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Gregory Falkovich. Introduction to turbulence
theory.

The emphasis of this short course is on fundamental properties of developed
turbulence, weak and strong. We shall be focused on the degree of univer-
sality and symmetries of the turbulent state. We shall see, in particular,
which symmetries remain broken even when the symmetry-breaking factor
goes to zero, and which symmetries, on the contrary, emerge in the state of
developed turbulence.

1.1 Introduction

Turba is Latin for crowd and “turbulence” initially meant the disordered
movements of large groups of people. Leonardo da Vinci was probably the
first to apply the term to the random motion of fluids. In 20th century,
the notion has been generalized to embrace far-from-equilibrium states in
solids and plasma. We now define turbulence as a state of a physical system
with many interacting degrees of freedom deviated far from equilibrium.
This state is irregular both in time and in space and is accompanied by
dissipation.

We consider here developed turbulence when the scale of the externally
excited motions deviate substantially from the scales of the effectively dis-
sipated ones. When fluid motion is excited on the scale L with the typical
velocity V , developed turbulence takes place when the Reynolds number is
large: Re = V L/ν � 1. Here ν is the kinematic viscosity. At large Re,
flow perturbations produced at the scale L have their viscous dissipation
small compared to the nonlinear effects. Nonlinearity produces motions of
smaller and smaller scales until viscous dissipation stops this at a scale much
smaller than L so that there is a wide (so-called inertial) interval of scales
where viscosity is negligible and nonlinearity dominates. Another example
is the system of waves excited on a fluid surface by wind or moving bodies
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2 Gregory Falkovich. Introduction to turbulence theory.

and in plasma and solids by external electromagnetic fields. The state of
such system is called wave turbulence when the wavelength of the waves
excited strongly differs from the wavelength of the waves that effectively
dissipate. Nonlinear interaction excites waves in the interval of wavelengths
(called transparency window or inertial interval) between the injection and
dissipation scales.

Simultaneous existence of many modes calls for a statistical description
based upon averaging either over regions of space or intervals of time. Here
we focus on a single-time statistics of steady turbulence that is on the spatial
structure of fluctuations in the inertial range. The basic question is that of
universality: to what extent the statistics of such fluctuations is independent
of the details of external forcing and internal friction and which features are
common to different turbulent systems. This quest for universality is moti-
vated by the hope of being able to distinguish general principles that govern
far-from-equilibrium systems, similar in scope to the variational principles
that govern thermal equilibrium.

Since we generally cannot solve the nonlinear equations that describe
turbulence, we try to infer the general properties of turbulence statistics
from symmetries or conservation laws. The conservation laws are broken by
pumping and dissipation, but both factors do not act directly in the inertial
interval. For example, in the incompressible turbulence, the kinetic energy
is pumped by a (large-scale) external forcing and is dissipated by viscosity
(at small scales). One may suggest that the kinetic energy is transferred
from large to small scales in a cascade-like process i.e. the energy flows
throughout the inertial interval of scales. The cascade idea (suggested by
Richardson in 1921) explains the basic macroscopic manifestation of turbu-
lence: the rate of dissipation of the dynamical integral of motion has a finite
limit when the dissipation coefficient tends to zero. For example, the mean
rate of the viscous energy dissipation does not depend on viscosity at large
Reynolds numbers. Intuitively, one can imagine turbulence cascade as a pipe
in wavenumber space that carries energy. As viscosity gets smaller the pipe
gets longer but the flux it carries does not change. Formally, that means
that the symmetry of the inviscid equation (here, time-reversal invariance)
is broken by the presence of the viscous term, even though the latter might
have been expected to become negligible in the limit Re → ∞.

One can use the cascade idea to guess the scaling properties of turbulence.
For incompressible fluid, the energy flux (per unit mass) ε through the given
scale r can be estimated via the velocity difference δv measured at that scale
as the energy (δv)2 divided by the time r/δv. That gives (δv)3 ∼ εr. Of
course, δv is a fluctuating quantity and we ought to make statements on its
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1.2 Weak wave turbulence 3

moments or probability distribution P(δv, r). Energy flux constancy fixes
the third moment, 〈(δv)3〉 ∼ εr. It is a natural wish to have turbulence
scale invariant in the inertial interval so that P(δv, r) = (δv)−1f [δv/(εr)1/3]
is expressed via the dimensionless function f of a single variable. Initially,
Kolmogorov made even stronger wish for the function f to be universal (i.e.
pumping independent). Nature is under no obligation to grant wishes of
even great scientists, particularly when it is in a state of turbulence. After
hearing Kolmogorov talk, Landau remarked that the moments different from
third are nonlinear functions of the input rate and must be sensitive to the
precise statistics of the pumping. As we show below, the cascade idea can
indeed be turned into an exact relation for the simultaneous correlation
function which expresses the flux (third or fourth-order moment depending
on the degree of nonlinearity). The relation requires the mean flux of the
respective integral of motion to be constant across the inertial interval of
scales. We shall see that flux constancy determines the system completely
only for a weakly nonlinear system (where the statistics is close to Gaussian
i.e. not only scale invariant but also perfectly universal). To describe an
entire turbulence statistics of strongly interacting systems, one has to solve
problems on a case-by-case basis with most cases still unsolved. Particularly
difficult (and interesting) are the cases when not only universality but also
scale invariance is broken so that knowledge of the flux does not allow one to
predict even the order of magnitude of high moments. We describe the new
concept of statistical integrals of motion which allows for the description
of system with broken scale invariance. We also describe situations when
not only scale invariance is restored but a wider conformal invariance takes
place in the inertial interval.

1.2 Weak wave turbulence

It is easiest to start from a weakly nonlinear system. Such is a system of
small-amplitude waves. Examples include waves on the water surface, waves
in plasma with and without magnetic field, spin waves in magnetics etc.
We assume spatial homogeneity and denote ak the amplitude of the wave
with the wavevector k. Considering for a moment wave system as closed
(that is without external pumping and dissipation) one can describe it as a
Hamiltonian system using wave amplitudes as normal canonical variables —
see, for instance, the monograph Zakharov et al 1992. At small amplitudes,
the Hamiltonian can be written as an expansion over ak , where the second-
order term describes non-interacting waves and high-order terms determine
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4 Gregory Falkovich. Introduction to turbulence theory.

the interaction†:

H =
∫

ωk |ak |2 dk (1.1)

+
∫ (

V123a1a
∗
2a

∗
3 + c.c.

)
δ(k1 − k2 − k3) dk1dk2dk3 + O(a4) .

The dispersion law ωk describes wave propagation, V123 = V (k1,k2,k3) is
the interaction vertex and c.c. means complex conjugation. In the Hamilto-
nian expansion, we presume every subsequent term smaller than the previous
one, in particular, ξk = |Vkkkak |kd/ωk � 1 — wave turbulence that satisfies
that condition is called weak turbulence. Here d is the space dimensionality.

The dynamic equation which accounts for pumping, damping, wave prop-
agation and interaction has the following form:

∂ak/∂t = −iδH/δa∗k + fk(t) − γkak . (1.2)

Here γk is the decrement of linear damping and fk describes pumping. For a
linear system, ak is different from zero only in the regions of k-space where
fk is nonzero. Nonlinear interaction provides for wave excitation outside
pumping regions.

It is likely that the statistics of the weak turbulence at k � kf is close
to Gaussian for wide classes of pumping statistics. When the forcing fk(t)
is Gaussian then the statistics of ak(t) is close to Gaussian as long as non-
linearity is weak. However, in most cases in nature and in the lab, the
force is not Gaussian even though its amplitude can be small. It is an
open problem to find out under what conditions the wave field is close
to Gaussian with 〈ak(0)a∗k′(t)〉 = nk exp(−ıωkt)δ(k + k′). This problem
actually breaks into two parts. The first one is to solve the linear equa-
tion for the waves in the spectral interval of pumping and formulate the
criteria on the forcing that guarantee that the cumulants are small for
ak(t) = exp(−ıωkt − γkt)

∫ t
0 fk(t′) exp(ıωkt + γkt) dt′. The second part is

more interesting: even when the pumping-related waves are non-Gaussian,
it may well be that as we go in k-space away from pumping (into the inertial
interval) the field ak(t) is getting more Gaussian. Unless we indeed show
that, most of the applications of the weak turbulence theory described in
this section are in doubt. See also Choi et al 2005.

We consider here and below a pumping by a Gaussian random force sta-
tistically isotropic and homogeneous in space, and white in time (see also

† For example, for sound one expands the (kinetic plus internal) energy density ρv2 /2 + E(ρ)
assuming v � c and using vk = k(ak − a∗

−k )(ck/2ρ0 )1/2 , ρk = k(ak + a∗
−k )(ρ0 /2ck)1/2 .
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1.2 Weak wave turbulence 5

Sect. 3.1 of John Cardy’s course):

〈fk(t)f∗
k′(t′)〉 = F (k)δ(k + k′)δ(t − t′) . (1.3)

Angular brackets mean spatial average. We assume γk � ωk (for waves to
be well defined) and that F (k) is nonzero only around some kf .

As long as we assume the statistics of the wave system to be close to Gaus-
sian, it is completely determined by the pair correlation function. Here we
are interesting in the spatial structure which is described by the single-time
pair correlation function 〈ak(t)a∗k′(t)〉 = nk(t)δ(k + k′). Since the dynamic
equation (1.2) contains a quadratic nonlinearity then the time derivative of
the second moment, ∂nk/∂t, is expressed via the third one, the time deriva-
tive of the third moment ix expressed via the fourth one etc; that is the
statistical description in terms of moments encounters the closure problem.
Fortunately, weak turbulence in the inertial interval is expected to have the
statistics close to Gaussian so one can express the fourth moment as the
product of two second ones. As a result one gets a closed equation (see e.g.
Zakharov et al 1992):

∂nk

∂t
= Fk − γknk + I

(3)
k , I

(3)
k =

∫ (
Uk12 − U1k2 − U2k1

)
dk1dk2 ,(1.4)

U123 = π
[
n2n3 − n1(n2 + n3)

]|V123|2δ(k1 − k2 − k3)δ(ω1 − ω2 − ω3) .

It is called kinetic equation for waves. The collision integral I
(3)
k results

from the cubic terms in the Hamiltonian i.e. from the quadratic terms in
the equations for amplitudes. It can be interpreted as describing three-wave
interactions: the first term in the integral (1.4) corresponds to a decay of a
given wave while the second and third ones to a confluence with other wave.

The inverse time of nonlinear interaction at a given k can be estimated
from (1.4) as |V (k, k, k)|2n(k)kd/ω(k). We define the dissipation wavenum-
ber kd as such where this inverse time is comparable to γ(kd) and assume
nonlinearity to dominate over dissipation at k � kd. As has been noted,
wave turbulence appears when there is a wide (inertial) interval of scales
where both pumping and damping are negligible, which requires kd � kf ,
the condition analogous to Re � 1. This is schematically shown in Fig. 1.

The presence of frequency delta-function in I
(3)
k means that in the first

order of perturbation theory in wave interaction we account only for resonant
processes which conserve the quadratic part of the energy E =

∫
ωknk dk =∫

Ekdk. For the cascade picture to be valid, the collision integral has to
converge in the inertial interval which means that energy exchange is small
between motions of vastly different scales, the property called interaction
locality in k-space (see the exercise 1.1 below). Consider now a statistical
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6 Gregory Falkovich. Introduction to turbulence theory.
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Fig. 1.1. A schematic picture of the cascade.

steady state established under the action of pumping and dissipation. Let
us multiply (1.4) by ωk and integrate it over either interior or exterior of
the ball with radius k. Taking kf � k � kd, one sees that the energy flux
through any spherical surface (Ω is a solid angle), is constant in the inertial
interval and is equal to the energy production/dissipation rate ε:

Pk =
∫ k

0
kd−1dk

∫
dΩωkI

(3)
k =

∫
ωkFk dk =

∫
γkEk dk = ε . (1.5)

That (integral) equation determines nk . Let us assume now that the
medium (characterized by the Hamiltonian coefficients) can be considered
isotropic at the scales in the inertial interval. In addition, for scales much
larger or much smaller than a typical scale (like Debye radius in plasma
or the depth of the water) the medium is usually scale invariant: ω(k) =
ckα and |V (k,k1,k2)|2 = V 2

0 k2mχ(k1/k,k2/k) with χ 	 1. Remind that
we presumed statistically isotropic force. In this case, the pair correlation
function that describes a steady cascade is also isotropic and scale invariant:

nk 	 ε1/2V −1
0 k−m−d . (1.6)

One can show that (1.6), called Zakharov spectrum, turns I
(3)
k into zero (see

the exercise 1.1 below and Zakharov et al 1992).
If the dispersion relation ω(k) does not allow for the resonance condition

ω(k1) + ω(k2) = ω(|k1 + k2|) then the three-wave collision integral is zero
and one has to account for four-wave scattering which is always resonant,
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1.2 Weak wave turbulence 7

that is whatever ω(k) one can always find four wavevectors that satisfy
ω(k1)+ω(k2) = ω(k3)+ω(k4) and k1 +k2 = k3 +k4. The collision integral
that describes scattering,

I
(4)
k =

π

2

∫
|Tk123|2

[
n2n3(n1 + nk) − n1nk(n2 + n3)

]
δ(k + k1 − k2 − k3)

×δ(ωk + ω1 − ω2 − ω2) dk1dk2dk3 , (1.7)

conserves the energy and the wave action N =
∫

nk dk (the number of
waves). Pumping generally provides for an input of both E and N . If there
are two inertial intervals (at k � kf and k � kf ), then there should be
two cascades. Indeed, if ω(k) grows with k then absorbing finite amount of
E at kd → ∞ corresponds to an absorption of an infinitely small N . It is
thus clear that the flux of N has to go in opposite direction that is to large
scales. A so-called inverse cascade with the constant flux of N can thus be
realized at k � kf . A sink at small k can be provided by wall friction in the
container or by long waves leaving the turbulent region in open spaces (like
in sea storms). Two-cascade picture can be illustrated by a simple example
with a wave source at ω = ω2 generating N2 waves per unit time and two
sinks at ω = ω1 and ω = ω3 absorbing respectively N1 and N3. In a steady
state, N2 = N1 + N3 and ω2N2 = ω1N1 + ω3N3, which gives

N1 = N2
ω3 − ω2

ω3 − ω1
, N3 = N2

ω2 − ω1

ω3 − ω1
.

At a sufficiently large left inertial interval (when ω1 � ω2 < ω3), the whole
energy is absorbed by the right sink: ω2N2 ≈ ω3N3. Similarly, at ω3 �
ω2 > ω1, we have N1 ≈ N2, i.e. the wave action is absorbed at small ω.

The collision integral I
(3)
k involved products of two nk so that flux con-

stancy required Ek ∝ ε1/2 while for the four-wave case I
(4)
k ∝ n3 gives

Ek ∝ ε1/3. In many cases (when there is a complete self-similarity) that
knowledge is sufficient to obtain the scaling of Ek from a dimensional rea-
soning without actually calculating V and T . For example, short waves on
a deep water are characterized by the surface tension σ and density ρ so
the dispersion relation must be ωk ∼ √

σk3/ρ which allows for the three-
wave resonance and thus Ek ∼ ε1/2(ρσ)1/4k−7/4. For long waves on a deep
water, the surface-restoring force is dominated by gravity so that the grav-
ity acceleration g replaces σ as a defining parameter and ωk ∼ √

gk. Such
dispersion law does not allow for the three-wave resonance so that the dom-
inant interaction is four-wave scattering which permits two cascades. The
direct energy cascade corresponds to Ek ∼ ε1/3ρ2/3g1/2k−5/2. The inverse
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8 Gregory Falkovich. Introduction to turbulence theory.

cascade carries the flux of N which we denote Q, it has the dimensionality
[Q] = [ε]/[ωk ] and corresponds to Ek ∼ Q1/3ρ2/3g2/3k−7/3.

N EN E

kn

k

Fig. 1.2. Two cascades under four-wave interaction.

Under a weakly anisotropic pumping, stationary spectrum acquires a small
stationary weakly anisotropic correction δn(k) such that δn(k)/n0(k) ∝
ω(k)/k (see exercise 2.2). The degree of anisotropy increases with k for
waves with the decay dispersion law. That is the spectrum of the weak tur-
bulence generated by weakly anisotropic pumping is getting more anisotropic
as we go into the inertial interval of scales. We see that the conservation of
the second integral (momentum) can lead to the non-restoration of symme-
try (isotropy) in the inertial interval.

Since the statistics of weak turbulence is near Gaussian, it is completely
determined by the pair correlation function, which is in turn determined by
the respective flux (or fluxes). We thus conclude that weak turbulence is
perfectly universal: deep in the inertial interval it “forgets” all the properties
of pumping except the flux value.

1.3 Strong wave turbulence

Weak turbulence theory breaks down when the wave amplitudes are large
enough (so that ξk ≥ 1). We need special consideration also in the particu-
lar case of the linear (acoustic) dispersion relation ω(k) = ck for arbitrarily
small amplitudes (as long as the Reynolds number remains large). Indeed,
there is no dispersion of wave velocity for acoustic waves so that waves mov-
ing at the same direction interact strongly and produce shock waves when
viscosity is small. Formally, there is a singularity due to coinciding argu-
ments of delta-functions in (1.4) (and in the higher terms of perturbation
expansion for ∂nk/∂t), which is thus invalid at however small amplitudes.
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1.3 Strong wave turbulence 9

Still, some features of the statistics of acoustic turbulence can be understood
even without a closed description. We discuss that in a one-dimensional case
which pertains, for instance, to sound propagating in long pipes. Since weak
shocks are stable with respect to transversal perturbations (Landau and Lif-
shits 1987), quasi one-dimensional perturbations may propagate in 2d and
3d as well. In the reference moving with the sound velocity, the weakly com-
pressible 1d flows (u � c) are described by the Burgers equation (Landau
and Lifshits 1987, E et al 1997, Frisch and Bec 2001):

ut + uux − νuxx = 0 . (1.8)

Burgers equation has a propagating shock-wave solution u=2v{1+exp[v(x−
vt)/ν]}−1 with the energy dissipation rate ν

∫
u2

x dx independent of ν. The
shock width ν/v is a dissipative scale and we consider acoustic turbulence
produced by a pumping correlated on much larger scales (for example,
pumping a pipe from one end by frequencies much less than cv/ν). Af-
ter some time, it will develop shocks at random positions. Here we con-
sider the single-time statistics of the Galilean invariant velocity difference
δu(x, t) = u(x, t) − u(0, t). The moments of δu are called structure func-
tions Sn(x, t) = 〈[u(x, t)−u(0, t)]n〉. Quadratic nonlinearity relates the time
derivative of the second moment to the third one:

∂S2

∂t
= −∂S3

3∂x
− 4ε + ν

∂2S2

∂x2 . (1.9)

Here ε = ν〈u2
x〉 is the mean energy dissipation rate. Equation (1.9) describes

both a free decay (then ε depends on t) and the case of a permanently acting
pumping which generates turbulence statistically steady at scales less than
the pumping length. In the first case, ∂S2/∂t 	 S2u/L � ε 	 u3/L (where
L is a typical distance between shocks) while in the second case ∂S2/∂t = 0
so that S3 = 12εx + ν∂S2/∂x.

Consider now limit ν → 0 at fixed x (and t for decaying turbulence).
Shock dissipation provides for a finite limit of ε at ν → 0 then

S3 = −12εx . (1.10)

This formula is a direct analog of (1.5). Indeed, the Fourier transform of
(1.9) describes the energy density Ek = 〈|uk |2〉/2 which satisfies the equation
(∂t − νk2)Ek = −∂Pk/∂k where the k-space flux

Pk =
∫ k

0
dk′

∫ ∞

−∞
dxS3(x)k′ sin(k′x)/24 .

It is thus the flux constancy that fixes S3(x) which is universal that is
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10 Gregory Falkovich. Introduction to turbulence theory.

determined solely by ε and depends neither on the initial statistics for decay
nor on the pumping for steady turbulence. On the contrary, other structure
functions Sn(x) are not given by (εx)n/3. Indeed, the scaling of the structure
functions can be readily understood for any dilute set of shocks (that is when
shocks do not cluster in space) which seems to be the case both for smooth
initial conditions and large-scale pumping in Burgers turbulence. In this
case, Sn(x) ∼ Cn|x|n + C ′

n|x| where the first term comes from the regular
(smooth) parts of the velocity (the right x-interval in Fig. 1.3) while the
second comes from O(x) probability to have a shock in the interval x. The
scaling exponents, ξn = d lnSn/d lnx, thus behave as follows: ξn = n for
n ≤ 1 and ξn = 1 for n > 1. That means that the probability density

shock

x

u

Fig. 1.3. Typical velocity profile in Burgers turbulence.

function (PDF) of the velocity difference in the inertial interval P (δu, x) is
not scale-invariant, that is the function of the re-scaled velocity difference
δu/xa cannot be made scale-independent for any a. Simple bi-modal nature
of Burgers turbulence (shocks and smooth parts) means that the PDF is
actually determined by two (non-universal) functions, each depending of a
single argument: P (δu, x) = δu−1f1(δu/x) + xf2(δu/urms). Breakdown of
scale invariance means that the low-order moments decrease faster than the
high-order ones as one goes to smaller scales, i.e. the smaller the scale the
more probable are large fluctuations. In other words, the level of fluctuations
increases with the resolution. When the scaling exponents ξn do not lie on
a straight line, this is called an anomalous scaling since it is related again
to the symmetry (scale invariance) of the PDF broken by pumping and not
restored even when x/L → 0.

As an alternative to the description in terms of structures (shocks), one
can relate the anomalous scaling in Burgers turbulence to the additional
integrals of motion. Indeed, the integrals En =

∫
u2n dx/2 are all conserved

by the inviscid Burgers equation. Any shock dissipates the finite amount of
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