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Université de Poitiers

Eric Jaligot†
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Summary

We survey conjugacy results in groups of finite Morley rank, mixing

unipotence, Carter, and Sylow theories in this context.

Introduction

When considering certain classes of groups one might expect conjugacy

theorems, and the class of groups of finite Morley rank is not an excep-

tion to this. The study of groups of finite Morley rank is mostly moti-

vated by the Algebricity Conjecture, formulated by G. Cherlin and B.

Zilber in the late seventies, which postulates that infinite simple groups

of this category are isomorphic to algebraic groups over algebraically

closed fields. The model-theoretic rank involved appeared in the sixties

when M. Morley proved his famous theorem on the categoricity in any

uncountable cardinal of first order theories categorical in one uncount-

able cardinal [Mor65]. He introduced for that purpose an ordinal valued

rank, later shown to be finite by J. Baldwin in the uncountably categor-

ical context [Bal73], and this rank can be seen as an abstract version of

the Zariski dimension in algebraic geometry over an algebraically closed

field.

In particular, the category of groups of finite Morley rank encapsulates

finite groups and algebraic groups over algebraically closed fields. One

of the most basic tools for analyzing finite groups is Sylow theory, and

in algebraic groups semisimplicity and unipotence theory play a similar

role. It is thus not surprising to see these two theories, together with all

† Parts of this work were done while the authors were visiting the Isaac Newton
Institute, Cambridge, during the model theory program in the spring 2005.
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conjugacy results they suggest, having enormous and close developments

in the more abstract category of groups of finite Morley rank. The

present paper is intended to give an exhaustive survey on these parallel

developments.

In a connected linear algebraic group, the centralizers of maximal tori

are conjugate and cover the group generically. In the category of groups

of finite Morley rank, these Cartan subgroups are best approximated by

Carter subgroups, which are defined merely by the outstanding proper-

ties of being definable, connected, nilpotent, and of finite index in their

normalizers. The main feature of Carter subgroups is their existence

in any group of finite Morley rank. They constitute, together with all

relevant approximations of semisimplicity and unipotence, the core of

our preoccupations in this paper.

Sylow theory, as the study of maximal p-subgroups, is well understood

for any p in solvable groups of finite Morley rank, and in any group of

finite Morley rank for the prime p = 2. The second point is the key for a

classification program of simple groups of finite Morley rank, suggested

by A. Borovik and based on the architecture of the Classification of the

Finite Simple Groups. In this process, some specific developments have

naturally been needed for groups of finite Morley rank. In this context

there is a priori no Jordan decomposition as in the linear algebraic con-

text, and hence no nice distinction between semisimple and unipotent

elements. The situation is furthermore enormously complicated by some

so-called bad fields, as we will see in §1.7. Nevertheless, the finiteness of

the Morley rank has allowed J. Burdges to develop a graduated notion of

unipotence in this general context. This graduated notion of unipotence

leads naturally to a new kind of Sylow theory, not related to torsion

elements directly, but rather to the unipotence degree of the subgroups

involved. In finite groups the study of Carter subgroups mostly boils

down to Sylow theory; in groups of finite Morley rank this is replaced

by this new kind of Sylow theory.

More precisely, we deal here with p̃-groups, where p̃ = (p, r) and

p should be understood as the usual prime, or ∞ when dealing with

elements of infinite order or merely divisible groups (which is more or

less the same up to saturation). In this theory the unipotence degree r

measures simultaneously how much a p̃-group can act on, and be acted

upon by, another such group. Our p̃-groups are connected and nilpotent

by definition and can really be thought of as the p-groups from finite

group theory, incorporating the important unipotence degree parameter
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in our context. They are of three types depending on the value of p̃,

listed below by increasing unipotence degree.

• (∞, 0)-groups, or (abelian) “decent tori”,

• (∞, r)-groups, with 0 < r < ∞, or “nilpotent Burdges’ Up̃-

groups”,

• (p,∞)-groups, with p prime, or (nilpotent) “p-unipotent groups”.

This will be explained in §2. In particular, we will see in §2.4 that

these p̃-groups cover in some sense all the “basic” connected groups

which can occur in our context.

Imposing maximality on these p̃-groups leads naturally to a notion

of Sylow theory, reminiscent of that of finite group theory. These new

Sylow p̃-subgroups allow one to show the existence of Carter subgroups

in any group of finite Morley rank, and hence to have a good approx-

imation of Cartan subgroups of an algebraic group in any case. The

natural question arising then is that of their conjugacy. This remains

an open problem in general, but we will see in §3 that conjugacy of

Carter subgroups is known in two important cases: under a generos-

ity assumption on the one hand, and in solvable groups on the other.

We say that a definable subgroup is generous if its conjugates cover the

ambient group generically. Generosity appeared over the years to be

a weak form of conjugacy, and this is confirmed for Carter subgroups

also. More precisely, we will see in §3.3 below that an arbitrary group

of finite Morley rank contains at most one conjugacy class of generous

Carter subgroups. Using this conjugacy result by generosity, we rework

then the theory of Carter subgroups in connected solvable groups of fi-

nite Morley rank, which was well developed before the unipotence theory

mentioned above came into play.

In the present paper we are mostly concerned with conjugacy of certain

connected subgroups, except in the parenthetical §6.5 which deals with

nonnecessarily connected solvable groups of finite Morley rank. In §3.8

we will also compare the theory of Carter subgroups in groups of finite

Morley rank, which relies heavily on connectedness, to its analog in

finite group theory, where of course connectedness has no exact analog.

Concerning the conjugacy of certain connected subgroups of groups of

finite Morley rank, the most challenging conjectures are probably the

three following.

Conjugacy Conjectures In any group of finite Morley rank,

1.12 Borel subgroups are conjugate,
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2.6 Sylow p̃-subgroups are conjugate,

3.1 Carter subgroups are conjugate.

We will never consider Conjecture 1.12 here, but we will see that it

is stronger than the two others, as we will see the conjugacy of Carter

subgroups and of Sylow p̃-subgroups in connected solvable groups. As

visible already, solvable groups satisfy many conjugacy theorems. This

is merely because they mesh perfectly well with induction arguments,

and for this reason the majority of results surveyed here concern solvable

groups of finite Morley rank.

For finite solvable groups, formation theory is a general and pow-

erful framework for analyzing the interplay between Sylow subgroups,

Carter subgroups, and conjugacy. In §4 below we develop, with new re-

sults, a very general subformation theory designed for connected solvable

groups of finite Morley rank. This theory encapsulates Carter subgroups

and several generalizations of Sylow p̃-subgroups in connected solvable

groups of finite Morley rank. All expectable conjugacy theorems are

derived in §5 below.

To summarize, the architecture of this paper is as follows. The first

section concerns preliminary developments on groups of finite Morley

rank, with an emphasis on classical, i.e. involving torsion elements,

Sylow theory in solvable groups. Then we develop in §2 the theory

of semisimplicity and unipotence. In §3 we consider Carter subgroups,

with their existence in general and their conjugacy in two important

cases. Then in §4 and §5 we are concerned with subformation theory.

In §4 a general and quite formal subformation theory is developed, and

in §5 we give applications, with conjugacy and structural theorems in

connected solvable groups. Finally, §6 deals with additional structural

results in solvable groups of finite Morley rank, which are of a slightly

different nature but of a certain interest. To conclude, we give in §7 a

few examples of applications of this theory beyond solvable groups.

All developments and related notions presented here are well under-

stood under a linearity assumption, thanks to the work of Y. Mustafin

[Mus04]. Here we work with no linearity assumption and refer to that

paper for linear groups.

1 Preliminary developments

We start with some early developments on groups of finite Morley rank.
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1.1 Borovik-Poizat axioms

We consider groups 〈G, ·,−1, 1, · · ·〉 from a model theoretic point of view

and think in Geq throughout. They may carry additional structure,

and this is an important issue in this context. For example, a group

definable in another may carry extra structure not definable in its own

pure group structure. We say that a group is ranked if there is a function

“rk ”, assigning to each nonempty definable set an integer (its rank, or

dimension) and satisfying the following axioms for every definable sets

A and B:

Definition: rk (A) ≥ n + 1 if and only if A contains infinitely many

pairwise disjoint subsets Ai such that rk (Ai) ≥ n.

Definability: For every uniformly definable family Ab of subsets of A,

with b varying in B, the set of elements b ∈ B such that Ab is of given

rank n is a definable subset of B.

Finite sets: For every uniformly definable family Ab of subsets of A,

with b varying in B, there is a uniform bound on the cardinals of the

finite sets Ab.

In an arbitrary structure, the existence of such a rank implies super-

stability [BC02]. In a group theoretic context this is equivalent to the

finiteness of Morley rank [Poi87], implying in particular the additivity

of the rank. We rather tend to work with these purely combinatorical

axioms and the book [BN94a] develops all the theory from them.

1.2 Connectedness

If X ⊆ Y are two definable sets in a group of finite Morley rank, we

say that X is generic in Y if rk (X) = rk (Y ). Each definable set has a

finite (Morley) degree, the maximal number of disjoint generic subsets.

It follows easily that groups of finite Morley rank satisfy the Descending

Chain Condition on definable subgroups. In particular, such a group G

has a smallest definable subgroup of finite index, the intersection of all of

them, its connected component denoted by G◦. It is of course a definably

characteristic subgroup, and G is said to be connected if G = G◦. The

main property of connected groups can be stated as follows.

Lemma 1.1 [Che79] A group of finite Morley rank is connected if and

only if it has Morley degree one.
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We are going to deal essentially with connected groups. Most of the

time, connectedness allows one to avoid all complications from finite

combinatorics. For example, the following corollary of Lemma 1.1 has a

striking application in §3.3 below.

Corollary 1.2 A connected group of finite Morley rank acting definably

on a finite set fixes it pointwise.

By the Descending Chain Condition on definable subgroups again,

each (nonnecessarily definable) subset X of a group G of finite Morley

rank is contained in a smallest definable subgroup d(X), its definable

closure, which can be seen as a sharper form of the Zariski closure in the

algebraic context. This allows one to define the generalized connected

component of X as X◦ = d(X)◦ ∩ X. If X is a subgroup of G, one

sees easily that X◦ is still, though not necessarily definable, a normal

subgroup of finite index in X, and again one says that X is connected if

X = X◦. This generalized connected component is particularly relevant

for Sylow theory in the classical sense of the study of torsion subgroups.

For example, the torsion subgroup of the multiplicative group C
× of the

complex numbers is not first-order definable in the pure field structure.

For the sake of future arguments, we include here some corollaries of

Zilber’s theorem on indecomposable sets and connectedness.

Theorem 1.3 ([Zil77]; [BN94a, Corollary 5.29]) Let G be a group of

finite Morley rank. Then:

a. Any family of definable connected subgroups of G generates a de-

finable connected subgroup of G.

b. If H is a definable connected subgroup of G and X any subset,

then the commutator subgroup [H,X] is a definable connected

subgroup of G.

1.3 Classical Sylow theory

If p is a prime, a p-torus is a divisible abelian p-subgroup of a group

of finite Morley rank. By abelian group theory, such a subgroup is

a direct product of copies of the quasicylic Prüfer p-group Zp∞ . In

the finite Morley rank context, the number of copies must be finite

[BP90], and is called the Prüfer p-rank. Typically, if K is an algebraically

closed field of characteristic different from p, then the n-dimensional

torus K× × · · · × K× contains a p-torus of Prüfer p-rank n.
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At the opposite of p-tori, which are of unbounded exponent and not

necessarily definable, p-unipotent subgroups are the definable connected

nilpotent p-subgroups of bounded exponent of groups of finite Morley

rank. Notice nilpotence in our definition. A typical example of a p-

unipotent group is the group of strictly upper triangular matrices of the

general linear group GL n(K), with K an algebraically closed field of

characteristic p.

The following result describes locally finite p-subgroups of groups of

finite Morley rank, mostly in terms of a p-torus and of a p-unipotent

subgroup.

Theorem 1.4 [BP90] Let P be a locally finite p-subgroup, p prime, of

a group of finite Morley rank. Then P ◦ = T ∗ U is a central product,

with finite intersection, of a p-torus T and a p-unipotent subgroup U .

It is well known that torsion subgroups of solvable groups are locally

finite, and thus the preceding theorem applies in particular to any p-

subgroup of a solvable group of finite Morley rank. As usual, one defines

Sylow p-subgroups as maximal p-subgroups, or, equivalently in a solvable

context, as maximal locally finite p-subgroups. The conjugacy of Sylow

p-subgroups is not known in general, except in a solvable context or for

the prime p = 2. Indeed, the singularity of the prime p = 2 yields an

absolute control of 2-subgroups.

Theorem 1.5 [BP90] In any group of finite Morley rank, maximal 2-

subgroups are locally finite and conjugate.

Theorem 1.5 is the origin of many arguments in the presence of non-

trivial 2-elements. Here we are going to concentrate on aspects not

depending on such a presence, hence on other primes and even (mostly,

indeed) elements of infinite order.

As alluded to already, there is a conjugacy theorem for Sylow p-

subgroups in a solvable context. This is indeed true for a larger class of

torsion subgroups. If π is a set of primes, then a Hall π-subgroup of a

solvable group G of finite Morley rank is a maximal π-subgroup of G.

Theorem 1.6 [ACCN98] In any solvable group of finite Morley rank,

Hall π-subgroups are conjugate for any set π of primes.

There is an analog of the structural Theorem 1.4 for Hall π-subgroups.
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Theorem 1.7 [Fré00c, Proposition 4.22] Let G be a solvable group of

finite Morley rank and R a Hall π-subgroup of G. Then R◦ = TU where

U E G is a definable connected subgroup of bounded exponent and T an

abelian divisible subgroup.

Also, as in the algebraic context, Hall π-subgroups of connected solv-

able groups of finite Morley rank are connected.

Theorem 1.8 ([Fré00b, Corollaire 7.15], see also [BN92]) Let G be a

connected solvable group of finite Morley rank. Then Hall π-subgroups

of G are connected.

Finally, there are results of a Schur-Zassenhaus type, due to A. Boro-

vik and A. Nesin.

Theorem 1.9 [BN92, BN94b] Let G be a solvable group of finite Morley

rank and H a normal Hall π-subgroup of G. Then:

a. H has a complement in G.

b. If H is of bounded exponent, then any subgroup K of G with

K ∩ H = 1 is contained in a complement of H in G, and the

complements of H in G are definable and conjugate.

1.4 Generalized Hall π-subgroups

Of course, the preceding theorems depend heavily on the presence of

torsion elements. To deal with infinite groups of finite Morley rank, one

would also like some kind of similar theory for elements of infinite order,

at least in solvable groups again. An attempt in this direction is taken

in [Fré00c], leading to the following definition. Denoting by P the set of

all primes together with the ∞ symbol, we consider arbitrary subsets π

of P and π⊥ = P \ π. If G is a solvable group of finite Morley rank and

R a subgroup of G, we say that:

• An element x ∈ G is a π-element if, for every p ∈ π⊥, d(x) has

no elements of order p.

• R is a π-subgroup if each x ∈ R is a π-element.

• R is a Hall π-subgroup of G if R is a maximal π-subgroup of G.

Of course, this definition coincides with the usual one if π consists

of finite primes only. The main feature of this definition allowing the

infinite prime is that Theorems 1.6 and 1.7 on conjugacy and structure

are preserved.
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Theorem 1.10 [Fré00c, Théorème 4.18, Proposition 4.22] Let G be a

solvable group of finite Morley rank and π any subset of P. Then:

a. Hall π-subgroups are conjugate.

b. For any Hall π-subgroup R of G, R◦ = UBD where U E G is a

definable torsion-free subgroup, B E G a definable connected sub-

group of bounded exponent and D a divisible nilpotent subgroup.

Moreover, R is locally closed in the sense of §6.5 below.

If the ambient group G is connected, then it is also shown in [Fré00c]

that its Hall π-subgroups in this generalized sense are connected.

1.5 Borel subgroups

As visible already, conjugacy theorems are particularly abundant in solv-

able groups of finite Morley rank. The following result links a given

group of finite Morley rank to its solvable subgroups.

Theorem 1.11 ([Fré00a, Corollaire 3.4.4], see also [ACCN98]) Every

locally solvable subgroup of a group of finite Morley rank is solvable.

In general, we are mostly concerned with definable connected sub-

groups. A Borel subgroup of a group G of finite Morley rank is a max-

imal definable connected solvable subgroup of G. The following very

strong conjecture is widely open.

Conjecture 1.12 In any group of finite Morley rank, Borel subgroups

are conjugate.

Conjecture 1.12 covers all natural conjugacy conjectures which are

formulated here about connected subgroups of groups of finite Morley

rank. For example, we will see that it is stronger than both Conjectures

3.1 and 2.6 below, by Theorems 3.11 and 5.10 respectively. In particular,

the class of connected solvable groups of finite Morley rank is very well

understood, and this is extremely relevant as the analysis of an arbitrary

group of finite Morley rank is often done with its Borel subgroups.

1.6 Actions

If X and Y are two definable subgroups of a group of finite Morley rank,

then X is Y -minimal if it is infinite, normalized by Y , and minimal with

respect to these properties. In a solvable context, the study of a serious
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action of a group of finite Morley rank on another most of the time boils

down to the following crucial theorem, which gives in many cases an

interpretable field.

Zilber’s Field Theorem (cf. [BN94a, Theorem 9.1]) Let G = U ⋊ T

be a group of finite Morley rank, with U and T infinite abelian definable

subgroups, CT (U) = 1 and U T -minimal. Then G interprets an alge-

braically closed field K with U definably isomorphic to K+, T definably

isomorphic to a definable subgroup T1 of K×, and

U ⋊ T ≃ K+ ⋊ T1 =

{(

t u

0 1

)

: t ∈ T1 , u ∈ K+

}

.

The Fitting subgroup of a group G of finite Morley rank is its max-

imal normal definable nilpotent subgroup. It is well defined and the

unique maximal normal nilpotent subgroup of G [Nes91]. If B is a Borel

subgroup of a linear algebraic group over an algebraically closed field,

then B = U ⋊ T where U is the maximal unipotent subgroup (strictly

upper triangular matrices if B is the standard Borel subgroup) and T

is a maximal torus of B (diagonal matrices). If the ambient group is

simple, then U = F (B) and, hence, Fitting subgroups are usually a

good first approximation of the unipotent radical in the finite Morley

rank context. In general, it is not known whether a connected solvable

group B of finite Morley rank splits as F (B) ⋊ T for some complement

T . But any Carter subgroup Q of B satisfies B = F (B)Q by Corollary

3.13 below, and hence provides a good approximation of maximal tori

in this context.

For future references, we record here miscellaneous results around con-

nected solvable groups of finite Morley rank.

Theorem 1.13 ([Nes90]; [BN94a, Ex. 5 p. 98]) Let G be a connected

solvable group of finite Morley rank. Then:

a. G/F ◦(G) is divisible abelian. In particular G′ is nilpotent.

b. If A is G-minimal in G, then A ≤ Z(F ◦(G))

1.7 Fields

An infinite field of finite Morley rank is always algebraically closed

[Mac71]. If it is involved in some action, one might become extremely

concerned with the definable subgroups of its multiplicative or additive
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