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The Motivic Vanishing Cycles and the
Conservation Conjecture

Joseph Ayoub
Université Paris VI,

175, rue du Chevaleret 75013 Paris
ayoub@math.jussieu.fr

To Jacob Murre for his 75th birthday

1.1 Introduction

Let X be a noetherian scheme. Following Morel and Voevodsky (see [24],
[25], [28], [33] and [37]), one can associate to X the motivic stable homotopy
category SH(X). Objects of SH(X) are T -spectra of simplicial sheaves on
the smooth Nisnevich site (Sm /X)Nis, where T is the pointed quotient sheaf
A1

X/GmX . As in topology, SH(X) is triangulated in a natural way. There
is also a tensor product −⊗X − and an “internal hom”: HomX on SH(X)
(see [20] and [33]). Given a morphism f : X �� Y of noetherian schemes,
there is a pair of adjoint functors (f∗, f∗) between SH(X) and SH(Y ).
When f is quasi-projective, one can extend the pair (f∗, f∗) to a quadruple
(f∗, f∗, f!, f

!) (see [3] and [8]). In particular we have for SH(−) the full
package of the Grothendieck six operators. It is then natural to ask if we
have also the seventh one, that is, if we have a vanishing cycle formalism
(analogous to the one in the étale case, developed in [9] and [10]).

In the third chapter of our PhD thesis [3], we have constructed a vanishing
cycles formalism for motives. The goal of this paper is to give a detailed ac-
count of that construction, to put it in a historical perspective and to discuss
some applications and conjectures. In some sense, it is complementary to [3]
as it gives a quick introduction to the theory with emphasis on motivations
rather than a systematic treatment. The reader will not find all the details
here: some proofs will be omitted or quickly sketched, some results will be
stated with some additional assumptions (indeed we will be mainly inter-
ested in motives with rational coefficients over characteristic zero schemes).

3

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-70174-7 - Algebraic Cycles and Motives: Volume 1
Edited by Jan Nagel and Chris Peters
Excerpt
More information

http://www.cambridge.org/9780521701747
http://www.cambridge.org
http://www.cambridge.org


4 J. Ayoub

For the full details of the theory, one should consult [3]. Let us mention also
that M. Spitzweck has a theory of limiting motives which is closely related
to our motivic vanishing cycles formalism. For more information, see [35].

The paper is organized as follows. First we recall the classical pictures:
the étale and the Hodge cases. Although this is not achieved here, these
classical constructions should be in a precise sense realizations of our mo-
tivic construction. In section 1.3 we introduce the notion of a specialization
system which encodes some formal properties of the family of nearby cycles
functors. We state without proofs some important theorems about special-
ization systems obtained in [3]. In section 1.4, we give our main construc-
tion and prove motivic analogues of some well-known classical results about
nearby cycles functors: constructibility, commutation with tensor product
and duality, etc. We also construct a monodromy operator on the unipo-
tent part of the nearby cycles which is shown to be nilpotent. Finally, we
propose a conservation conjecture which is weaker than the conservation of
the classical realizations but strong enough to imply the Schur finiteness of
constructible motives‡.

In the literature, the functors Ψf have two names: they are called “nearby
cycles functors” or “vanishing cycles functors”. Here we choose to call them
the nearby cycles functors. The properties of these functors form what we
call the vanishing cycles formalism (as in [9] and [10]).

1.2 The classical pictures

We briefly recall the construction of the nearby cycles functors RΨf in étale
cohomology. We then explain a construction of Rapoport and Zink which
was the starting point of our definition of Ψf in the motivic context. After
that we shall recall some facts about limits of variations of Hodge structures.
A very nice exposition of these matters can be found in [15].

1.2.1 The vanishing cycles formalism in étale cohomology

Let us fix a prime number � and a finite commutative ring Λ such that
�ν .Λ = 0 for ν large enough. When dealing with étale cohomology, we shall
always assume that � is invertible on our schemes. For a reasonable scheme
V , we denote by D+(V, Λ) the derived category of bounded below complexes
of étale sheaves on V with values in Λ-modules.

‡ Constructible motives means geometric motives of [40]. They are also the compact objects in
the sense Neeman [30] (see remark 1.3.3).
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The Motivic Vanishing Cycles and the Conservation Conjecture 5

Let S be the spectrum of a strictly henselian DVR (discrete valuation
ring). We denote by η the generic point of S and by s the closed point:

η
j �� S s.i��

We also fix a separable closure η̄ of the point η. From the point of view of
étale cohomology, the scheme S plays the role of a small disk so that η is a
punctured small disk and η̄ is a universal cover of that punctured disk. We
will also need the normalization S̄ of S in η̄:

η̄
j̄ �� S̄ s.ī��

Now let f : X �� S be a finite type S-scheme. We consider the commuta-
tive diagram with cartesian squares

Xη
j ��

fη

��

X

f

��

Xs.
i��

fs

��
η

j �� S si��

Following Grothendieck (see [10]), we look also at the diagram

Xη̄
j̄ ��

fη̄

��

X̄

f̄
��

Xs
ī��

fs

��
η̄

j̄ �� S̄ sī��

obtained in the same way by base-changing the morphism f . (This is what
we will call the “Grothendieck trick”). We define then the triangulated
functor:

RΨf : D+(Xη, Λ) �� D+(Xs, Λ)

by the formula: RΨf (A) = ī∗Rj̄∗(AXη̄ ) for A ∈ D+(Xη, Λ). By construction,
the functor RΨf comes with an action of the Galois group of η̄/η, but we will
not explicitly use this here. The basic properties of these functors concern
the relation between RΨg and RΨg◦h (see [9]):

Proposition 1.2.1. Let g : Y �� S be an S-scheme and suppose given an
S-morphism h : X �� Y such that f = g ◦ h. We form the commutative
diagram

Xη
j ��

hη

��

X

h

��

Xs

hs

��

i��

Yη
j �� Y Ys.

i��
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6 J. Ayoub

There exist natural transformations of functors

• αh : h∗
sRΨg �� RΨfh∗

η,

• βh : RΨgRhη∗ �� Rhs∗RΨf .

Furthermore, αh is an isomorphism when h is smooth and βh is an isomor-
phism when h is proper.

The most important case, is maybe when g = idS and f = h. Using the
easy fact that RΨidS

Λ = Λ, we get that:

• RΨfΛ = Λ if f is smooth,
• RΨidS

Rfη∗Λ = Rfs∗RΨfΛ if f is proper.

The last formula can be rewritten in the following more expressive way:
H∗

ét(Xη̄, Λ) = H∗
ét(Xs, RΨfΛ). In concrete terms, this means that for a

proper S-scheme X, the étale cohomology of the constant sheaf on the
generic geometric fiber Xη̄ is isomorphic to the étale cohomology of the
special fiber Xs with value in the complex of nearby cycles RΨfΛ. This is a
very useful fact, because usually the scheme Xs is simpler than Xη̄ and the
complex RΨfΛ can often be computed using local methods.

1.2.2 The Rapoport-Zink construction

We keep the notations of the previous paragraph. We now suppose that X

is a semi-stable S-scheme i.e. locally for the étale topology X is isomorphic
to the standard scheme S[t1, . . . , tn]/(t1 . . . tr − π) where π is a uniformizer
of S and r ≤ n are positive integers. In [32], Rapoport and Zink constructed
an important model of the complex RΨf (Λ). Their construction is based on
the following two facts:

• There exists a canonical arrow θ : Λη �� Λη(1)[1] in D+(η,Λ) called the
fundamental class with the property that the composition θ ◦ θ is zero,

• The morphism θ : i∗Rj∗Λ �� i∗Rj∗Λ(1)[1] in D+(Xs, Λ) has a repre-

sentative on the level of complexes θ : M• �� M•(1)[1] such that the
composition

M• �� M•(1)[1] �� M•(2)[2]

is zero as a map of complexes.

Therefore we obtain a double complex

RZ•,• = [· · · → 0 → M•(1)[1] → M•(2)[2] → M•(3)[3]

→ · · · → M•(n)[n] → . . . ]
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The Motivic Vanishing Cycles and the Conservation Conjecture 7

where the complex M•(1)[1] is placed in degree zero. Furthermore, following
Rapoport and Zink, we get a map RΨfΛ �� Tot(RZ•,•) which is an iso-
morphism in D+(Xs, Λ) (see [32] for more details). Here Tot(−) means the
simple complex associated to a double complex. In particular, Rapoport and
Zink’s result says that the nearby cycles complex RΨfΛ can be constructed
using two ingredients:

• The complex i∗Rj∗Λ,
• The fundamental class θ.

Our construction of the nearby cycles functor in the motivic context is
inspired by this fact. Indeed, the above ingredients are motivic (see 1.4.1
for a definition of the motivic fundamental class). We will construct in
paragraph 1.4.2 a motivic analogue of RZ•,• based on these two motivic
ingredients and then define the (unipotent) “motivic nearby cycles” to be
the associated total motive. In fact, for technical reasons, we preferred to
use a motivic analogue of the dual version of RZ•,•. By the dual of the
Rapoport-Zink complex, we mean the bicomplex

Q•,• = [· · · → M•(−n)[−n] → · · · → M•(−1)[−1] → M• → 0 → . . . ]

where the complex M• is placed in degree zero. It is true that by passing to
the total complex, the double complex Q•,• gives in the same way as RZ•,•

the nearby cycles complex.

1.2.3 The limit of a variation of Hodge structures

Let D be a small analytic disk, 0 a point of D and D� = D − 0. Let
f : X� �� D� be an analytic family of smooth projective varieties. For
t ∈ D�, we denote by Xt the fiber f−1(t) of f . For any integer q, the lo-
cal system Rqf∗C = (Rqf∗Z) ⊗ C on D� with fibers (Rqf∗C)t = Hq(Xt, C)
is the sheaf of horizontal sections of the Gauss-Manin connection ∇ on
Rqf∗Ω

.
X�/D� . The decreasing filtration F k on the de Rham complex Ω

.
X�/D�

given by

F kΩ
.
X�/D� = [0 → . . . 0 → Ωk

X�/D� → · · · → Ωn
X�/D� ]

induces a filtration F kRqf∗Ω
.
X�/D� by locally free OD� -submodules on

Rqf∗Ω
.
X�/D� .

For any t ∈ D�, we get by applying the tensor product − ⊗OD� C(t) a
filtration F k on Hq(Xt, C) which is the Hodge filtration. The data:
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8 J. Ayoub

• The local system Rqf∗Z,
• The OD� -module (Rqf∗Z)⊗OD� = Rqf∗Ω

.
X�/D� together with the Gauss-

Manin connexion,
• The filtration F k on (Rqf∗Z) ⊗ OD�

satisfy the Griffiths transversality condition and are called a Variation of
(pure) Hodge Structures.

Let us suppose for simplicity that f extends to a semi-stable proper an-
alytic morphism: X �� D. We denote by ω.

X/D the relative de Rham
complex with logarithmic poles on Y = X −X�, that is,

ω1
X/D = Ω1

X(log (Y ))/Ω1
D(log (0)).

We fix a uniformizer t : D → C, a universal cover D̄� → D� and a
logarithm log t on D̄�. In [36], Steenbrink constructed an isomorphism
(ω.

X/D)|Y �� RΨfC depending on these choices. From this, he deduced a
mixed Hodge structure on Hq(Y, (ω.

X/D)|Y ) which is by definition the limit
of the above Variation of Hodge Structures.

1.2.4 The analogy between the situations in étale cohomology

and Hodge theory

Let V be a smooth projective variety defined over a field k of characteristic
zero. Suppose also given an algebraic closure k̄/k with Galois group Gk and
an embedding σ : k ⊂ C. In the étale case, the �-adic cohomology of Vk̄ is
equipped with a structure of a continuous Gk-module. In the complex ana-
lytic case, the Betti cohomology of V (C) is equipped with a Hodge structure.

Now let f : X �� C be a flat and proper family of smooth varieties
over k parametrized by an open k-curve C. Then for any k̄-point t of
C, we have a continuous Galois module‡ Hq(Xt, Q�). These continuous
Galois modules can be thought of as a “Variation of Galois Representations”
parametrized by C which is the étale analogue of the Variation of Hodge
structures (Hq(Xt(C), Q), F k) that we discussed in the above paragraph.

Now let s be a point of the boundary of C and choose a uniformizer near s.
As in the Hodge–theoretic case, the variation of Galois modules above has a
“limit” on s which is a “mixed” Galois module given by the following data:

• A monodromy operator N which is nilpotent. This operator induces the
monodromy filtration which turns out to be compatible with the weight

‡ In general only an open subgroup of Gk acts on the cohomology, unless t factors trough a
k-rational point.
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The Motivic Vanishing Cycles and the Conservation Conjecture 9

filtration of Steenbrink’s mixed Hodge structure on the limit cohomology
(see [15]),

• The grading associated to the monodromy filtration is a continuous Galois
module of “pure” type.

As in the analytic case, this limit is defined via the nearby cycles complex.
Indeed, choose an extension of f to a projective scheme X ′ over C ′ = C∪{s}.
Let Y be the special fiber of X ′. The choice of a uniformizer gives us a
complex RΨX′/C′Q� on Y . Then the “limit” of our “Variation of Galois
representations” is given by Hq(Y,RΨX′/C′Q�). The monodromy operator
N is induced from the representation on RΨX′/C′Q� of the étale fundamental
group of the punctured henselian neighbourhood of s in C.

1.3 Specialization systems

The goal of this section is to axiomatize some formal properties of the nearby
cycles functors that we expect to hold in the motivic context. The result will
be the notion of specialization systems. We then state some consequences
of these axioms which play an important role in the theory. Before doing
that we recall briefly the motivic categories we use.

1.3.1 The motivic categories

Let X be a noetherian scheme. In this paper we will use two triangulated
categories associated to X:

(i) The motivic stable homotopy category SH(X) of Morel and Voevod-
sky,

(ii) The stable category of mixed motives DM(X) of Voevodsky.

These categories are respectively obtained by taking the homotopy category
(in the sense of Quillen [31]) associated to the two model categories of T =
(A1

X/GmX)-spectra:

(i) The category SpectT
s (X) of T -spectra of simplicial sheaves on the

smooth Nisnevich site (Sm /X)Nis,
(ii) The category SpectT

tr(X) of T -spectra of complexes of sheaves with
transfers on the smooth Nisnevich site (Sm /X)Nis.

Recall that a T -spectrum E is a sequence of objects (En)n∈N connected by
maps of the form En

�� Hom(T, En+1). We sometimes denote by
SpectT (X) one of the two categories SpectT

s (X) or SpectT
tr(X). We do not
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10 J. Ayoub

intend to give the detailed construction of these model categories as this has
already been done in several places (cf. [5], [20], [24], [25], [28], [33], [37]).
For the reader’s convenience, we however give some indications. We focus
mainly on the class of weak equivalences; indeed this is enough to define
the homotopy category which is obtained by formally inverting the arrows
in this class. The weak equivalences in these two categories of T -spectra are
called the stable A1-weak equivalences and are defined in the three steps.
We restrict ourself to the case of simplicial sheaves; the case of complexes
of sheaves with transfers is completely analogous.

Step 1. We first define simplicial weak equivalences for simplicial sheaves.
A map A• �� B• of simplicial sheaves on (Sm /X)Nis is a simplicial weak
equivalence if for any smooth X-scheme U and any point u ∈ U , the map of
simplicial sets‡ A•(Spec(Oh

U,u)) �� B•(Spec(Oh
U,u)) is a weak equivalence

(i.e. induces isomorphisms on the set of connected components and on the
homotopy groups).

Step 2. Next we perform a Bousfield localization of the simplicial model
structure on simplicial sheaves in order to invert the projections A1

U
�� U

for smooth X-schemes U (see [13] for a general existence theorem on local-
izations and [28] for this particular case). The model structure thus obtained
is the A1-model structure on simplicial sheaves over (Sm /X)Nis. We denote
HoA1(X) the associated homotopy category.

Step 3. If A is a pointed simplicial sheaf and E = (En)n is a T -spectrum of
simplicial sheaves we define the stable cohomology groups of A with values
in E to be the colimit: Colimn homHoA1 (X)(T∧n ∧A, En). We then say that

a morphism of spectra (En)n
�� (E′

n)n is a stable A1-weak equivalence if
it induces isomorphisms on cohomology groups for every simplicial sheaf A.

By inverting stable A1-weak equivalences in SpectT
s (X) and SpectT

tr(X)
we get respectively the categories SH(X) and DM(X). Let U be a smooth
X-scheme. We can associate to U the pointed simplicial sheaf U+ which
is simplicially constant, represented by U

∐
X and pointed by the trivial

map X �� U
∐

X. Then, we can associate to U+ its infinite T -suspension
Σ∞

T (U+) given in level n by T∧n ∧ U+. This provides a covariant functor
M : Sm /X �� SH(X) which associates to U its motive M(U). Similarly
we can associate to U the complex Ztr(U), concentrated in degree zero, and
then take its infinite suspension given in level n by Ztr(An×U)/Ztr((An−0)×

‡ This map of simplicial sets is the stalk of A• �� B• at the point u ∈ U with respect to the

Nisnevich topology.
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