recognisable structures, sur-

vey hyperedge-replacement and vertex-replacement grammars and their cor-

responding algebraic frameworks leading up to equational graphs in algebras

with asynchronous or synchronous product operation. These latter structures

are better known in the literature by their automatic presentations, and constitute

the topic of the rest of this survey.

As a unifying approach we discuss how graphs belonging to individual

classes can be characterised as least fixed-point solutions of finite systems of

equations in a corresponding algebra of graphs. We illustrate on examples how

to go from graph grammars through equational presentations and interpretations

to internal presentations and vice versa.

We briefly summarise key results on Caucal’s pushdown hierarchy and

more recent developments on simply-typed recursion schemes and collapsible

pushdown automata.

Figure 1.1 provides a summary of some of the graph classes discussed in

this section together with the boundaries of decidability for relevant logics.
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Rational graphs and automatic graphs featured on this diagram are described

in detail in Section 1.3.

1.2.1 From context-free graphs to prefix-recognisable structures

Context-free graphs were introduced in the seminal papers [110, 111, 112]

of Muller and Schupp. There are several equivalent definitions. The objects

of study are countable directed edge-labelled, finitely branching graphs. An

end is a maximal connected4 component of the induced subgraph obtained

by removing, for some n, the n-neighbourhood of a fixed vertex v0. A vertex

of an end is on the boundary if it is connected to a vertex in the removed

neighbourhood. Two ends are end-isomorphic if there is a graph isomor-

phism (preserving labels as well) between them that is also a bijection of

their boundaries. A graph is context-free if it is connected and has only

finitely many ends up to end-isomorphism. This notion is independent of the v0

chosen.

A graph is context-free if and only if it is isomorphic to the connected

component of the configuration graph of a pushdown automaton (without �-

transitions) induced by the set of configurations that are reachable from the

initial configuration [112].

A context-free group is a finitely generated group G such that, for some

set S of semigroup generators of G, the set of words w * S7 representing the

identity element of G forms a context-free language. This is independent of the

choice of S. Moreover, a group is context-free if and only if its Cayley graph

for some (and hence all) sets S of semigroup generators is a context-free graph.

Finally, a finitely generated group is context-free if and only if it is virtually

free, that is, if it has a free subgroup of finite index [111].5

Muller and Schupp have further shown that context-free graphs have a decid-

able MSO-theory. Indeed, every context-free graph can be MSO-interpreted in

the full binary tree.

Example 1.2.1 Consider the group G given by the finite presentation

� a, b, c | ab, cc, acac, bcbc �. The Cayley graph �(G, S) of G with respect

4 connectedness is taken with respect to the underlying undirected graph.
5 Originally [111] proved this under the assumption of accessibility, a notion related to group

decompositions introduced by Wall who conjectured that all finitely generated groups would
have this property. Muller and Schupp conjectured every context-free group to be accessible,
but it was not until Dunwoody [64] proved that all finitely presentable groups are accessible
that this auxiliary condition could be dropped from the characterisation of [111]. Unfortunately,
many sources forget to note this fact. Later Dunwoody also gave a counterexample refuting
Wall’s conjecture.
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to the set of semigroup generators S = {a, b, c} is depicted below.
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Notice that �(G, S) has two ends, for any n-neighbourhood of the identity
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A word w * {a, b, c}7 represents the identity of G if, and only if, w has an

even number of c’s and the number of a’s equals the number of b’s. We present

a pushdown automaton A which recognises this set of words and, moreover,

has a configuration graph that is isomorphic to �(G, S). The states of A are

Q = {1, c} with q0 = 1 as the initial state, the stack alphabet is � = {a, b}, the

input alphabet is {a, b, c} and A has the following transitions:

internal: 1 »
c

³ c »

internal: c »
c

³ 1 »

push: q Ã»
Ã
³ q ÃÃ» for q = 1, c and Ã = a, b

push: q §
Ã
³ q Ã§ for q = 1, c and Ã = a, b

pop: q Ã»
Ã
³ q » for q = 1, c and {Ã, Ã̄ } = {a, b}

Here » is the stack content written with its top element on the left and always

ending in the special symbol § marking the bottom of the stack.

In every deterministic edge-labelled connected graph and for any ordering

of the edge labels one obtains a spanning tree by taking the shortest path

with the lexicographically least labeling leading to each node from a fixed

source. Take such a spanning tree T for the example graph �(G, S) with root

1G. Observe that T is regular, having only finitely many subtrees (ends) up

to isomorphism. The ordering a < b < c induces the spanning tree depicted

below. The Cayley graph �(G, S) is MSO-interpretable in this regular spanning

tree by defining the missing edges using the relators from the presentation of the
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group.
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In particular �(G, S) is MSO-interpretable in the full binary tree, and hence

has decidable MSO.

A mild generalisation of pushdown transitions, prefix-rewriting rules, take

the form uz �³ vz where u and v are fixed words and z is a variable ranging

over words. As in the previous example, pushdown transitions are naturally

perceived as prefix-rewriting rules affecting the state and the top stack symbols.

Conversely, Caucal [40] has shown that connected components of configuration

graphs of prefix-rewriting systems given by finitely many prefix-rewriting rules

are effectively isomorphic to connected components of pushdown graphs. Later,

Caucal introduced prefix-recognisable graphs as a generalisation of context-

free graphs and showed that these are MSO-interpretable in the full binary tree

and hence have a decidable MSO-theory [42].

Definition 1.2.2 (Prefix-recognisable relations) Let " be a finite alphabet.

The set PR(") of prefix-recognisable relations over "7 is the smallest set of

relations such that

– every regular language L ¦ "7 is a prefix-recognisable unary relation;

– if R, S * PR (arities r and s) and L is regular then L · (R × S) =

{(uv1, . . . , uvr , uw1, . . . , uws) | u * L, v * R,w * S} * PR;

– if R * PR of arity m > 1 and {i1, . . . , im} = {1, . . . , m},

then R(i) = {(ui1
, . . . , uim ) | (u1, . . . , um) * R} * PR;

– if R, S * PR are of the same arity, then R * S * PR.

Example 1.2.3 Consider the lexicographic ordering <lex on an ordered alpha-

bet ". It is prefix-recognisable being the union of

"7 · ({·} × "+) and "7 · (a"7 × b"7) for all a < b * ".

Following [22] we say that a structure A = (A, {Ri}i) is prefix-recogniz-

able if A is a regular set of words over some finite alphabet " and each of

the relations Ri is in PR("). Prefix-recognisable structures can be character-

ized in terms of interpretations. On the basis of tree automata, it is relatively

straightforward to show that the prefix-recognisable structures coincide with

the structures that are MSO-interpretable in the binary tree T2 [97, 42, 22]. This
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result has been strengthened by Colcombet [51] to first-order interpretability in

the expanded structure (T2,z) (note that the prefix relation z is MSO-definable

but not FO definable in T2). Colcombet proved that MSO-interpretations and

FO-interpretations in (T2,z) have the same power, which gives a new char-

acterisation of prefix-recognisable structures. We summarize these results as

follows.

Theorem 1.2.4 For every structure A, the following are equivalent.

(1) A is isomorphic to a prefix-recognisable structure;

(2) A is MSO-interpretable in the full binary tree T2;

(3) A is FO-interpretable in (T2,z).

In particular, every prefix-recognisable structure has a decidable MSO-theory.

Below we discuss further characterisations of prefix-recognisable structures

in terms of vertex-replacement grammars, or as least solutions of VR-equational

systems.

1.2.2 Graph grammars and graph algebras

In this section we consider vertex- and edge-labelled graphs. In formal lan-

guage theory grammars generate sets of finite words. Similarly, context-free

graph grammars produce sets of finite graphs – start from an initial nonterminal

and rewrite nonterminal vertices and edges according to the derivation rules.

Just as for languages, the set of valid derivation trees, or parse trees, forms a

regular set of trees labelled by derivation rules of the graph grammar. Con-

versely, consider a collection " of graph operations – such as disjoint union,

recolourings, etc. – as primitives. Every closed "-term t evaluates to a finite

graph [[t]], and similarly every "-term t(x) evaluates to a finite graph [[t(x)]]

with non-terminal (hyper)-edges and/or vertices. Formally, evaluation is the

unique homomorphism from the initial algebra of "-terms to the "-algebra of

finite graphs with non-terminals. Each regular tree language L of closed terms

thus represents a family of finite graphs {[[t]] | t * L}. For a concise treatment

of graph grammars and finite graphs we refer to the surveys [69, 59] and the

book [53].

Our focus here is on individual countable graphs generated by deterministic

grammars via ‘complete rewriting’. A suitable framework for formalising com-

plete rewriting, in the context of term rewriting, is convergence in complete

partial orders (cpo’s). Since no classical order- or metric-theoretic notion of

limit seems to exist for graphs, we use the more general categorical notion of
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