INDEX

2.5D sketch, 51
3D sketch, 51
abduction, 463
absolute judgment, 20, 463
action potential, 97, 335, 463
activation space, 279
ACT-R/PM, 314, 315, 316–20, 322, 460
affirming the consequent, 103
tagent architecture, 288–93, 321
agent, 289
goal-based agent, 291
learning agent, 291
simple reflex agent, 289
algorithm, 14, 18, 127, 154, 463, 468,
see also Turing machine
Allen, 443–7, see also subsumption
architecture
amnesia, 463, see also memory
anterograde, 124, 463
retrograde, 124, 470
amygdala, 400
anatomical connectivity, 217, 335, 358, 459,
463, 465, see also functional connectivity
connectivity matrix, 331
principle of segregation, 331
tract tracing, 331
wiring diagram, 331
A-not-B error, 425–9, see also object
permanence
artificial neural networks,
see also connectionist (neural) networks
attention, 21
Broadbent’s model, 21–3, 25, 341
covert, 348, 465
eyearly selection, 341, 466
late selection, 341, 467
locus of selection, 342–6, 359
selective, 347, 349–52, 359, 471
attractor, 420, 463, see also dynamical
systems
autism, 371–2, 375–6
backpropagation, 74, 236–7, 463,
see also connectionist (neural) networks
Baddeley, A., 123
Baillargeon, R., 263
balance beam problem, 274–7,
see also folk
physics (infants)
Baron-Cohen, S., 364, 372, 378
behavior-based architectures, 447–52, 463,
see also situated cognition
behaviorism, 6–13, 463
binding problem, 345, 464
birobotics, 435–42, 464, see also situated
cognition
bits/bytes, 43, 464
BOLD, 108–12, 353, 464
Boolean function, 222–6, 464
bridging principles (laws), 120
Broadbent, D., 19, 21, 24, 341
Brodmann areas, 63, 329, 464
Brooks, R., 414, 434, 442, 452
buffer, 316
Busemeyer, J., 425
causation by content, 158–9,
see also intentional realism
central executive, 124
cerebral cortex, 62, 464
Chalmers, D., 461
channel capacity, 20, 464,
see also information processing
Chatterbot, 32, 464
Index

cheater detection module, 304, 464, see also massive modularity, Wason selection task
Chilausky, R., 191
Chinese room, 165–73, 174, 464, see also physical symbol system, symbol grounding problem robot reply, 170–1, 470 systems reply, 168–70, 471 vs. Turing test, 166–8
Chomsky, N., 16, 17, 21, 24, 340, see also folk physics (infants)
chunking, 20, 317, 464, see also information processing
Churchland, P.S., 92
Church–Turing thesis, 16, 464, see also Turing machine
cocktail party phenomenon, 21, 23, 340, see also attention
cognitive maps, 10–11
Colby, C., 350
computation, 13, 464, see also biorobotics, connectionist (neural) networks, physical symbol system, Turing machine digital computer, 43, 44 vs. dynamical systems, 429–31
computational governor, 418, see also dynamical systems
computational neuroscience, 218, 464 conditioning, 7, see also behaviorism classical, 7, 464 operant, 469
connectionist (neural) networks, 60, 73–5, 85–4, 457, 463
activation functions, 220–1, 463 activation space, 279 AND-gate, 225 backpropagation, 74, 236–7, 463 biological plausibility, 237–9, 243 competitive networks, 238, 464 feed forward networks, 234, 466 folk physics, 270–7 graceful degradation, 72 hidden layer, 234, 467 key features, 239–42, 244 language learning, 254, 258–62 levels of explanation, 278 linear separability, 229–33 mine/rock detector, 75–7 multilayer network, 232, 239, 243, 468 neurally inspired, 222, 243 perceptron convergence, 226–33 recurrent network, 272, 470 single-layer network, 222–33, 243 units, 219, 467 vs. physical symbol systems, 278–81, 282 connectivity matrix, 331, see also anatomical connectivity
Connell, J., 446
consciousness, 461 contralateral, 65, 465 convergence rule, 469, see also perceptron Cooper, L., 40 co-opted system, 465 Corbetta, M., 351 corpus callosum, 68, 465 Cosmides, L., 105, 304 counterfactual, 389, 465 Cox, J., 104 cross-lesion disconnection experiments, 67, 465 cross-talk, 465 Cummins, R., 121
decision trees, 179–81, 465, see also expert systems
default mode, 459 delayed saccadic task, 350 Dennett, D., 132 dichotic listening task, 21, 465 dishabitation, 263–70, 465, see also folk physics (infants) domain generality/specificity, 131, 137, 296, 465, see also module (Fodorean)dorsal pathway, 66, 68, 334, 465, see also visual processing double dissociation, 122, 465 Down Syndrome, 372, 375 drawbridge experiment, 263 Duncan, J., 341 dynamical systems, 414–31, 453, 465, see also information processing attractor dynamics, 420 computational vs. Watt governor, 418–22 continual dynamics, 428 dynamical field model, 427 object permanence, 425–9 state space, 415 vs. computational models, 429–31 vs. representations, 417–22 walking, 423–5
EEG (electroencephalography), 338, 342–6, 466 effective connectivity, 354–8, 466 ELIZA, 31–2 Elman, J., 254 embodied cognition, see situated cognition emotion detector system (TED), 379, 402, see also mindreading empathy system (TESS), 381–2, 402, see also mindreading
Index

entropy, 184–5, 466, see also machine learning
ERP (event-related potential), 336, 344, 466
evolutionarily stable strategy, 106
expert systems, 178, 212, 466
eye-direction detector (EDD), see mindreading
factive states, 373
faculty psychology, 293–6, see also module (Fodorean)
false belief task, 364, 372–7, 383–5, 407, 466, see also mindreading
false belief task, 364, see also mindreading
false photograph task, 399, see also false belief task
Felleman, D., 331
fixed neural architectures, 466
fMRI (functional magnetic resonance imaging), 108, 339–40, see also functional neuroimaging
Fodor, J., 156, 251, 293, 312
Fodor–Pylyshyn dilemma, 282
folk physics (infants), 262–77, 282, 466
balance beam problem, 274–7
cognition, 270–7
dishabituation, 263–70
drawbridge experiment, 263
object permanence, 265, 274, 425–9
principles, 265–7
formal property, 159, 466
foxes and chickens problem, 153–4, see also General Problem Solver (GPS)
frame problem, 132, 466
Funt, B., 178, 195
Gall, F., 294
Gardner, H., 92
General Problem Solver (GPS), 146, 153–4, see also physical symbol system
Goel, V., 396
GOFAI (good old-fashioned artificial intelligence), 178, 466, see also physical symbol system, situated cognition
Goldman, A., 391
Gorman, P., 75
greatful degradation, 72, 467, see also connectionist (neural) networks
Griggs, R., 104
gyrus, 326
H.M., 123
halting problem, 13–14, 16, 467
Hamilton, W., 307
Harris, P., 391
Heal, J., 393
Hebb, D., 227
Hebbian learning, 227, 467
heuristic search, 153, 182, 197, 211, 467
Human Connectome Project, 458, see also anatomical connectivity
Hutchin, E., 99
ID3, 182–94, 212, see also machine learning
information gain, 184, 185–7, see also machine learning
information processing, 3, 23–4, 134, 157, see also computation, connectionist (neural) networks, dynamical systems, physical symbol system, situated cognition
bottleneck, 20
channel capacity, 20
chunking, 20
early models, 19–23
Fodor–Pylyshyn dilemma, 278–81, 282
information channel, 20, 467
information flow, 25
information theory, 19
neuronal populations, 95–7
subconscious, 12
vs. storage, 240–2
informational encapsulation, 131, 296, 467, see also module (Fodorean)
insula, 400
integration challenge, 87, 98–101, 117, 140, 467, see also mental architecture
three-dimensional representation, 99
intentionality, 171, 467
intentionality detector (ID), 378, see also mindreading
intentional realism, 157, 467, see also language of thought

James, W., 262
Jenkins, E., 276
joint visual attention, 380–1, 467, see also mindreading
shared attention mechanism (SAM), 381

K. F., 122
Kanwisher, N., 398
Kelly, W., 404
Kieras, D., 317
kin selection, 309
knowledge (declarative vs. procedural), 316
Koch, C., 111
Kohler, E., 402
Kosslyn, S., 45
Kuczaj, S., 255

landmark task, 68
language learning, 251
connectionist networks, 254, 258–62
language of thought, 251–3
past tense acquisition, 254–7, 281
language of thought (LOT), 156–65, 174, 300
argument for, 160, 164
learning, 251–3
LOT hypothesis, 156, 160, 467
modularity, 300–2
vs. formal language, 160–2
language processing, 281, see also ELIZA, SHREDLU
linguistic understanding, 250–1
word processing, 78–81
Lashley, K., 12, 205
lateral intraparietal area (LIP), 350
laws vs. effects, 121
learning, see conditioning
latent learning, 6–13
place vs. response learning, 10–11, 24
Leslie, A., 365, 372
levels of explanation, 47, see also functional decomposition, functional systems, integration challenge, Marr's tri-level hypothesis, reduction (intertheoretic) algorithmic level, 48, 278
bottom-up explanation, 60
computational level, 47, 278
implementation level, 48, 278
neuroscience, 94–7
psychology, 93–4
top-down explanation, 49, 60
lexical access, 79, 467, see also language processing
limbic system, 400
linear separability, 229–33, 467, see also connectionist (neural) networks
linguistic structure, 17
deep (phrase) structure, 17, 465
deep vs. surface structure, 17
surface structure, 471
local algorithm, 467
local field potential (LFP), 111, 467
locus of selection problem, 342–6, 359, 468, see also attention
logical consequence, 161, 468
logical deducibility, 161, 468
Logothetis, N., 111
Luria, A., 327

machine learning, 181–3, 468
algorithms, 182, 183, 468
entropy, 184–5
ID3, 178, 182–94
information gain, 184, 185–7
Macrae, N., 404
mammalian brain, 62–3
mapping function, 222, see also Boolean function
Marchman, V., 260
Marcus, G., 261
Marr, D., 30, 47, 50, 60, 70, 436
Marr's tri-level hypothesis, 47–9, 127–34, 140, 278, see also integration challenge, levels of explanation
frame problem, 132
problem of non-modular systems, 132
massive modularity, 285, 302, 303–14, 322, 468
argument from error, 307
argument from learning, 309
arguments against, 314
Darwinian modules, 305
module vs. body of knowledge, 311
prosopagnosia, 305
Wason selection task, 304
Mataric, M., 414, 448, 450
McClelland, J., 73, 258
McCullough, W., 226
means-end analysis, 153
MEG (magnetoencephalography), 338, 468
Meltzooff, A., 269
memory, see also amnesia
distinct processes, 122
episodic vs. semantic, 125
implicit vs. explicit, 124
short vs. long-term, 122
Index

working memory, 350
working memory hypothesis, 123
mental architecture, 118, 134–9, 141,
285, 468, see also ACT-R/PM, massive
modularity, integration challenge,
module (Fodorean)
agent architecture, 288–93
modular vs. subsumption architectures,
447
non-modular, see non-modular
architectures
three questions, 135, 136, 137, 287
vs. cognitive architecture, 137
mental imagery, 30, 40–7, 194
Metzler, J., 40
Meyer, D., 317
Michalski, R., 191
micro-world, 468
Miller, G., 19, 20, 24, 90, 92
Milner, B., 123
Milward, T., 239
mindreading, 285, 363–405,
see also simulation theory, theory of
mind mechanism (TOMM)
autism, 371–2
empathy, 381–2
evidence from neuroscience, 394–405
false belief task, 364, 372–7
high-level, 395
ID3/EDD/TED, 378–80, 406
joint attention, 380–1
low-level, 395
neuroscientific evidence, 407
physical symbol system, 367
preterse, 366, 370, 376
representational mind, 385–90
mirror neurons, 336, 401–2, 468,
see also mindreading, simulation
theory
Mishkin, M., 60, 66
module (Fodorean), 131, 296, 321, 468,
see also massive modularity, mental
architecture
central systems, 298–9
characteristics, 131, 297, 310
isotopic systems, 299
language of thought, 300–2
modularity thesis, 137
Quinean systems, 298
vs. Darwinian, 305, 310
modus tollens, 102
morphological computation, 468,
see also biorobotics
multiple realizability, 61, 62, 468
Munakata, Y., 270
MYCIN, 179
Nerd Herd, 450–2, see also behavior-based
architectures
neuroeconomics, 460
neuroprosthetics, 459
neurotransmitters, 468
Newell, A., 146
non-modular architectures
behavior-based, 447–52
SSS, 446
subsumption, 442–7
object permanence, 265, 272–4, 282, 425–9,
469, see also dynamical systems, folk
physics (infants)
over-regularization errors, 255, 469,
see also language learning
paired-image subtraction paradigm, 469
Papert, S., 231
parallel vs. serial processing, 73, 469,
see also connectionist (neural) networks
word processing, 79
perceptron, 227, 469, see also connectionist
(neural) networks
Perner, J., 364, 385
PET (positron emission tomography),
339–40, 348, 469, see also functional
neuroimaging
Petersen, S., 78, 357
phonological loop, 124
phonotaxis, 437, see also biorobotics
phrase structure grammar, 469
physical symbol system, 146–56, 457, 469,
see also computation
argument against, see Chinese room
digital computer, 147
ID3, 182–94
language of thought, 159
levels of explanation, 278
machine learning, 181
mindreading, 367
physical symbol system hypothesis, 138,
145, 146, 149, 154, 174, 315, 469
SHAKEY, see SHAKEY
SHRDLU, see SHRDLU
symbol grounding problem, 171–3
Turing machine, 148
vs. connectionist networks, 278–81, 282
WHISPER, see WHISPER
Piaget, J., 364
Pinker, S., 256
Pitts, W., 226
PLANEX, 210, see also SHAKEY
plans, 12–13
Plunkett, K., 260
Polizzi, P., 384
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>poverty of stimulus</td>
<td>311, 469</td>
</tr>
<tr>
<td>pragmatics</td>
<td>39, 469</td>
</tr>
<tr>
<td>predicate calculus</td>
<td>160, 205, 469</td>
</tr>
<tr>
<td>prestriate cortex</td>
<td>469</td>
</tr>
<tr>
<td>pretense</td>
<td>364–70</td>
</tr>
<tr>
<td>Leslie's model</td>
<td>370</td>
</tr>
<tr>
<td>mindreading</td>
<td>366, 370, 376</td>
</tr>
<tr>
<td>quarantined representations</td>
<td>366</td>
</tr>
<tr>
<td>various forms</td>
<td>365</td>
</tr>
<tr>
<td>primal sketch</td>
<td>50</td>
</tr>
<tr>
<td>primary visual cortex</td>
<td>345, 469</td>
</tr>
<tr>
<td>Prince, A.</td>
<td>256</td>
</tr>
<tr>
<td>principle of cohesion</td>
<td>265, 469, see also folk physics (infants)</td>
</tr>
<tr>
<td>principle of contact</td>
<td>266, 470, see also folk physics (infants)</td>
</tr>
<tr>
<td>principle of continuity</td>
<td>267, see also folk physics (infants)</td>
</tr>
<tr>
<td>principle of integration</td>
<td>333, 359, 467</td>
</tr>
<tr>
<td>principle of segregation</td>
<td>331, 358, 470</td>
</tr>
<tr>
<td>principle of solidity</td>
<td>267, 470, see also folk physics (infants)</td>
</tr>
<tr>
<td>prisoner's dilemma</td>
<td>106–8, 470</td>
</tr>
<tr>
<td>production rules</td>
<td>317</td>
</tr>
<tr>
<td>propositional attitude</td>
<td>157, 364, 385, 470</td>
</tr>
<tr>
<td>propositional calculus</td>
<td>470</td>
</tr>
<tr>
<td>prosopagnosia</td>
<td>305</td>
</tr>
<tr>
<td>psychophysics</td>
<td>21, 121, 470</td>
</tr>
<tr>
<td>Pylyshyn, Z.</td>
<td>279</td>
</tr>
<tr>
<td>Quinlan, R.</td>
<td>178, 182</td>
</tr>
<tr>
<td>reasoning</td>
<td>101–8</td>
</tr>
<tr>
<td>conditional reasoning</td>
<td>103–5</td>
</tr>
<tr>
<td>counterfactual thinking</td>
<td>389</td>
</tr>
<tr>
<td>logic and probability</td>
<td>101–2</td>
</tr>
<tr>
<td>physical reasoning</td>
<td>262–77</td>
</tr>
<tr>
<td>Wason selection task</td>
<td>103–5, 304</td>
</tr>
<tr>
<td>recursive definition</td>
<td>470</td>
</tr>
<tr>
<td>reduction (intertheoretic)</td>
<td>118, 119–25, 140, 470</td>
</tr>
<tr>
<td>Rees, G.</td>
<td>111</td>
</tr>
<tr>
<td>reinforcement</td>
<td>7, see also conditioning replication, see simulation theory representation, 11, 24</td>
</tr>
<tr>
<td>digital vs. imagistic</td>
<td>44–5</td>
</tr>
<tr>
<td>distributed</td>
<td>239–40, 465</td>
</tr>
<tr>
<td>metarepresentation</td>
<td>366, 387, 389, 468</td>
</tr>
<tr>
<td>primary</td>
<td>365</td>
</tr>
<tr>
<td>quarantined</td>
<td>366</td>
</tr>
<tr>
<td>representational primitives</td>
<td>50</td>
</tr>
<tr>
<td>representational mind</td>
<td>385–90, see also mindreading</td>
</tr>
<tr>
<td>reverse engineering</td>
<td>47, 61, 417</td>
</tr>
<tr>
<td>Rizzolatti, G.</td>
<td>336, 401</td>
</tr>
<tr>
<td>Rosenblatt, F.</td>
<td>227</td>
</tr>
<tr>
<td>Rosenbloom, J.</td>
<td>315</td>
</tr>
<tr>
<td>Rumelhart, D.</td>
<td>73, 258</td>
</tr>
<tr>
<td>saccadic eye movements</td>
<td>348, 470</td>
</tr>
<tr>
<td>Saxe, R.</td>
<td>398</td>
</tr>
<tr>
<td>search-space</td>
<td>150</td>
</tr>
<tr>
<td>Searle, J.</td>
<td>153, 165</td>
</tr>
<tr>
<td>Sejnowski, T.</td>
<td>75</td>
</tr>
<tr>
<td>selection processor</td>
<td>470</td>
</tr>
<tr>
<td>selective attention</td>
<td>347, 349–52, see also attention</td>
</tr>
<tr>
<td>semantics</td>
<td>34, 37</td>
</tr>
<tr>
<td>semantic analysis</td>
<td>34</td>
</tr>
<tr>
<td>semantic property</td>
<td>158, 471</td>
</tr>
<tr>
<td>statistical semantics</td>
<td>471</td>
</tr>
<tr>
<td>vs. syntax</td>
<td>160–1</td>
</tr>
<tr>
<td>SHAKEY, 178, 202–11, 213, 289, 434</td>
<td></td>
</tr>
<tr>
<td>Shallice, T.</td>
<td>122</td>
</tr>
<tr>
<td>Shannon, C.</td>
<td>19</td>
</tr>
<tr>
<td>shared attention mechanism</td>
<td>381, see also joint visual attention</td>
</tr>
<tr>
<td>Shepard, R.</td>
<td>40</td>
</tr>
<tr>
<td>SHRDLU, 30, 32–40, 177, 433–4</td>
<td></td>
</tr>
<tr>
<td>Siegler, R.</td>
<td>273</td>
</tr>
<tr>
<td>Simon, H.</td>
<td>146</td>
</tr>
<tr>
<td>simulation theory</td>
<td>364, 390–4, 407, see also mindreading</td>
</tr>
<tr>
<td>neuroscientific evidence</td>
<td>405</td>
</tr>
<tr>
<td>radical</td>
<td>393–4, 471</td>
</tr>
<tr>
<td>standard</td>
<td>391–3, 404, 471</td>
</tr>
<tr>
<td>single-cell recording</td>
<td>109, 336, 346</td>
</tr>
<tr>
<td>situated cognition</td>
<td>414, 432–52, 453, 471, see also information processing</td>
</tr>
<tr>
<td>biorobotics</td>
<td>435–42</td>
</tr>
<tr>
<td>vs. GOFAI</td>
<td>434</td>
</tr>
<tr>
<td>sketchpad</td>
<td>124</td>
</tr>
<tr>
<td>Sloan hexagon</td>
<td>90–3, see also integration challenge</td>
</tr>
<tr>
<td>Smith, L.</td>
<td>423, 427</td>
</tr>
<tr>
<td>Soar (state operator and result)</td>
<td>315</td>
</tr>
<tr>
<td>spatial resolution</td>
<td>471</td>
</tr>
<tr>
<td>Spelke, E.</td>
<td>265, 269</td>
</tr>
<tr>
<td>spiking rate</td>
<td>111</td>
</tr>
<tr>
<td>SSS architecture</td>
<td>446, see also subsumption architecture</td>
</tr>
<tr>
<td>state-space</td>
<td>415, 471</td>
</tr>
<tr>
<td>statistical parametric map (SPM)</td>
<td>356</td>
</tr>
<tr>
<td>stereotactical map</td>
<td>354</td>
</tr>
<tr>
<td>Stevens Law</td>
<td>121</td>
</tr>
<tr>
<td>STRIPS, 209–10, see also SHAKEY</td>
<td></td>
</tr>
<tr>
<td>sub-cortex</td>
<td>471</td>
</tr>
<tr>
<td>subsumption architecture</td>
<td>442–7, 454, 471, see also situated cognition</td>
</tr>
<tr>
<td>sulcus</td>
<td>326</td>
</tr>
<tr>
<td>symbol grounding problem</td>
<td>171–3, 471</td>
</tr>
<tr>
<td>synapse</td>
<td>219, 335, 471</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press www.cambridge.org
syntax, 16, see also formal property, linguistic structure
syntactic analysis, 34, 35
vs. semantics, 160–1
systems neuroscience, 471
task analysis, 13, 25, 418
Thelen, E., 427
theory of mind mechanism (TOMM), 364, 378, 381–2, 406, 472
belief attribution, 383–5
neuroscientific evidence, 395–9
Perner's objection, 386–7
threshold, 219, 472
TFT-FOR-TAT, 106, 304, 472, see also prisoner's dilemma
Tolman, E., 7, 8, 10, 23, 24
Tooby, J., 105, 304
top-down vs. bottom-up, see levels of explanation
TOTO, 447–9, see also behavior-based architectures
Townsend, T., 425
transformational grammar, 16–19, 472
traveling salesman problem, 151
truth condition, 252, 472
truth rule, 472
truth table, 224
Turing, A., 13, 166
Turing machine, 14–16, 24, 155, 472, see also physical symbol system, computation
Turing test, 166–8
Ungerleider, L., 60, 66, 83
unilateral spatial neglect, 70, 347, 472
unity of science, 118, see also integration challenge
Van Essen, D., 331, 354
Van Gelder, T., 417, 429
ventral pathway, 66, 68, 334, 472, see also visual processing
visual processing
Marr's model, 49–53, 101
two systems hypothesis, 66–71, 83
voxel, 353
walking, 423–5
WANDA, 438, see also biorobotics
Warrington, E., 49, 122
Wason selection task, 103–5, 304, 472, see also reasoning
Watt, J., 417
Watt governor, 419–22, see also dynamical systems
Webb, B., 437
Weizenbaum, J., 31
well-formed formula, 149, 472
Werbos, P., 233
“what” system, see ventral pathway
“where” system, see dorsal pathway
WHISPER, 195, 196–202, 212, 274, see also physical symbol system
Wickelfeatures, 258
Wimmer, H., 372
Winograd, T., 30, 32, 433
Yokoi, H., 439
zero-crossings, 52