
Quantum Groups

Algebra has moved well beyond the topics discussed in standard

undergraduate texts on \modern algebra." Those books typically

dealt with algebraic structures such as groups, rings and fields:

still very important concepts! However, Quantum Groups: A Path

to Current Algebra is written for the reader at ease with at least one

such structure and keen to learn the latest algebraic concepts and

techniques.

A key to understanding these new developments is categorical

duality. A quantum group is a vector space with structure. Part of

the structure is standard: amultiplicationmaking it an \algebra."

Another part is not in those standard books at all: a comultiplication,

which is dual to multiplication in the precise sense of category

theory, making it a \coalgebra."While coalgebras, bialgebras and

Hopf algebras have been around for half a century, the term

\quantum group," along with revolutionary new examples, was

launched by Drinfel'd in 1986.
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Introduction

Algebra has moved well beyond the topics discussed in standard undergrad-
uate texts on “modern algebra”. Those books typically dealt with algebraic
structures such as groups, rings and fields: still very important concepts!
However, Quantum Groups: A Path to Current Algebra is written for the
reader at ease with at least one such structure and keen to learn the latest
algebraic concepts and techniques.

A key to understanding these new developments is categorical duality.
A quantum group is a vector space with structure. Part of the structure
is standard: a multiplication making it an “algebra”. Another part is not
in those standard books at all: a comultiplication, which is dual to multi-
plication in the precise sense of category theory, making it a “coalgebra”.
While coalgebras, bialgebras and Hopf algebras have been around for half
a century, the term “quantum group”, along with revolutionary new exam-
ples, was unleashed on the mathematical community by Drinfel′d [Dri87] at
the International Congress in 1986. Before launching into an explanation
of the duality required, I should mention here that an ordinary group gives
rise to a quantum group by taking the vector space with the group as basis.

When pushed to provide formal proofs of our claims, mathematicians
generally resort to set theory. We build our structures on sets and feel
satisfied when we can be explicit about the elements of our constructed
objects. Up to the mid twentieth century, algebraic objects were sets with
selected operations which assigned elements to lists of elements. Typically,
we would have binary operations which might be called addition, multi-
plication or Lie bracket respectively assigning a sum, product or formal
commutator to each pair of elements.

In those days, the importance was recognized of dealing with the homo-
morphisms between algebraic structures: these were the functions which
preserved the operations involved in the kind of structure at hand. The ex-
istence of a bijective homomorphism (isomorphism) between two algebraic
objects meant that the two objects played the same role. So how could
the literal elements be the defining ingredient? The important issue was
the way the algebraic object related to others of its own kind by means
of homomorphisms into it or out of it. Quite often the elements could be
recaptured as homomorphisms from a particular object into the one of in-
terest. For example, the elements of a vector space were in bijection with
the linear functions from a selected one-dimensional space.

ix
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x Introduction

Homomorphisms into an object might therefore be called “generalized
elements” of the object. However, this notion of element of the object will
depend on the kind of structure we are studying since that will determine
what a homomorphism is (a group homomorphism, a linear function, a ring
homomorphism, or whatever).

We quite often wish to add more elements to our sets to improve the
properties of the operations: as when we construct the integers from the
natural numbers to obtain subtraction; or when we construct the rational
numbers from the integers to obtain division; or when we construct the real
polynomials from the real numbers to obtain an indeterminate. These con-
structions can be described explicitly as sets with operations that include
the original ones. More importantly, each such construction is unique up to
isomorphism with a universal property: each homomorphism X �� C out
of the original structure X , into a set C with the extra structure, extends
to a homomorphism X̂ �� C out of the constructed object X̂ .

In this way it was realized that knowing the homomorphisms out of
objects determined the objects just as surely as knowing the homomor-
phisms into them did. It is natural then to call homomorphisms out of
an object “generalized co-elements”. Once this kind of duality principle is
acknowledged, interesting facts appear.

Let us take a simple example purely using sets. Consider two sets X
and Y . Their cartesian product X × Y is the set whose elements are pairs
(x, y) where x lies in X and y lies in Y . We are not studying any structure
on these sets except for the property of being a set. So homomorphisms in
this case are merely functions. It is clear that functions f : T �� X × Y
into X × Y from a test object T are in bijection with pairs of functions
(f1, f2) where f1 : T �� X and f2 : T �� Y . In other words, T -elements
of X × Y are in bijection with pairs consisting of a T -element of X and a
T -element of Y . All that is fairly straightforward.

Now suppose that our sets X and Y have no common elements; if they
are not disjoint, replace them by isomorphic sets which are. Write X + Y
for the union; we write X + Y rather than X ∪ Y to emphasize that it
is the disjoint union (if X and Y were finite, the number of elements of
X + Y would be the sum of the number of elements in X and the number
in Y ). A function f : X + Y �� T is determined by its restriction to X
and its restriction to Y . In other words, the co-T -elements of X +Y are in
bijection with pairs consisting of a co-T -element of X and a co-T -element
of Y .

We conclude that the constructions X ×Y and X +Y are duals of one
another. This is not something that was stressed when we were taught the
more abstract multiplication and addition of numbers in infants’ school.

If we now look at vector spaces or groups X and Y , the cartesian
product X ×Y as sets becomes a vector space or group by means of coord-
inatewise operations from X and Y ; again this has pairs as the generalized
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Introduction xi

elements T �� X ×Y . However, to obtain the dual constructions in these
cases is quite different from the disjoint union of sets: in the case of vector
spaces, we have that X × Y is self-dual (called direct sum and denoted by
X ⊕Y ); in the case of groups, the dual notion is rather complicated (called
the free product by group theorists).

In order to formalize the way in which constructions such as these
can be dual, we can use the notion of category. I intend to give a defini-
tion of this concept in this introduction. Before doing so, I would like to
draw an analogy. It was noticed in projective plane geometry that theo-
rems occurred in pairs: one such pair consists of Pascal’s Mystic Hexagram
Theorem and Brianchion’s Theorem; both are about conics. Given one the-
orem in a pair, the other is obtained by interchanging the role of points and
lines, reversing the incidence relation (“lies on” becomes “goes through”).
To formally explain this duality, we abstract the notion of projective plane.

Here is the essence of the definition. A projective plane P consists of
two sorts of elements: one sort called points, the other called lines. It also
consists of a relation between these elements, called incidence (this is a rule
telling when a point is incident with a line). There are some axioms which
include:

1. for distinct points P and Q , there is a unique line L such that P
and Q are both incident with L ; and,

2. for distinct lines L and M , there is a unique point P such that P is
incident with both L and M .

Any system satisfying this is a projective plane! The points do not need
to look like points and the lines do not need to look like lines in any sense.
Of course, we still draw pictures to help our intuition.

Now we are ready to formalize duality. Given a projective plane P , we
obtain a projective plane Prev whose points are the lines of P , whose lines
are the points of P , and whose incidence relation is the reverse of that of
P . Notice that axioms (1) and (2) for Prev are respectively axioms (2)
and (1) for P . This means that, if we prove a theorem about all projective
planes, then the dual theorem is automatically true by applying the original
theorem to Prev.

It turns out that there are not too many interesting theorems assuming
only axioms (1) and (2). A further axiom based on a theorem of Pappus can
be added and the system remains self-dual. In fact, conics can be defined
using an idea of Steiner, and Pascal’s Theorem can be proved. Let us now
discontinue discussion of this analogy and return to the formalization of
the duality at hand.

A category A consists of two sorts of elements: one sort called objects,
the other called morphisms (or arrows). It also consists of three functions.
The first function assigns to each morphism f a pair (A, B) of objects in
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xii Introduction

which case A is called the domain (or source) of f while B is called the

codomain (or target) of f ; the notations f : A �� B and A
f

�� B are used.
The second function assigns to each object A a morphism 1A : A �� A
called the identity morphism of A . A pair (f, g) of morphisms is called
composable when the codomain of f is equal to the domain of g . The third
function assigns to each composable pair (f, g) of morphisms, a morphism
g◦f , called the composite of f and g , whose domain is that of f and whose
codomain is that of g . There are two axioms:

1. if (f, g) and (g, h) are composable pairs of morphisms then
(h ◦ g) ◦ f = h ◦ (g ◦ f) ; and,

2. if f : A �� B is a morphism then f ◦ 1A = f = 1B ◦ f .

The standard argument shows that identity morphisms are unique. The
notation A(A, B) (or HomA(A, B)) is used for the set of all morphisms in
A from A to B .

There is a category Set whose objects are sets, morphisms are func-
tions, and composition is the usual composition of functions. There is a
category Vect

k
whose objects are vector spaces over a fixed field k and

morphisms are linear functions; composition is as usual. Similarly we have
a category whose objects are groups and a category whose objects are rings.

However, there are categories whose objects do not look like sets and
whose morphisms do not look like functions. For example, there is a cate-
gory whose objects are integers, whose morphisms are pairs (m, n) of inte-
gers such that the domain of (m, n) is m and the codomain is the product
mn ; a pair ((m, n), (r, s)) of morphisms is composable when mn = r and
the pair’s composite is (m, ns) .

Now to duality. Given a category A , there is a category Aop whose
objects are the objects of A , and morphisms are the morphisms of A ;
however, the domain of a morphism is its codomain in A while its codomain
in Aop is its domain in A . A pair (g, f) of morphisms is composable in Aop

if and only if (f, g) is composable in A ; its composite f ◦ g in Aop is the
composite g ◦ f in A . We call Aop the dual or opposite of the category A .

Perhaps it helps to say that Aop is the category obtained from A by
reversing arrows: a morphism f : A �� B in A is precisely a morphism
f : B �� A in Aop. Admittedly, if the objects of A look like sets (that is,
are sets with some structure), the same is true of Aop; but the same cannot
be said for morphisms that are functions, since formally reversed functions
can scarcely be thought of as functions.

The duality between cartesian product and disjoint union can now
be made precise. In a category A , a product for two objects A and B
consists of an object A×B and two morphisms p1 : A×B �� A , p2 : A×
B �� B (called projections) with the following “universal” property: for all
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Introduction xiii

objects T and morphisms a : T �� A , b : T �� B , there exists a unique
morphism T �� A × B, denoted by (a, b) , such that p1 ◦ (a, b) = a and

p2 ◦ (a, b) = b . This means that T -elements of A× B are in bijection with
pairs consisting of a T -element of A and a T -element of B .

A morphism h : C �� D in a category A is called a right inverse for a
morphism k : D �� C when k◦h = 1C ; we also say that k is a left inverse
for h . A morphism h is invertible (or an isomorphism) when it has both a
left and right inverse; in this case, a familiar argument shows that the left
and right inverse agree and this common morphism is unique, being called
the inverse of h and denoted by h−1. If there exists an invertible morphism
C �� D then we say C and D are isomorphic and write C ∼= D . In a
category, we think of isomorphic objects as being essentially the same. Any
two products of two objects A and B can be proved, by an easy argument,
to be isomorphic.

Now we have our duality between cartesian product and disjoint union
of sets: cartesian product is the product in the category Set while disjoint
union is the product in the category Setop.

We can give an even simpler example. An object K of a category A is
called terminal when, for all objects A of A , there is precisely one morphism
A �� K . The singleton set 1 is terminal in the category Set while the
empty set ∅ is terminal in Setop.

Any concept defined for all categories A has a dual concept which is
the same concept translated to Aop: the prefix “co-” is used. So a product
in Aop is called a coproduct in A . A terminal object in Aop, under this
system, would be called a coterminal object in A ; but it is also called an
initial object of A .

In the spirit of category theory itself, we should consider appropriate
morphisms of categories. These are called functors. A functor F : A �� X
between categories A and X consists of two functions. The first assigns to
each object A of A an object FA of X . The second function assigns to each
morphism f : A �� B of A a morphism Ff : FA �� FB of X . There
are two axioms:

1. F1A = 1FA for all objects A of A ; and,

2. F (g ◦ f) = Fg ◦ Ff for all composable pairs (f, g) in A .

It is easy to see that functors preserve invertibility of morphisms: in fact
they take inverses to inverses.

Let us look at a couple of examples of functors.

• Each object T of a category A determines a functor RT = A(T, ) :
A �� Set called the functor represented by T ; the elements of

RT A = A(T, A) are the morphisms a : T �� A in A (that is, the

T -elements of A), while the function RT f : RT A �� RT B takes
such an a to f ◦ a .
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xiv Introduction

• Suppose K is an object of A for which a product K×A exists (and is
chosen) for all objects A . There is a functor F = K × : A �� A
defined on objects by FA = K×A and on morphisms by Ff = K×f
where K × f = (p1, f ◦ p2) : K × A �� K × B .

Categories were invented not only to formalize duality but to formalize
the concept of “naturality” in mathematics. The idea was that a natural
transformation should be one that involves no ad hoc choices. For example,
if V is a vector space and V ∗ is the vector space of linear functions from V
into the base field k , there is a natural linear function V �� V ∗∗ which
takes v ∈ V to the linear function ev : V ∗ �� k defined by evaluation
at v . However, any linear function V ∗∗ �� V that depends on a choice of
basis for V should not be natural.

Suppose F : A �� X and G : A �� X are functors between the same
categories. A natural transformation θ : F �� G is a function. The func-
tion assigns to each object A of A a morphism θA : FA �� GA of X .
There is a single axiom: for each morphism f : A �� B ,

Gf ◦ θA = θB ◦ Ff .

There is an obvious componentwise composition of natural transformations.
This defines a category

[
A ,X

]
, called a functor category, where the objects

are functors F : A �� X and the morphisms are natural transformations.
A natural isomorphism is an invertible morphism in the functor category.
A functor F : A �� Set is called representable when it is isomorphic to
RT for some object T ; such a T is called a representing object for F . For
example, the functor U : Vect

k

�� Set , which takes each vector space to
its underlying set and each linear function to that function, is representable:
we have U ∼= Rk since the linear functions from the field k to a vector
space V are in natural bijection with elements of V . Many constructions
in mathematics are designed to provide representing objects for interesting
functors.

Let us look at a couple of examples of natural transformations:

• Suppose F : A �� Set is a functor and T is an object of A . Each
element x of FT determines a natural transformation x̂ : RT

�� F
defined by x̂A(a) = (Fa)(x) . The Yoneda Lemma states that this
defines a bijection FT ∼=

[
A ,Set

]
(RT , F ) . The inverse bijection

is even easier: it takes the natural transformation θ : RT
�� F to

the element θT (1T ) of FT .

• Suppose h : K �� L is a morphism of a category A in which prod-
ucts of pairs of objects exist. Then we obtain a natural transforma-
tion f × : K × �� L × whose value at the object A is the
morphism f × A = (f ◦ p1, p2) : K × A �� L × A .

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-69524-4 - Quantum Groups: A Path to Current Algebra
Ross Street
Frontmatter
More information

http://www.cambridge.org/0521695244
http://www.cambridge.org
http://www.cambridge.org


Introduction xv

Modern algebra in the sense of the first half of the twentieth cen-
tury dealt with sets equipped with operations. Soon after, the idea of
co-operations crept into mathematics. The notion of coalgebra is dual to
algebra. This is the main concept in this book.

Now I turn to the book’s contents. Chapter 1 gives precise definitions
of monoids and groups; the axioms are expressed in terms of diagrams
ready to be imported to a general category. This importation is carried
out in Chapter 2 where we provide the important example of 2 × 2 ma-
trices in readiness for the quantum version. A duality between geometry
and algebra is explained. In Chapter 3, we describe the quantum general
linear group of 2 × 2 matrices as a coalgebra. This comes from lectures
by Manin in Montréal. Chapter 4 is about modules over rings; we find it
natural to take a 2-sided point of view so that our basic module M has a
left action by a ring R and a right action by a ring S which compatibly
interact. Chapter 5 concerns finitely generated, projective modules under
the mysterious name of “Cauchy modules”. It turns out that F.W. Lawvere
noticed a concept in enriched category theory which has Cauchy sequences
as an example; when interpreted for additive categories, it leads to modules
that are finitely generated and projective. Chapter 6 discusses algebras,
Lie algebras and the Poincaré–Birkhoff–Witt Theorem. Chapter 7 is about
coalgebras and bialgebras. A coalgebra is a vector space with a comulti-
plication. A bialgebra is an algebra which is also a coalgebra subject to a
compatibility condition. The dual vector space of a coalgebra is an algebra,
however, the usual dual of an algebra need not naturally be a coalgebra. In
Chapter 8 we describe Sweedler’s modification (see [Swe69] and [Abe80])
of the dual of an algebra which is a coalgebra.

In Chapter 9, we look at Hopf algebras. These should be thought of
as generalized groups. An important part of group theory is the theory of
their representations: these are modules over the group ring. In Chapter 10
we look at modules over bialgebras. Then, in Chapter 11, we move to use
categories more seriously. We discuss categories equipped with an abstract
tensor product: monoidal or tensor categories. We discuss examples in-
volving braids. A deep example, not treated here, is the subject of the
paper [JS95]. An important property of the tensor product U⊗V of vector
spaces is that it represents the vector space

[
V , W

]
of linear functions from

V to W :
Vectk(U⊗V , W ) ∼= Vectk

(
U,

[
V , W

])
.

In Chapter 12, this idea is lifted to arbitrary tensor categories. Examples
from knot theory are provided.

The Yang–Baxter equation, from the branch of physics called statistical
mechanics, had a major influence on the new examples of Hopf algebras
called quantum groups. In Chapter 13, an algebraic concept of Yang–
Baxter operator, which makes sense in any tensor category, is explained.
A family of examples from linear algebra is provided in Chapter 14.
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xvi Introduction

In Chapter 15, the notion of monoid is lifted to the level of generality
at which “algebras” and “coalgebras” become precise categorical duals.
For the first time, I believe, in a text at this level, emphasis is placed on
“2-cells” between monoid morphisms, providing the student with a gentle
introduction to higher-dimensional category theory.

Each bialgebra has a tensor category of representations. This corres-
pondence is a modern formulation of Tannaka–Krein duality. The treat-
ment of this topic in Chapter 16 makes use of the 2-dimensional structure
of monoids from Chapter 15. There is by now a vast literature on Tannaka
duality. We satisfy ourselves with a sketch in Chapter 17 of an application
to construct universally a Hopf algebra from a bialgebra.

Finally, in Chapter 18, the example of Chapter 3 is revisited in the
light of what has been learned. There are exercises at the end of several
chapters. Solutions to most of these are provided in Chapter 19.
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other software. All, including the braids, tangles, and 2-cell diagrams, are

1Originally written by Kristoffer Rose; extended and enhanced by Rose and Moore
for mathematical applications and higher quality output. The XY-pic package and docu-
mentation is now included with all TEX and LATEX distributions.
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specified within the LATEX source using the XY-pic package syntax. Indeed
the syntax and coding to handle curves and 2-cells was written in 1993–94
by Ross Moore, specifically for use with this book. Since then the XY-pic
package has become a useful tool for presenting diagrammatic material in
Category Theory and other branches of mathematics, computer science and
linguistics.

As an application of Ross Moore’s work with the LATEX2HTML transla-
tion software, an earlier version of the present manuscript was made avail-
able via the “world-wide web”, now known as the internet. In that form it
was used as a source of lecture notes for courses at Macquarie.

A great deal of credit is also due to Simon Byrne (as a Vacation Scholar
in January–February 2005) for finishing off the typing of exercises and for
assembling the manuscript into a form ready to submit as a proposal for
the Australian Mathematical Society Lecture Series. With this go-ahead,
the final version of the manuscript, complete with up-to-date Bibliography,
Index, front-matter and filler images was prepared by Ross Moore, who is
acknowledged here as being the Technical Editor for this monograph.

... the illustrations

The illustrations appearing at the end of some chapters are reproduced from
Grahame Walsh, Bradshaws [Wal94]. I am very grateful to the Bradshaw
Foundation and Edition Limitée for consenting to their inclusion. The
original coloured rock paintings, which the silhouettes trace, are the work
of Australian people living as much as 50 millennia before our time.
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xviii Introduction

These paintings have been mentioned already in the mathematico-scientific
literature, in connection with knots and braids; viz.

How old are knots? It has been suggested that the Stone Age
should be called the Age of String. The extraordinary tass-
elled figures photographed and described by G. L. Walsh in
Bradshaws: Ancient Rock Paintings of Western Australia (Ed-
ition Limitée, 1994) have been suggested to be 50,000 years
old. Knots have been intimately linked with the development
of humans, through weapons, fishing, hunting, clothing, hous-
ing, boating and a myriad of other ways.

The metaphor of knots is found throughout literature, and
knots and interlacing are featured in many forms of art.

Ronald Brown, review of: “The Knot Book:
An Elementary Introduction to the Mathematical Theory

of Knots” by Colin C. Adams (W.H. Freeman 1994),
appeared in Nature, Vol. 371 (13 October 1994).
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