
CHAPTER ONE

Basic definitions

• Thermodynamics is defined as the study of equilibrium states of a
system which has been subjected to some energy transformation.
More specifically, thermodynamics is concerned with transforma-
tions of heat into mechanical work and of mechanical work into
heat.

• A system is a specific sample of matter. In the atmosphere a par-
cel of air is a system. A system is called open when it exchanges
matter and energy with its surroundings (Figure 1.1). In the
atmosphere all systems are more or less open. A closed system is
a system that does not exchange matter with its surroundings.
In this case, the system is always composed of the same point-
masses (a point-mass refers to a very small object, for example
a molecule). Obviously, the mathematical treatment of closed
systems is not as involved as the one for open systems, which
are extremely hard to handle. Because of that, in atmospheric
thermodynamics, we assume that most systems are closed. This
assumption is justified when the interactions associated with
open systems can be neglected. This is approximately true in the
following cases. (a) The system is large enough to ignore mixing
with its surroundings at the boundaries. For example, a large
cumulonimbus cloud may be considered as a closed system but a
small cumulus may not. (b) The system is part of a larger homo-
geneous system. In this case mixing does not significantly change
its composition. A system is called isolated when it exchanges
neither matter nor energy with its surroundings.

• The state of a system (in classical mechanics) is completely speci-
fied at a given time if the position and velocity of each point-mass
is known. Thus, in a three-dimensional world, for a system of N
point-masses, 6N variables need to be known at any time. When

1

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-69628-9 - An Introduction to Atmospheric Thermodynamics, Second Edition
Anastasios A. Tsonis
Excerpt
More information

http://www.cambridge.org/0521696283
http://www.cambridge.org
http://www.cambridge.org


2 1 BASIC DEFINITIONS

Figure 1.1
In an open system mass
and energy can be
exchanged with its
environment. A system is
defined as closed when it
exchanges energy but not
matter with its
environment, and as
isolated if it exchanges
neither mass nor energy.
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N is very large (like in any parcel of air) this dynamical defini-
tion of state is not practical. As such, in thermodynamics we are
dealing with the average properties of the system.
If the system is a homogeneous fluid consisting of just one com-
ponent, then its thermodynamic state can be defined by its
geometry, by its temperature, T , and pressure, p. The geometry
of a system is defined by its volume, V , and its shape. How-
ever, most thermodynamic properties do not depend on shape.
As such, volume is the only variable needed to characterize geom-
etry. Since p, V, and T determine the state of the system, they
must be connected. Their functional relationship f(p, V, T ) = 0
is called the equation of state. Accordingly, any one of these vari-
ables can be expressed as a function of the other two. It follows
that the state of a one-component homogeneous system can be
completely defined by any two of the three state variables. This
provides an easy way to visualize the evolution of such a sys-
tem by simply plotting V against p in a rectangular coordinate
system. In such a system, states of equal temperature define an
isotherm. Any other thermodynamic variables that depend on the
state defined by the two independent state variables are called
state functions. State functions are thus dependent variables and
state variables are independent variables; the two do not differ
in other respects. That is why in the literature there is hardly
any distinction between state variables and state functions. State
variables and state functions have the property that their changes
depend only on the initial and final states, not on the particular
way by which the change happened. If the system is composed of
a homogeneous mixture of several components, then in order to
define the state of the system we need, in addition to p, V, T , the
concentrations of the different components. If the system is non-
homogeneous, we must divide it into a number of homogeneous
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1 BASIC DEFINITIONS 3

parts. In this case, p, V, and T of a given homogeneous part are
connected via an equation of state.
For a closed system, the chemical composition and its mass
describe the system itself. Its volume, pressure, and tempera-
ture describe the state of system. Properties of the system are
referred to as extensive if they depend on the size of the sys-
tem and as intensive if they are independent of the size of the
system. An extensive variable can be converted into an intensive
one by dividing by the mass. In the literature it is common to
use capital letters to describe quantities that depend on mass
(work, W , entropy, S) and lower case letters to describe inten-
sive variables (specific work, w, specific heat, q). The mass, m,
and temperature, T , will be exceptions to this rule.

• An equilibrium state is defined as a state in which the system’s
properties, so long as the external conditions (surroundings)
remain unchanged, do not change in time. For example, a gas
enclosed in a container of constant volume is in equilibrium if
its pressure is constant throughout and its temperature is equal
to that of the surroundings. An equilibrium state can be stable,
unstable, or metastable. It is stable when small variations about
the equilibrium state do not take the system away from the equi-
librium state, and it is unstable if they do. An equilibrium state
is called metastable if the system is stable with respect to small
variations in certain properties and unstable with respect to small
changes in other properties.

• A transformation takes a system from an initial state i to a final
state f . In a (p, V ) diagram such a transformation will be rep-
resented by a curve I connecting i and f . We will denote this
as i

I−→ f . A transformation can be reversible or irreversible.
Formally, a reversible transformation is one in which the succes-
sive states (those between i and f) differ by infinitesimals from
equilibrium states. Accordingly, a reversible transformation can
only connect those i and f states which are equilibrium states.
It follows that a reversible process is one which can be reversed
anywhere along its path in such a way that both the system
and its surroundings return to their initial states. In practice a
reversible transformation is realized only when the external con-
ditions change very slowly so that the system has time to adjust
to the new conditions. For example, assume that our system is
a gas enclosed in a container with a movable piston. As long as
the piston moves from i to f very slowly the system adjusts and
all intermediate states are equilibrium states. If the piston does
not move slowly, then currents will be created in the expanding
gas and the intermediate states will not be equilibrium states.
From this example, it follows that turbulent mixing in the atmo-
sphere is a source of irreversibility. If a system goes from i to
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4 1 BASIC DEFINITIONS

f reversibly, then it could go from f to i again reversibly if the
same steps were followed backwards. If the same steps cannot
be followed exactly, then this transformation is represented by
another curve I ′ in the (p, V ) diagram (i.e. f

I′−→ i) and may or
may not be reversible. In other words the system may return to
its initial state but the surroundings may not. Any transforma-
tion i −→ f −→ i is called a cyclic transformation. Given the
discussion above we can have cyclic tansformations which are
reversible or irreversible (Figure 1.2). A transformation i

I−→ f
is called isothermal if I is an isotherm, isochoric if I is a constant
volume line, isobaric if I is a constant pressure line, and adiabatic
if during the transformation the system does not exchange heat
with its surroundings (environment). Note and keep in mind for
later that adiabatic transformations are not isothermal.

• Energy is something that can be defined formally (we have to
wait a bit for this), but its concept is not easily understood by
defining it. We all feel we understand what is meant by energy,
but if we verbally attempt to explain what energy is we will get
upset with ourselves. At this point, let us just recall that for
a point-mass with a mass mp moving with speed v in a uni-
form gravitational field g, Newton’s second law takes the form

Figure 1.2
(a) A reversible cyclic
process; (b) an
irreversible cyclic process.
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1 BASIC DEFINITIONS 5

d(K + P )/dt = 0 where K = mpv
2/2, P = mpgz, t is the

time, and z is the height. K is called the kinetic energy and P is
called the potential energy. The total energy of the point-mass
E = K + P is, therefore, conserved. If we consider a system of
N interacting point-masses that may be subjected to external
forces (other than gravity), then the total energy of the system
is the sum of the kinetic energy about the centre of gravity of
all point-masses (internal kinetic energy), the kinetic energy of
the centre of gravity, the potential energy due to interactions
between the point-masses (internal potential energy), and the
potential energy due to external forces. The sum of the internal
kinetic and internal potential energy is called the internal energy
of the system, U . A system is called conservative if dU/dt = 0
and dissipative otherwise. For systems considered here we are
interested in the internal energies only.
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CHAPTER TWO

Some useful mathematical
and physical topics

2.1 Exact differentials

If z is a function of the variables x and y, then by definition

dz =
(

∂z

∂x

)
y

dx +
(

∂z

∂y

)
x

dy (2.1)

where dz is an exact differential. Now let us assume that a quan-
tity δz can be expressed according to the following differential
relationship

δz = Mdx + Ndy (2.2)

where x and y are independent variables and M and N are functions
of x and y. If we integrate equation (2.2) we have that∫

δz =
∫

Mdx +
∫

Ndy.

Since M and N are functions of x and y, the above integration
cannot be done unless a functional relationship f(x, y) = 0 between
x and y is chosen. This relationship defines a path in the (x, y)
domain along which the integration will be performed. This is called
a line integral and its result depends entirely on the prescribed path
in the (x, y) domain. If it is that

M =
(

∂z

∂x

)
y

, N =
(

∂z

∂y

)
x

(2.3)

then equation (2.2) becomes

δz =
(

∂z

∂x

)
y

dx +
(

∂z

∂y

)
x

dy.

The right-hand side of the above equation is the exact or total
differential dz. In this case δz is an exact differential. If we
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8 2 SOME USEFUL MATHEMATICAL AND PHYSICAL TOPICS

now integrate δz from some initial state i to a final state f we
obtain ∫ f

i

δz =
∫ f

i

dz = z(xf , yf ) − z(xi, yi). (2.4)

Clearly, if δz is an exact differential its net change along a path
i −→ f depends only on points i and f and not on the particular
path from i to f . We say that in this case z is a point function.
All three state variables are exact differentials (i.e. δp = dp, δT =
dT, δV = dV ). It follows that all quantities that are a function of
any two state variables will be exact differentials.
If the final and initial states coincide (i.e. we go back to the initial
state via a cyclic process), then from equation (2.4) we have that∮

δz = 0. (2.5)

The above alternative condition indicates that δz is an exact differ-
ential if its integral along any closed path is zero. At this point we
have to clarify a point so that we do not get confused later. When we
deal with pure mathematical functions our ability to evaluate

∮
δz

does not depend on the direction of the closed path, i.e. whether
we go from i back to i via i

I−→ f
I′−→ i or via i

I′−→ f
I−→ i

(see Figure 1.2). When we deal with natural systems we must view
the condition

∮
δz = 0 in relation to reversible and irreversible

processes. If, somehow, it is possible to go from i back to i via
i

I−→ f
I′−→ i but impossible via i

I′−→ f
I−→ i (for example,

when I ′ is an irreversible transformation), then computation of δz
depends on the direction and as such it is not unique. Therefore,
for physical systems, the condition

∮
δz = 0 when δz is an exact

differential applies only to reversible processes.
Note that since

∂

∂y

∂z

∂x
=

∂2z

∂y∂x
=

∂2z

∂x∂y
=

∂

∂x

∂z

∂y

it follows that an equivalent condition for δz to be an exact
differential is that

∂M

∂y
=

∂N

∂x
. (2.6)

Equations (2.3)–(2.6) are equivalent conditions that define z as a
point function and subsequently δz as an exact differential. If a
thermodynamic quantity is not a point function or an exact differ-
ential then its change along a path depends on the path. Moreover,
its change along a closed path is not zero. Such quantities are path
functions. For a path function the thermodynamic processes must
be specified completely in order to define the quantity. For the rest
of this book an exact differential will be denoted by dz whereas a
non-exact differential will be denoted by δz. Finally, note that if δz
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2.2 KINETIC THEORY OF HEAT 9

is not an exact differential and if only two variables are involved, a
factor λ (called the integration factor) may exist such that λδz is
an exact differential.

2.2 Kinetic theory of heat

Let us consider a system at a temperature T , consisting of N
point-masses (molecules). According to the kinetic theory of heat,
these molecules move randomly at all directions traversing rectilin-
ear lines. This motion is called Brownian motion. Because of the
complete randomness of this motion, the internal energies of the
point-masses not only are not equal to each other, but they change
in time. If, however, we calculate the mean internal energy, we will
find that it remains constant in time. The kinetic theory of heat
accepts that the mean internal energy of each point-mass, U , is
proportional to the absolute temperature of the system (a formal
definition of absolute temperature will come later; for now let us
denote it by T ),

U = constant × T (2.7)

Let us for a minute assume that N = 1. Then the point has
only three degrees of freedom which here are called thermodynamic
degrees of freedom and are equal to the number of independent vari-
ables needed to completely define the energy of the point (unlike
the degrees of freedom in Hamiltonian dynamics which are defined
as the least number of independent variables that completely define
the position of the point in state space). The velocity v of the point
can be written as

v2 = v2
x + v2

y + v2
z .

Because we only assumed one point, then the total internal energy
is equal to its kinetic energy. Thus,

U =
mpv

2

2
or

Ux =
mpv

2
x

2
, Uy =

mpv
2
y

2
, Uz =

mpv
2
z

2
where to each component corresponds one degree of freedom.
According to the equal distribution of energy theorem, the mean
kinetic energy of the point, U , is distributed equally to the three
degrees of freedom i.e. Ux = Uy = U z. Accordingly, from equation
(2.7) we can write that

U i = AT, i = x, y, z

where the constant A is a universal constant (i.e. it does not depend
on the degrees of freedom or the type of the gas). We denote this

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-69628-9 - An Introduction to Atmospheric Thermodynamics, Second Edition
Anastasios A. Tsonis
Excerpt
More information

http://www.cambridge.org/0521696283
http://www.cambridge.org
http://www.cambridge.org


10 2 SOME USEFUL MATHEMATICAL AND PHYSICAL TOPICS

constant as k/2 where k is Boltzmann’s constant (k = 1.38× 10−23

J K−1) (for a review of units, see Table A1 in the Appendix). There-
fore, the mean kinetic energy of a point with three degrees of
freedom is equal to

U =
3kT

2
(2.8)

or
mpv2

2
=

3kT

2
.

The theorem of equal energy distribution can be extended to N
points. In this case, the degrees of freedom are 3N and

N∑
i=1

mpv2
i

2
=

3NkT

2

or
1
N

N∑
i=1

mpv2
i

2
=

3
2
kT

or 〈
mpv2

2

〉
=

3
2
kT (2.9)

where 〈mpv2

2 〉 is the average kinetic energy of all N points. Note that
the above is true only if the points are considered as monatomic.
If they are not, extra degrees of freedom are present that corre-
spond to other motions such as rotation about the center of gravity,
oscillation about the equilibrium positions, etc.
The kinetic theory of heat has found many applications in the
kinetic theory of ideal gases. An ideal gas is one for which the
following apply:

(a) the molecules move randomly in all directions and in such a
way that the same number of molecules move in any direction;

(b) during the motion the molecules do not exert forces except
when they collide with each other or with the walls of the
container. As such the motion of each molecule between two
collisions is linear and of uniform speed;

(c) the collisions between molecules are considered elastic. This
is necessary because otherwise with each collision the kinetic
energy of the molecules will be reduced thereby resulting in a
temperature decrease. Also, a collision obeys the law of specular
reflection (the angle of incidence equals the angle of reflection);

(d) the sum of the volumes of the molecules is negligible compared
with the volume of the container.

Now let us consider a molecule of mass mp whose velocity is v and
which is moving in a direction perpendicular to a wall (Figure 2.1).
The molecule has a momentum P = mpv. Since we accept that the
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2.2 KINETIC THEORY OF HEAT 11

Figure 2.1
A molecule of mass mp

moving with a velocity v
and hitting a surface S. If
this collision is assumed
elastic and specular, then
the change in momentum
is 2mpv.

V

S

vdt

collision is elastic and specular, the magnitude of the momentum
after the collision is −mpv. Thus the total change in momentum is
mpv − (−mpv) = 2mpv. According to Newton’s second law, F =
dP/dt. If we consider N molecules occupying a volume V we can
calculate the change in momentum dP of all molecules in the time
interval dt by multiplying the change in momentum of one molecule
(2mpv) by the number of molecules dN that hit a given area S on
the wall, i.e.

dP = 2mpvdN (2.10)

Note that here we have assumed that all molecules have the same
speed. The number dN of molecules hitting area S during dt is equal
to the number of molecules which move to the right and which are
included in a box with base S and length vdt. Since the motion
is completely random, we can assume that 1

6 of the molecules will
be moving to the right, 1

6 will be moving to the left, and 4
6 will be

moving along the directions of the other two coordinates. Since the
volume of the box is Svdt and the number of molecules per unit
volume is N/V then the number of molecules inside the box is

N

V
Svdt.

Accordingly, the number of molecules moving to the right and
colliding with S is

dN =
N

6V
Svdt (2.11)

From equations (2.10) and (2.11) it follows that

dP = 2mpv
2 N

6V
Sdt.
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