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Introduction

Dependence is a common phenomenon, wherever one looks: ecological sys-
tems, astronomy, human history, stock markets. With global warming, the
dependence of life on earth on the actions of mankind has become a burn-
ing issue. But what is the logic of dependence? In this book we set out to make
a systematic logical study of this important concept.

Dependence manifests itself in the presence of multitude. A single event
cannot manifest dependence, as it may have occurred as a matter of chance.
Suppose one day it blows from the west and it rains. There need not be any
connection between the wind and the rain, just as if one day it rains and it is
Friday the 13th. But over a whole year we may observe that we can tell whether
rain is expected by looking at the direction of the wind. Then we would be
entitled to say that in the observed location and in the light of the given data,
whether it rains depends on the direction of the wind. One would get a more
accurate statement about dependence by also observing other factors, such as
air pressure.

Dependence logic adds the concept of dependence to first order logic. In
ordinary first order logic the meaning of the identity

xX =y (1.1)

is that the values of x and y are the same. This is a trivial form of dependence.
The meaning of

fx=y (1.2)

is that the interpretation of the function symbol f maps the value of x to the
value of y. This is an important form of dependence, one where we actually
know the mapping which creates the dependence. Note that the dependence
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2 Introduction

may be more subtle, as in

fxz=y.

Here y certainly depends on x but also on z. In this case we say that y depends
on both x and on z, but is determined by the two together.
We introduce the new atomic formulas

=(x, y), (1.3)

the meaning of which is that the values of x and y depend on each other in the
particular way that values of x completely determine the values of y. Note the
difference between Eqgs. (1.1), (1.2) and (1.3). The first says that x determines
y in the very strong sense of y being identical with x. The second says that x
determines y via the mapping f. Finally, the third says there is some way in
which x determines y, but we have no idea what that is.

The dependence in Eq. (1.3) is quite common in daily life. We have data
that show that weather depends on various factors such as air pressure and air
temperature, and we have a good picture of the mathematical equations that
these data have to satisfy, but we do not know how to solve these equations,
and therefore we do not know how to compute the weather when the critical
parameters are given. We could say that the weather obeys dependence of the
kind given in Eq. (1.3) rather than of the kind in Eq. (1.2). Historical events
typically involve dependencies of the type in Eq. (1.3), as we do not have
a perfect theory of history which would explain why events happen the way
they do. Human genes undoubtedly determine much of the development of an
individual, but we do not know how; we can just see the results.

In order to study the logic of dependence we need a framework involving
multitude, such as multiple records of historical events, day to day observations
of weather and stock transactions. This seems to lead us to study statistics or
database theory. These are, however, wrong leads. If we observe that a lamp is
lit up four times in a row when we turn a switch, but also that once the lamp does
not light up even if we turned the switch (Fig. 1.1), we have to conclude that the
light is not completely determined by the switch, as it is by the combined effect
of the switch and the plug. From the point of view of dependence, statistical
data or a database are relevant only to the extent that they record change.

In first order logic the order in which quantifiers are written determines the
mutual dependence relations between the variables. For example, in

VXOE|)C1VX2 E|X3¢)

the variable x; depends on xy, and the variable x3 depends on both x(y and
x3. In dependence logic we write down explicitly the dependence relations
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Fig. 1.1. Does the switch determine whether the lamp is lit?
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between variables and by so doing make it possible to express dependencies
not otherwise expressible in first order logic.
The first step in this direction was taken by Henkin with his partially ordered

quantifiers, e.g.
<Zx0 dx, ) é.
X2 E|X3

where x; depends only on xo and x3 depends only on x,. The remarkable
observation about the extension L(H) of first order logic by this quantifier,
made by Ehrenfeucht, was that L(H) is not axiomatizable.

The second step was taken by Hintikka and Sandu, who introduced the
slash-notation

Vxo3x1Vx,3x3/Vx00,

where 3x3/Vx( means that x3 is “independent” of x in the sense that a choice
for the value of x3 should not depend on the value of xy. The observation of
Hintikka and Sandu was that we can add slashed quantifiers 3x3/Vx( coherently
to first order logic if we give up some of the classical properties of negation,
most notably the Law of Excluded Middle. They called their logic independence
friendly logic.

We take the further step of writing down explicitly the mutual dependence
relationships between variables. Thus we write

Vxo3x1VxAxs(=(x2, x3) A @) (14)

to indicate that x3 depends on x; only. The new atomic formula = (x,, x3) has
the explicit meaning that x3 depends on x, and on nothing else. This results in
a logic which we call dependence logic. It is equivalent in expressive power
to the logic of Hintikka and Sandu in the sense that there are truth-preserving
translations from one to the other. In having the ability to express dependence
on the atomic level it is more general.

© in this web service Cambridge University Press & Assessment www.cambridge.org



www.cambridge.org/9780521700153
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-70015-3 — Dependence Logic
Jouko Vaanianen

Excerpt

More Information

4 Introduction

Formulas of dependence logic are not like formulas of first order logic.
Formulas of dependence logic declare dependencies while formulas of first
order logic state relations. These two roles of formulas are incompatible in
the following sense. It does not make sense to ask what relation a formula of
dependence logic defines, just as it does not make sense to ask what dependence
a formula of first order logic states. It seems to the author that the logic of such
dependence declarations has not been systematically studied before.

At the end of this book we introduce a stronger logic called feam logic,
reminiscent of the extended independence friendly logic of Hintikka. Team
logic is, unlike dependence logic and independence friendly logic, closed under
the usual Boolean operations and it satisfies the Law of Excluded Middle.

Historical remarks

The possibility of extending first order logic by partially ordered quantifiers was
presented by Henkin [14], where also Ehrenfeucht’s result, referred to above,
can be found. Independence friendly logic was introduced by Hintikka and
Sandu [16] (see also ref. [17]) and advocated strongly by Hintikka in ref. [19].
Hodges [21, 22] gave a compositional semantics for independence friendly logic
and we very much follow his approach. Further properties of this semantics are
proved in refs. [4], [23] and [41]. Cameron and Hodges [5] showed that there
are limitations to the extent to which the semantics can be simplified from the
one given in ref. [21]. Connections between independence friendly logic, set
theory and second order logic are discussed in ref. [40].
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Preliminaries

2.1 Relations

An n-tuple is a sequence (ay, ..., a,) with n components ay, ..., a, in this
order. A special case is the empty sequence ¥, which corresponds to the case
n = 0. A relation on a set M is a set R of n-tuples of elements of M for some
fixed n, where n is the arity of R. The simplest examples are the usual identity
relations on a set M:

{(x,x):x e M},
{(x,x,y) 1 x,y € M},
{(x,y,x) 1 x,y € M},
{Ce, v, ¥) 1 x,y € M},
{(x,x,x):x € M}.

Two special relations are the empty relation ¢, which is the same in any arity,
and the unique O-ary relation {¢}}. We think of a function f : M — M as a
relation {(x, f(x)):x € M}on M.

2.2 Vocabularies and structures

A vocabulary is a set L of constant, relation and function symbols. We use
¢ to denote constant symbols, R to denote relation symbols, and f to denote
function symbols in a vocabulary, possibly with subindexes. Each symbol s in
L has an arity #1(s), which is a natural number. The arity of constant symbols
is zero. The arity of a relation symbol may be zero. We use xg, x, . . . to denote
variables.

An L-structure M is a non-empty set M, the domain of M, endowed with
an element ¢ of M for each ¢ € L, an #;(R)-ary relation R on M for
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6 Preliminaries

R € L, and an #,(f)-ary function f™ on M for f € L. The L—structures
M and M’ are isomorphic if there is a bijection w : M — M’ such that

(M) =cM and for all ay, ..., az, (ry € M we have (ay, ..., as,r) € RM
if and only if (7 (ay), . .., w(ax,(x) € R, and fM (w(ay), ..., w(as, () =
n(fM(al, ..., g, (). In this case we say that 7 is an isomorphism from M

to M’, denoted 7 : M = M.

If M is an L-structure and M’ is an L’-structure such that L' € L, ¢cM =
cMforce L', RM=RM force L,and fM= fM for f € L', then M’
is said to be a reduct of M (to the vocabulary L’), denoted M’ = M[L’,
and M is said to be an expansion of M’ (to the vocabulary L). If M is an
L-structure and a € M, then the expansion M’ of M, denoted (M, a), to a
vocabulary L U {c}, where c ¢ L, is defined by M =a; (M, ay,...,a,)is
defined similarly.

2.3 Terms and formulas

Constant symbols of L and variables are L-terms;ift;, ..., t, are L-terms, then
fti...t, is an L-term for each f in L of arity n. The set Var(¢) of variables
of a term ¢ is simply the set of variables that occur in ¢. If Var(¢) = @, then ¢ is
called a constant term. For example, fc is a constant term. Every constant term
t has a definite value t™ in any L-structure M, defined inductively as follows:
if ¢ is a constant symbol, tM is defined already. Otherwise, (ft; ... t,,)M =
FMEM, M),

Any function s from a finite set dom(s) of variables into the domain M
of an L-structure M is called an assignment of M. Set theoretically, s =
{(a, s(a)) : a € dom(s)}. The restriction s[A of s to a set A is the function
{(a, s(a)) : a € dom(s) N A}. An assignment s assigns a value t*(s) in M to
any L-term ¢ such that Var(r) € dom(s) as follows: ¢M(s) = cM, x,/,\" (s) =

s(xp), and (fty ... 1) (s) = fMEMs), M ).
The veritas symbol T is an L-formula. Strings ; =t; and Rt,...t, are
atomic L-formulas whenever1y, ..., t, are L-terms and R is arelation symbol in

L with arity n. We sometimes write (t; = ¢;) for clarity. Atomic L-formulas are
L-formulas. If ¢ and  are L-formulas, then (¢ Vv ¥) and —¢ are L-formulas.
If ¢ is an L-formula and n € N, then Jx,¢ is an L-formula. We use (¢ A 1)
to denote —(—¢ VvV =), (¢ — ) to denote (—¢ V V), (¢ < ) to denote
(¢ — ¥v) A (Y — ¢)), and Vx, ¢ to denote —3x,,—¢. Formulas defined in this
way are called first order. An L-formula is quantifier free if it has no quantifiers.
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2.4 Truth and satisfaction 7

Fig. 2.1. A model and an assignment.

A formula, possibly containing occurrences of the shorthands A and V, is in
negation normal form if it has negations in front of atomic formulas only.
The set Fr(¢) of free variables of a formula ¢ is defined as follows:

Fr(t; = t,) = Var(z;) U Var(,),
Fr(Rt,...t,) = Var(t;) U...U Var(z,),
Fr(¢ v ¢) = Fr(¢) U Fr(y),
Fr(—=¢) = Fr(¢),
Fr@x,¢) = Fr(¢) \ {x,}.

If Fr(¢p) = 0, we call ¢ an L-sentence.

2.4 Truth and satisfaction

Truth in first order logic can be defined in different equivalent ways. The most
common approach is the following, based on the more general concept of sat-
isfaction of L-formulas. There is an alternative game theoretic definition of
truth, most relevant for this book, and we will introduce it in Chapter 5. In the
definition below the concept of an assignment s satisfying an L-formula ¢ in
an L-structure, denoted M |=, ¢, is defined by giving a sufficient condition for
M =, ¢ in terms of subformulas of ¢.

For quantifiers we introduce the concept of a modified assignment. If
s is an assignment and n € N, then s(a/x,) is the assignment which
agrees with s everywhere except that it maps x, to a. In other words,
dom(s(a/xy)) = dom(s) U {x,}, s(a/x,)(x;) = s(x;) when x; € dom(s) \ {x,},
and s(a/x,)(x,) = a.
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8 Preliminaries

Fig. 2.2. Truth and falsity.

We define 7 as the smallest set such that:

(P1) if M (s) = t(s), then (t; = 1,5, 1) € T

(P2) if M (s) # t3'(s), then (t; = 1, 5,0) € T

(P3) if (1M (s), ..., tM(s)) € RM, then (Rt; .. .1,,5,1) € T;

(P4) if (M (s), ..., tM(s)) ¢ RM, then (Rty...1,,5,0) € T;

(P5) if (¢,s,1) e Tor(y,s,1) e T,then(p v ¢,s,1) e T;

(P6) if (¢, 5,0) € 7 and (,s,0) € 7, then (¢ V ¢, 5,0) € T;

(P7) if (¢,s,1) € T, then (—¢, 5,0) € T

(P8) if (¢, 5,0) € T, then (—¢, s, 1) € T

(P9) if (¢, s(a/xy), 1) € T for some a in M, then (Ix, ¢, s,1) € T;
(P10) if (¢, s(a/x,),0) € T for all a in M, then (Ax,¢p,s,0) € T.

Finally we define M = ¢ if (¢, s,1) € 7. A formula ¢ is said to be a log-
ical consequence of another formula ¢, in symbols ¢ = i, if for all M and
s such that M =, ¢ we have M =, . A formula ¢ is said to be log-
ically equivalent to another formula ¢, in symbols ¢ = i, if ¢ = ¢ and

v =¢.

Exercise 2.1 Prove for all first order ¢: (¢, s, 1) € T or (¢,s,0) € 7.

Exercise 2.2 Prove that for no first order ¢ and for no s we have (¢, s, 1) €
T and (¢,s,0) e 7T.

Exercise 2.3 Prove for all first order ¢: (—¢,s,1)eT ifand
only if (¢,s,1) ¢ 7.
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2.4 Truth and satisfaction 9

We define two operations ¢ > ¢P and ¢ > ¢¢ by simultaneous induction,
using the shorthands ¢ A i and Vx, ¢, as follows:
¢ = —¢ if ¢ atomic,
¢P = ¢ if ¢ atomic,
(—¢)! = ¢",
(=) = ¢,
@V ) =o' Ayl
@V Y =9¢PVvyP,
Ex¢)! = Va9,
Fxp )P = Ax, ¢,

We call ¢¢ the dual of ¢. The basic result concerning duality in first order
logic is that ¢ = ¢P and —¢ = ¢“. Thus the dual operation is a mechanical
way for translating a formula ¢ to one which is logically equivalent to the
negation of ¢, without actually adding negation anywhere except in front of
atomic formulas. Note that the dual of a formula in negation normal form is
again in negation normal form. This is important because negation does not, a
priori, preserve the negation normal form, unlike the other logical operations
AVAVA= T

Exercise 2.4 Show that ¢P and ¢° are always in negation normal form.
Exercise 2.5 Prove (¢9)" = ¢P and (¢P)° = ¢P.

Exercise 2.6 Compute (¢°)* and (¢).

Exercise 2.7 Prove ¢ = ¢P and —¢ = ¢ for any ¢ in first order logic.

Both ¢ — ¢9 and ¢ — @P preserve logical equivalence. Thus if we define
the formula ¢*, for any first order formula ¢ written in negation normal form, to
be the result of replacing each logical operation in ¢ by its dual (i.e. A by v and
vice versa, ¥ by 3 and vice versa), then any logical equivalence ¢ = i gives
rise to another logical equivalence ¢* = *. This is the Principle of Duality.

Exercise 2.8 Prove that ¢ =  implies ¢* = ™.

In terms of game theoretic semantics, which we discuss in Chapter 5, the
dual of a sentence, in being logically equivalent to its negation, corresponds to
permuting the roles of the players.
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Dependence logic

Dependence logic introduces the concept of dependence into first order logic by
adding a new kind of atomic formula. We call these new atomic formulas atomic
dependence formulas. The definition of the semantics for dependence logic is
reminiscent of the definition of the semantics for first order logic, presented
in Chapter 2. But instead of defining satisfaction for assignments, we follow
ref. [21] and jump one level up considering sets of assignments. This leads us
to formulate the semantics of dependence logic in terms of the concept of the
type of a set of assignments.

The reason for the transition to a higher level is, roughly speaking, that one
cannot manifest dependence, or independence for that matter, in a single assign-
ment. To see a pattern of dependence, one needs a whole set of assignments.

This is because dependence notions can be best investigated in a context
involving repeated actions by agents presumably governed by some possibly
hidden rules. In such a context dependence is manifested by recurrence, and
independence by lack of it.

Our framework consists of three components:

teams, agents, and features.

Teams are sets of agents. Agents are objects with features. Features are like
variables which can have any value in a given fixed set.

If we have n features and m possible values for each feature, we have alto-
gether m” different agents. Teams are simply subsets of this space of all possible
agents.

Although our treatment of dependence logic is entirely mathematical, our
intuition of dependence phenomena comes from real life examples, think-
ing of different ways dependence manifests itself in the real world. Statisti-
cians certainly have much to say about this, but when we go deeper into the
logic of dependence we see that the crucial concept is determination, not mere

10
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