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This article is based around parts of the tutorial given by E. Bouscaren
and A. Pillay at the training workshop at the Isaac Newton Institute,
March 29 - April 8, 2005. The material is treated in an informal and
free-ranging manner. We begin at an elementary level with an intro-
duction to model theory for the non logician, but the level increases
throughout, and towards the end of the article some familiarity with al-
gebraic geometry is assumed. We will give some general references now
rather than in the body of the article. For model theory, the beginnings
of stability theory, and even material on differential fields, we recom-
mend [5] and [8]. For more advanced stability theory, we recommend
[6]. For the elements of algebraic geometry see [10], and for differential
algebra see [2] and [9]. The material in section 5 is in the style of [7].
The volume [1] also has a self-contained exhaustive treatment of many
of the topics discussed in the present article, such as stability, ω-stable
groups, differential fields in all characteristics, algebraic geometry, and
abelian varieties.

1 Model theory

From one point of view model theory operates at a somewhat naive level:
that of point-sets, namely (definable) subsets X of a fixed universe M

and its Cartesian powers M × · · ·×M . But some subtlety is introduced
by the fact that the universe M is “movable”, namely can be replaced
by an elementary extension M ′, so a definable set should be thought of
more as a functor.
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2 A. Pillay

Subtlety or no subtlety, model theory operates at a quite high level of
generality.

A (1-sorted) structure M is simply a set (also called M) together with
a fixed collection of distinguished relations (subsets of M × · · · × M)
and distinguished functions (from M × · · · × M to M). We always in-
clude the diagonal {(x, x) : x ∈ M} ⊂ M ×M among the distinguished
relations. (Example: Any group, ring, lattice,. . . is a structure under
the natural choices for the distinguished relations/functions.) These
distinguished relations/functions are sometimes called the primitives of
the structure M . From the collection of primitives, one constructs us-
ing the operations composition, finite unions and intersections, comple-
mentation, Cartesian product, and projection, the class of ∅-definable
sets and functions of the structure M . Let us call this class Def0(M),
which should be seen as a natural “category” associated to the structure
M : the objects of Def0(M) are the ∅-definable sets (certain subsets of
M × · · · ×M) and the morphisms are ∅-definable functions f : X → Y

(i.e. graph(f) is ∅-definable). The category Def(M) of definable (with
parameters) sets in M is obtained from Def0(M) by allowing also fibres
of ∅-definable functions as objects: if f : X → Y is in Def0(M) and
b ∈ Y then f−1(b) is a definable set (defined with parameter b). For
A a subset of the (underlying set of M) DefA(M) denotes the cate-
gory of definable sets in M which are defined over A, namely defined
with parameter which is a tuple of elements of A. By convention, by a
definable set we mean a set definably possibly with parameters. By a
uniformly definable family of definable sets we mean the family of fibres
of a definable map f : X → Y .

We give a couple of examples.

The reals.
Consider the structure consisting of R with primitives 0, 1,+,−, ·. Then
the natural total ordering on R is a 0-definable set, being the projection
on the first two coordinates of {(x, y, z) ∈ R3 : y − x = z2 and x 6= y}.
Tarski’s “quantifier elimination” theorem says that the definable sets in
(R, 0, 1,+,−, ·) are precisely the semialgebraic sets, namely finite unions
of subsets of Rn of the form

{x ∈ Rn : f(x) = 0 and g1(x) > 0 and . . . gr(x) = 0}

where f and the gi are polynomials over R.
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Model theory and stability theory 3

Algebraically closed fields
Consider the field C of complex numbers. An (affine) algebraic variety is
a subset X ⊆ Cn defined by a finite system of polynomial equations in n-
variables and with coefficients from C. If the equations have coefficients
from Q we say that X is defined over Q. A morphism between algebraic
varieties X and Y is a map from X to Y given by a tuple of polynomial
functions. Such a morphism is over Q if the polynomial functions have
coefficients from Q. View C as a structure with primitives 0, 1,+,−, ·.
Then it is a theorem (quantifier-elimination) that the category Def0(C)
consists, up to Boolean combination, of the affine algebraic varieties de-
fined over Q with morphisms defined over Q. Likewise Def(C) is (up to
Boolean combination) just the category of algebraic varieties and mor-
phisms. Everything we have said applies with any algebraically closed
field K in place of C and with the prime field in place of Q.

Given a structure M , the language or signature L = L(M) of M is
an indexing of the primitives, or rather a collection of (relation/ func-
tion) symbols corresponding to the primitives of M . We call M an L-
structure or structure for the signature L. There is a natural notion of
an L-structure M being a substructure or extension of an L-structure N

(generalizing the notions subgroup, subring, . . . ). But somewhat more
crucial notions for model theory are those of elementary substructure and
elementary extension. We may take the Tarski-Vaught criterion as a def-
inition: So assume that M,N are L-structures and M is a substructure
of N (notationally M ⊆ N). Then M is an elementary substructure of
N if whenever X ⊆ Nn, X ∈ DefM (N), and X 6= ∅, then X ∩Mn 6= ∅.

It is usual to begin by introducing first order formulas and sentences
of L, define the notion of their satisfaction/truth in L-structures, and
develop the rest of the theory afterwards. So the first order formulas of
L are built up in a syntactically correct way, with the aid of parentheses,
from primitive formulas R(x1, . . . , xn), f(x1, . . . , xn) = y (where R, f

are relation/function symbols of L and x1, . . . , xn, y are “variables” or
“indeterminates”) using ¬,∧,∨, and quantifiers ∃x, ∀x. Among the L-
formulas are those with no unquantified variables. These are called L-
sentences. An L-formula with unquantified variables x1, . . . , xn is often
written as φ(x1, . . . , xn). Given an L-structure M and L-sentence σ

there is a natural notion of “σ is true in M” which is written M |= σ,
and for φ(x1, . . . , xn) an L-formula, and b = (b1, . . . , bn) ∈ Mn, a natural
notion of “φ is true of b in M”, written M |= φ(b).
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4 A. Pillay

As the logical operations ¬,∨, . . . correspond to complementation,
union, . . . we see that for M an L-structure the 0-definable sets of M

come from L-formulas: if φ(x1, . . . , xn) is an L-formula, then {b ∈ Mn :
M |= φ(b)} is a 0-definable set in M and all 0-definable sets of M oc-
cur this way. Depending on one’s taste, the syntactic approach may be
more easily understandable. For example if M is a group (G, ·), then the
centre of G is a 0-definable set, defined by the formula ∀y(x · y = y · x).

Likewise the definable sets in M are given by L-formulas with param-
eters from M .

With this formalism M is an elementary substructure of N (N is an
elementary extension of M) if M ⊆ N are both L-structures and for each
L-formula φ(x1, . . . , xn) and tuple b = (b1, . . . , bn) ∈ Mn, M |= φ(b) iff
N |= φ(b).

The compactness theorem of first order logic gives rise to elementary
extensions of M of arbitrarily large cardinality, as long as (the under-
lying set of) M is infinite. Such an elementary extension N could be
considered as some kind of “nonstandard” extension of M , in which all
things true in M remain true. If X is a definable set in M then X has
a canonical extension, say X(N) to a definable set in N (in fact X(N)
is just defined in the structure N by the same formula which defines
X in M). The usefulness of passing to an elementary extension N of
a structure M is that we can find such elementary extensions with lots
of symmetries (automorphisms) and “homogeneity” properties. Such
models play the role of Weil’s universal domains in algebraic geometry
(and Kolchin’s universal differential fields in differential algebraic geom-
etry). The relative unfashionability of such objects in modern algebraic
geometry is sometimes an obstacle to the grasp of what is otherwise the
considerably naive point of view of model theory. Another advantage of
such nonstandard models is that uniformly definable families of definable
sets have explicit “generic fibres”.

Given a cardinal κ, a structure M is called κ-compact if whenever
{Xi : i ∈ I} is a collection of definable subsets of M with the finite
intersection property, and |I| < κ, then ∩i∈IXi 6= ∅.

Under some mild set-theoretic assumptions, any structure M has κ-
compact elementary extensions of cardinality κ for sufficiently large car-
dinals κ. There is a related notion, κ-saturation: M is said to be κ-
saturated if for any subset of M of cardinality < κ any collection of
A-definable subsets of M , which has the finite intersection property, has
nonempty intersection. For κ strictly greater than the cardinality of L

(number of L-formulas), κ-saturation coincides with κ-compactness.
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Model theory and stability theory 5

Let κ be any uncountable cardinal. Then any algebraically closed field
K of cardinality κ is κ-compact. Moreover let λ < κ, let K[xi : i < λ]
be the polynomial ring in λ unknowns over K, and let S be any proper
ideal of this ring, there is a common zero (ai)i<λ of S whose coordinates
lie in K.

We finish this section with some additional notation, conventions, and
examples (aimed at the nonlogician).

Fix a language L. An L-theory is a set Σ of L-sentences which has a
model. If σ is an L-sentence we write Σ |= σ to mean that every model
of Σ is a model of σ. The L-theory Σ is said to be complete if for every
L-sentence σ either Σ |= σ or Σ |= ¬σ.

A complete theory is often denoted by T . If T is such then we are
interested in models of T and definable sets in such models. It has
been a convention to choose a κ-compact model M̄ of T of cardinality
κ for some large κ. Then every model of T of cardinality < κ is (up to
isomorphism) an elementary substructure of M̄ . So when we speak of a
model of T we refer to a small (cardinality < κ) elementary substructure
of M̄ . We use A,B, . . . to denote small subsets of (the underlying set
of) M̄ .

Complete types play an important role in model theory, especially in
stability theory. If a is a tuple (usually finite) from M̄ and A a subset of
M̄ then tp(a/A) denotes the set of formulas φ(x) with parameters from
A which are true of a in M̄ . Working rather with definable sets, tp(a/A)
can be identified with the collection of A-definable subsets of M̄n which
contain the point a, and is an ultrafilter on the set of A-definable subsets
of M̄n. Then tuples a and b have the same type over A if there is an
automorphism of M̄ fixing A pointwise and taking a to b.

A basic example of a complete theory is ACFp the theory of alge-
braically closed fields of characteristic p (where p is a prime, or is 0).
The language here is the language of rings (0, 1,+,−, ·). (Note that it
is easy to write down first order sentences giving the axioms.)

A theory Σ (complete or not) in language L is said to have quantifier-
elimination if every L-formula φ(x1, . . . , xn) is equivalent (in models of
Σ) to a quantifier-free L-formula. For example the (incomplete) theory
ACF has QE. For specific theories it is important to have some kind
of quantifier-elimination or relative quantifier elimination theorem so as
to understand to some extent definable sets. But as far as the general
theory of definability goes one can always assume quantifier-elimination

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-69484-1 - Model Theory with Applications to Algebra and Analysis: Volume 1
Zoé Chatzidakis, Dugald Macpherson, Anand Pillay and Alex Wilkie
Excerpt
More information

http://www.cambridge.org/9780521694841
http://www.cambridge.org
http://www.cambridge.org


6 A. Pillay

by expanding the language by new relation symbols Rφ(x1, . . . , xn) for
each formula φ(x1, . . . , xn).

The origin of stability theory was the (abstract) study of theories
T which are uncountably categorical. The convention here is that the
language L is countable, and then T is said to be uncountably categorical
if for every (equivalently some, by Morley’s theorem) uncountable λ, T

has exactly one model of cardinality λ up to isomorphism. ACFp is
uncountably categorical.

Differentially closed fields.
An important example in this series of talks will be differentially closed
fields. The relevant complete theory is DCF0. The language here is the
language of differential rings, namely the language of rings together with
a new unary function symbol ∂. The axioms are the axioms for fields
of characteristic 0 with a derivation ∂ (∂ is an additive homomorphism,
and ∂(x · y) = ∂(x) · y + x · ∂(y)), together with axioms which state that
any finite system of differential polynomial equations and inequations
with parameters (in finitely many indeterminates) which has a solution
in differential field extension already has a solution in the model in
question. It is a nontrivial fact that one can find such axioms, and in
fact there are much simpler axioms (referring just to single differential
equations in one indeterminate) which suffice, as shown by Blum. The
theorem is that DCF0 is complete and has quantifier-elimination.

Other important complete theories with interest are the theory of sepa-
rably closed fields of characteristic p with Ershov invariant e (meaning
that the dimension of K over Kp is pe), and the theory of nontrivially
valued algebraically closed fields of a given pair of characteristics. The
latter is an important first order context for dealing with “infinitesi-
mals”.

Many-sorted structures
It is natural to consider many-sorted structures and theories in place of
one-sorted ones. In this more general context, a structure M will be a
family (Ms : s ∈ S) of universes. The primitive relations and functions
will be be on and between Cartesian products of universes. The language
L of the structure will include the set of sorts S. Moreover any variable x

comes equipped with a specific sort, and thus quantifiers will range over
designated sorts. The whole machinery of first order logic (elementary
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Model theory and stability theory 7

extensions, saturation, formulas, theories) generalizes without difficulty
to the many-sorted context. In fact this fits in very well with the above-
mentioned notion of the category of definable sets in a given structure.
For example, given a one-sorted structure M , form a new many-sorted
structure Def0(M) whose sorts are the ∅-definable sets of M and whose
relations are those induced by ∅-definable sets in M . For example, if
X and Y are ∅-definable sets of M , and R ⊆ X × Y is a ∅-definable
relation of M , then we have a corresponding basic relation in Def0(M)
between the sort of X and that sort of Y . (Note that Def0(M) will
automatically have quantifier-elimination in this presentation.) In fact
one can go further: we can consider not only ∅-definable sets in M but
also quotients of such by ∅-definable equivalence relations. So we take
as sorts all sets of the form X/E where X is ∅-definable in M and E

is an ∅-definable equivalence relation on X. Again we take as relations
things induced by ∅-definable relations on M . Note that among the new
basic functions will be the canonical surjections X → X/E. We call this
new many-sorted structure Meq. The point is that Meq is the “same”
as M . (The technical term for sameness here is “bi-interpretable”)

A typical example is obtained when we start with ACF0 say and form
the category of algebraic varieties defined over Q (again with the induced
structure). We call this many-sorted structure AG0 (algebraic geometry
in characteristic 0).

A somewhat richer structure is the many-sorted structure A whose
sorts are compact complex analytic spaces (up to biholomorphism) and
whose relations are analytic subvarieties of (finite) cartesian products of
sorts. More details will be given in a subsequent paper in the volume.
The structure A is NOT κ-saturated for any cardinal κ. This is because
every element of every sort is essentially named by a constant. We let
CCM denote the first order theory of A. Among the sorts in A are
the projective algebraic varieties, and in this way AG0 can be seen as a
“subcategory” of CCM. CCM has quantifier elimination.

In many cases, it is not necessary to pass to Meq in that the quotient
sets are already present in M . This is when M (or Th(M)) has so-
called elimination of imaginaries. So the structure M is said to have
elimination of imaginaries if whenever X and E are ∅-definable sets in
M (X ⊂ Mn say and E an equivalence relation on X) then there is
another ∅-definable Y ⊂ Mk and a ∅-definable surjective function from
X to Y such that f(x1) = f(x2) iff E(x1, x2).

ACFp, DCF0, CCM and SCFp,e all eliminate imaginaries (the latter
after naming a p-basis).
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8 A. Pillay

The notions of algebraic and definable closure are important in what
follows: Given a possibly many-sorted structure which eliminates imag-
inaries (for example Meq), and a subset A of M , dcl(A) = {f(a) : a a
finite tuple from A and f a ∅-definable function}. We let acl(A) denote
the union of all finite A-definable sets. (For a structure which does not
necessarily eliminate imaginaries, we have described what are usually
called dcleq(A), acleq(A).)

2 Stability

We will fix a many-sorted structure M = (Ms : s ∈ S), which we
assume to be saturated (κ-saturated of cardinality κ for some large κ)
for convenience. We also assume that M has ‘elimination of imaginaries.
Let X, Y, . . . denote definable sets, and A,B, . . . sets of parameters.

What kind of relationships between definable sets can be formulated
at this general level?

Definition 2.1 (i) X and Y are fully orthogonal if every definable Z ⊆
Xn × Y m is up to Boolean combination of the form Z1 × Z2.
(ii) At the opposite extreme: X is internal to Y if there is a definable
surjective map f from Y n to X (for some n).

A naive example of full orthogonality is the case where M consists of
two infinite sorts M0, M1 with no additional relations. Put X = M0

and Y = M1. A rather trivial example of X being internal to Y is
when X = Y n for some n. A more interesting example is when Y

is equipped with a definable group structure, and there is a definable
strictly transitive action of Y on X. Then the choice of a point x ∈ X

yields a definable bijection between Y and X.
A slight weakening of internality is almost internality where the map

f above is replaced by a definable relation R ⊂ Y n × X such that for
any x ∈ X, there are only finitely many, but at least one, y ∈ Y n such
that R(y, x). In any case internality is a fundamental model-theoretic
notion. The subtlety is that X and Y may be ∅-definable, and X may
be internal to Y but only witnessed by a definable function defined with
additional parameters. In such a situation there will be an associated
nontrivial Galois group arising: a definable group naturally isomorphic
to the group of permutations of X induced by automorphisms of M

which fix Y pointwise.
Note that if X is finite then X is fully orthogonal to any Y . In AG
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Model theory and stability theory 9

orthogonality is vacuous. In fact in AG if X, Y are infinite definable
sets, then each is almost internal in the other.

Stability is an assumption on M (or on Th(M)) which played a very
large role in Shelah’s classification theory program, but also has many
consequences for the structure of definable sets. For stable structures
the study of complete types plays an important role.

Definition 2.2 M is stable if there is no definable relation R(x, y) and
ai, bi in M for i < ω such that for all i, j < ω, R(ai, bj) iff i < j.

As the ordering on R in the structure (R, <, +, ·) is definable we see
that this structure is unstable. On the other hand AG is stable.

Independence (also called nondividing, nonforking).
Under the assumption of stability, a notion of freeness can be developed,
giving meaning to “a is independent (free) from B over A” where A ⊂ B

are sets of parameters and a is a finite tuple of elements of M . In the case
of AG (as a 1-sorted structure), assuming A ⊂ B are subfields F1 < F2

of K this will mean precisely that tr.deg(F1(a)/F1) = tr.deg(F2(a)/F2).
The precise definition depends on the notion of indiscernibility: a

sequence (bi : i ∈ ω) of tuples bi of the same length is said to be indis-
cernible over a set A if for all n, tp(bi1 , . . . , bin/A) = tp(bj1 , . . . , bjn/A)
whenever i1 < · · · < in and j1 < · · · < jn.

Definition 2.3 Let a, b be possibly infinite tuples, and A a set of pa-
rameters. We say that p(x, b) = tp(a/A, b) divides over A if there is an A-
indiscernible sequence (bi : i < ω) with b0 = b such that {p(x, bi) : i < ω}
is inconsistent (not realized in M).

For T stable (or more generally “simple”) nondividing is our notion
of freeness and it has good properties: so a is free from b over A if
tp(a/A, b) does not divide over A, and we have properties such as
symmetry: a is free from b over A iff b is free from a over A;
free extensions: for every a, A and b there is a′ with tp(a′/A) = tp(a/A)
and a′ is free from b over A;
small bases: for any finite tuple a and set A, there is A0 ⊆ A of cardi-
nality ≤ |L| such that a is free from A over A0.

Stationarity. A characteristic property of independence in stable the-
ories is “uniqueness of generic types” or “uniqueness of free extensions”
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10 A. Pillay

Fact 2.4 Assume M stable. Let A ⊆ B ⊂ M be sets of parame-
ters. Assume A is algebraically closed. Let a1, a2 be tuples such that
tp(a1/A) = tp(a2/A) and each of a1, a2 is independent from B over A.
Then tp(a1/B) = tp(a2/B).

We express the above fact by saying that complete types over alge-
braically closed sets are stationary.

In the case of AG, any stationary type is the “generic” type of an
(absolutely) irreducible variety: Fact 2.4 says that if V is an irreducible
variety over F , and a1, a2 are generic points of V over F then there is
an automorphism of K fixing F pointwise and taking a1 to a2.

The notion of a “general” or “generic” point of a definable set may
make sense in many contexts, especially where there is a notion of “di-
mension” for definable sets. However in the case of stable theories Fact
2.4 leads to an independence-theoretic characterization of full orthogo-
nality:

Lemma 2.5 (T stable.) Let X, Y be ∅-definable sets. Then X is fully
orthogonal to Y iff for any set A of parameters, and a ∈ X and b ∈ Y ,
a is independent from b over A.

There is a notion of orthogonality for stationary types: p and q are
orthogonal iff for any set A of parameters including the domains of p and
q, and a realizing p independent from A over dom(p) and and b realizing
q independent from A over dom(q) then a is independent from b over A.
So the lemma above can be restated as: X and Y are fully orthogonal if
and only if for all complete stationary types p(x) containing x ∈ X and
q(y) containing y ∈ Y , p is orthogonal to q.

Generalizing the notion of smallest field of definition of an algebraic
variety, is the notion of the canonical base of a stationary type:

Fact 2.6 (T stable.) Assume tp(a/A) is stationary. Then there is
smallest A0 ⊂ A such that a is independent from A over A0 and tp(a/A0)
is stationary. A0 is called the canonical base of p.

Morley rank and t.t. theories.
The notions of stability theory are a little clearer for so-called totally
transcendental (t.t.) theories. T is said to be t.t if every definable set
has an ordinal valued Morley rank.

Again work in a possibly many sorted saturated structure M . Let X
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