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1 Introduction

Group theory and semigroup theory have developed in somewhat different direc-
tions in the past several decades. While Cayley’s theorem enables us to view groups
as groups of permutations of some set, the analogous result in semigroup theory
represents semigroups as semigroups of functions from a set to itself. Of course
both group theory and semigroup theory have developed significantly beyond these
early viewpoints, and both subjects are by now integrally woven into the fabric of
modern mathematics, with connections and applications across a broad spectrum
of areas.

Nevertheless, the early viewpoints of groups as groups of permutations, and semi-
groups as semigroups of functions, do permeate the modern literature: for example,
when groups act on a set or a space, they act by permutations (or isometries, or
automorphisms, etc.), whereas semigroup actions are by functions (or endomor-
phisms, or partial isometries, etc.). Finite dimensional linear representations of
groups are representations by invertible matrices, while finite dimensional linear
representations of semigroups are representations by arbitrary (not necessarily in-
vertible) matrices. The basic structure theories for groups and semigroups are
quite different — one uses the ideal structure of a semigroup to give information
about the semigroup for example — and the study of homomorphisms between
semigroups is complicated by the fact that a congruence on a semigroup is not in
general determined by one congruence class, as is the case for groups.

Thus it is not surprising that the two subjects have developed in somewhat
different directions. However, there are several areas of modern semigroup theory
that are closely connected to group theory, sometimes in rather surprising ways. For
example, central problems in finite semigroup theory (which is closely connected
to automata theory and formal language theory) turn out to be equivalent or at
least very closely related to problems about profinite groups. Linear algebraic
monoids have a rich structure that is closely related to the subgroup structure of
the group of units, and this has interesting connections with the well developed
theory of (von Neumann) regular semigroups. The theory of inverse semigroups
(i.e., semigroups of partial one-one functions) is closely tied to aspects of geometric
and combinatorial group theory.

In the present paper, I will discuss some of these connections between group
theory and semigroup theory, and I will also discuss some rather surprising contrasts
between the theories. While I will briefly mention some aspects of finite semigroup
theory, regular semigroup theory, and the theory of linear algebraic monoids, I
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will focus primarily on the theory of inverse semigroups and its connections with
geometric group theory.

For most of what I will discuss, there is no loss of generality in assuming that
the semigroups under consideration have an identity — one can always just adjoin
an identity to a semigroup if necessary — so most semigroups under consideration
will be monoids, and on occasions the group of units (i.e., the group of invertible
elements of the semigroup) will be of considerable interest.

2 Submonoids of Groups

It is perhaps the case that group theorists encounter semigroups (or monoids)
most naturally as submonoids of groups. For example, if P is a submonoid of a
group G such that P ∩P−1 = {1}, then the relation ≤P on G defined by g≤P h iff
g−1h ∈ P is a left invariant partial order on G. This relation is also right invariant
iff g−1Pg ⊆ P for all g ∈ G, and it is a total order iff P ∪ P−1 = G. Note that
g ∈ P iff 1≤P g. Every left invariant partial order on G arises this way. One says
that (G, P ) is a partially ordered group with positive cone P . One may note that
the partial order has the property that for all g ∈ G there exists some p ∈ P such
that g≤P p iff G = PP−1, i.e., iff G is the group of (right) quotients of P . The
study of ordered groups is well over a hundred years old, and I will not attempt to
survey this theory here.

The question of embeddability of a semigroup (monoid) in a group is a classical
question that has received a lot of attention in the literature. Clearly a semigroup
must be cancellative if it is embeddable in a group. It is easy to see that commu-
tative cancellative semigroups embed in abelian groups, in fact such a semigroup
embeds in its group of quotients in much the same way as an integral domain
embeds in a field. For non-commutative semigroups, the situation is far more
complicated. One useful condition in addition to cancellativity that guarantees
embeddability of a semigroup S in a group is the Ore condition. A semigroup S
satisfies the Ore condition if any two principal right ideals intersect, i.e., sS∩tS �= ∅
for all s, t ∈ S. (In the language of many subsequent authors in the group theory
literature, s and t have at least one common multiple for each s, t ∈ S: in the
language of classical semigroup theory, one says that S is left reversible). The fol-
lowing well known result was essentially proved by Ore in 1931: a detailed proof
may be found in Volume 1, Chapter 1 of the book by Clifford and Preston [30],
which is a standard reference for basic classical results and notation in semigroup
theory. There is an obvious dual result involving right reversible semigroups and
groups of left quotients.

Theorem 1 A cancellative semigroup satisfying the Ore condition can be embed-
ded in a group. In fact a cancellative semigroup P can be embedded in a group
G = PP−1 of (right) quotients of P if and only if P satisfies the Ore condition.

As far as I am aware, the first example of a cancellative semigroup that is not
embeddable in a group was provided by Mal’cev in 1937 [85]. Necessary and suffi-
cient conditions for the embeddability of a semigroup in a group were provided by
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Mal’cev in 1939 [86]. Mal’cev’s conditions are countably infinite in number and no
finite subset of them will suffice to ensure embeddability of a semigroup in a group.
A similar set of conditions, with a somewhat more geometric interpretation, was
provided by Lambek in 1951. Chapter 10 of Volume 2 of Clifford and Preston [30]
provides an account of the work of Mal’cev and Lambek and a description of the
relationship between the two sets of conditions.

The question of when a monoid with presentation P = Mon〈X : ui = vi〉 embeds
in a group has been studied by many authors, and has received attention in the
contemporary literature in group theory. Clearly such a monoid embeds in a group
if and only if it embeds in the group with presentation G = Gp〈X : ui = vi〉. Here
the ui, vi are positive words, i.e., ui, vi ∈ X∗, where X∗ denotes the free monoid
on X. We allow for the possibility that some of the words ui or vi may be empty,
(i.e., the identity of X∗). Also, we use the notation Mon〈X : ui = vi〉 for the monoid
presented by the set X of generators and relations of the form ui = vi to distinguish
it from the group Gp〈X : ui = vi〉 or the semigroup Sgp〈X : ui = vi〉 with
the same set of generators and relations. From an algorithmic point of view, the
embeddability question is undecidable, as are many such questions about semigroup
presentations or group presentations, since the property of being embeddable in a
group is a Markov property (see Markov’s paper [94]).

It is perhaps worth observing that being embeddable in a group is equivalent to
being a group for special presentations where all defining relations are of the form
ui = 1. Recall that the group of units of a monoid P is the set

U(P ) = {a ∈ P : ab = ba = 1 for some b ∈ P}.

Proposition 1 Let P be a monoid with presentation of the form P = Mon〈X :
ui = 1, i = 1, . . . , n〉, where each letter of X is involved in at least one of the
relators ui. Then P is embeddable in a group if and only if it is a group.

Proof Suppose that P is embeddable in a group G, and consider a relation ui = 1
in the set of defining relations of P . If ui = x1x2 . . . xn with each xj ∈ X, then
clearly x1 is the inverse of x2 . . . xn in G, so x1 is in the group of units of P and
x2 . . . xnx1 = 1 in P also. It follows that x2 is in the group of units of P , and
similarly each xj must be in the group of units of P . Since this holds for each
relator ui, and since each letter in X is involved in some such relator, every letter
of X (i.e., every generator of P ) must lie in the group of units of P , so P is a group.

✷

Remark We remark at this point that the word problem for one-relator monoids
with a presentation of the form M = Mon〈X : u = 1〉 was solved by Adian [2].
However the word problem for semigroups with one defining relation of the form
S = Sgp〈X : u = v〉 where both u and v are non-empty words in X∗ remains
open, as far as I am aware. There has been considerable work done on the one-
relator semigroup problem in general (see for example, the papers by Adian and
Oganessian [3], Guba [54], Lallement [75], Watier [144], and Zhang [148]). Later in
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this paper, I will indicate how this problem is related to the membership problem
for certain submonoids of one-relator groups.

Despite the difficulties in deciding embeddability of a semigroup in a group in
general, there are many significant results in the literature that show that monoids
(semigroups) with particular presentations may be embedded in the corresponding
groups. Perhaps the first such general result along these lines was obtained by
Adian [1].

Let P be a semigroup with presentation P = Sgp〈X : ui = vi, i = 1, . . . , n〉,
where ui, vi are strictly positive (i.e., non-empty) words. The left graph for this
presentation is the graph with set X of vertices and with an edge from x to y if
there is a defining relation of the form ui = vi where x is the first letter of ui and y
is the first letter of vi. The right graph is defined dually. The semigroup P is called
an Adian semigroup and the corresponding group G = Gp〈X : ui = vi〉 is called an
Adian group if both the left graph and the right graph are cycle-free (i.e., if both
graphs are forests). Of course a presentation is regarded as cycle-free if it contains
no defining relations.

Theorem 2 (Adian [1]) Any Adian semigroup embeds in the corresponding Adian
group.

Remmers [118] gave a geometric proof of this using semigroup diagrams, and
Stallings [132] gave another proof using a graph theoretic lemma. Sarkisian [124]
apparently gave a proof of the decidability of the membership problem for an Adian
semigroup P in the corresponding Adian group G, and used this to solve the word
problem for Adian groups: unfortunately there appears to be a gap in the proof
in [124]. Adian’s results have been extended in different directions in the work
of several authors (see, for example, the papers by Kashintsev [70], Guba [53],
Krstic [74], and Kilgour [72], where various small cancellation conditions are used
to study embeddability of semigroups in groups).

We remark that in general an Adian group G is not the group of quotients of the
corresponding Adian semigroup P . For example, if we consider the presentation
P = Sgp〈a, b : ab = b2a〉, then P is an Adian semigroup whose associated Adian
group is the Baumslag–Solitar group G = BS(1, 2). Not all elements of G belong
to PP−1, for example a−1ba /∈ PP−1. However, every element of G can be written
as a product of two elements of PP−1 — see Stallings [133] for a discussion of this
example. Stallings shows that if P is an Adian semigroup, then PP−1 is a quasi-
pregroup for the corresponding Adian group G (that is, if q1, q2, . . . , qn ∈ PP−1,
n > 1 and qiqi+1 /∈ PP−1 for all i, then q1q2 . . . qn �= 1 in G).

As a second large class of important examples of semigroups that are embeddable
in groups, we turn to a brief discussion of braid groups and Artin groups. The braid
monoid on n + 1 strings is the monoid Pn with presentation

Mon〈x1, x2, . . . , xn : xixj = xjxi if |i − j| > 1,

xixi+1xi = xi+1xixi+1 if i = 1, . . . , n − 1〉.
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The corresponding group with the same presentation as a group, is the braid
group Bn on n + 1 strands. Braid groups have been the object of intensive study
in the literature (see for example the influential book of Birman [21], and many
subsequent papers dealing with braids and their connection to other areas of math-
ematics). Braid monoids play a prominent role in the theory of braid groups.
Garside [46] showed that such monoids satisfy the Ore condition, in fact the prin-
cipal right ideals form a lattice: for each a, b ∈ Bn, there exists c ∈ Bn such that
aBn ∩ bBn = cBn, and also Bn is cancellative. Thus, by Ore’s theorem we have:

Theorem 3 (Garside) For each n, the braid monoid Pn embeds in the braid
group Bn, and Bn is the group of quotients of Pn. Furthermore, the principal
right ideals of Pn form a semilattice (in fact a lattice) under intersection.

This result was simultaneously generalized by Brieskorn and Saito [23] and by
Deligne [41] to Artin groups and monoids of finite type. Recall that a group G
is called an Artin group and the corresponding monoid is called an Artin monoid
if it is presented by a set X subject to relations of the form prod(x, y; mx,y) =
prod(y, x; mx,y) if mx,y < ∞. (Here mx,x = 1 and mx,y = my,x ∈ {2, 3, . . . ,∞}
for x, y ∈ X, and prod(x, y; mx,y) stands for the alternating word xyxy . . . of
length mx,y). An Artin group (monoid) is said to be of finite type if the correspond-
ing Coxeter group is finite. These results were further generalized by Dehornoy and
Paris [37] to a class of groups known as Garside groups, and were generalized fur-
ther by Dehornoy [36] to a class of groups that admit a thin group of fractions,
and to a group that arises in the study of left self distributivity and its connection
to mathematical logic (see the book by Dehornoy [35] for full details about this).
Many properties of braid groups, Artin groups of finite type, Garside groups and
the more general groups considered by Dehornoy are proved by a deep study of
the associated monoid of positive elements. We refer to the papers of Dehornoy
cited above for further references and details. These groups admit a presentation
where every relation is of the form xu = yv for x �= y ∈ X and admit one such
relation for each pair x �= y ∈ X, so their left graphs are in fact cliques. Thus this
class of groups is very different from the class of Adian groups. We also refer to the
recent papers by Paris [109] and Godelle and Paris [50] where the authors solve Bir-
man’s conjecture [22] for braid groups and right angled Artin groups by studying
the emebedding of singular braid monoids (Artin monoids) in the corresponding
groups.

Several authors have studied the question of embeddability of general Artin
monoids in Artin groups: for example special cases of this question have been
considered by Charney [25] and Cho and Pride [28]. Much additional information
about embeddability of semigroups in groups may be found in the paper by Cho
and Pride. Paris [108] has established the following deep general result about Artin
groups and Artin monoids.

Theorem 4 (Paris) Every Artin monoid embeds in the corresponding Artin group.

It is worth remarking that while Artin groups of finite type and the more general
groups considered by Dehornoy et al. are groups of fractions of their corresponding
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monoids of positive elements, this is not the case for Artin groups in general. The
fact that braid groups, Artin groups of finite type, thin groups of fractions, etc., are
all groups of fractions of their positive monoids leads to a fast algorithm for solving
the word problem for such groups — they have quadratic isoperimetric inequality
and admit an automatic structure. However, the word problem for Artin groups
in general remains open, as far as I am aware.

I will close this section with brief mention of another prominent example of a
monoid that embeds in its group of fractions. Recall that the Thompson group F
can be defined by the presentation F = Gp〈x0, x1, . . . : xnxk = xkxn+1 for k < n〉.

This group has appeared in numerous settings, having been originally introduced
by R. Thompson (see [101]) as a group that acts naturally on bracketed expres-
sions by moving the brackets, i.e., by applying the associative law. We refer the
reader to the monograph by Cannon, Floyd and Parry [24] for an introduction
to the Thompson group F and some of its many connections with other areas of
mathematics. The Thompson monoid is the monoid defined by the same relations
as those that define F as a group. The following result appears to be well known.

Theorem 5 The Thompson monoid embeds in the Thompson group F . Further-
more, F is the group of fractions of the Thompson monoid.

A closely related group is the group GLD introduced by Dehornoy [34] to describe
the geometry of the left self-distributive law x(yz) = (xy)(xz). See Dehornoy’s
book [35] for further information and deep connections with mathematical logic. It
is known that the group GLD is the group of quotients of an appropriate submonoid
of this group, but a presentation for that submonoid seems to be unknown.

There are several ways to associate an inverse monoid with the situation when
P is a monoid that embeds in a group G with the same presentation. We recall
first some basic definitions and facts about regular and inverse monoids, and some
of the rather extensive structure theory for such monoids.

3 Regular and Inverse Monoids

A monoid M is called a (von Neumann) regular monoid, if for each a ∈ M there
exists some element b ∈ M such that a = aba and b = bab. Such an element b
is called an inverse of a (it is not necessarily unique). Note that regular monoids
have in general lots of idempotents: if b is an inverse of a in M then ab and ba are
both idempotents of M , i.e., (ab)2 = ab and (ba)2 = ba (and in general ab �= ba).
A monoid M is called an inverse monoid if for each a ∈ M there exists a unique
inverse (denoted by a−1) in M such that

a = aa−1a and a−1 = a−1aa−1.

Equivalently, M is inverse iff it is regular and the idempotents of M commute.
Thus if M is an inverse monoid then the idempotents of M form a commutative
idempotent semigroup with respect to the product in M . Since a commutative
idempotent semigroup may be viewed as a lower semilattice (with meet operation
equal to the product), we normally refer to such semigroups as semilattices. We
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will consistently denote the set of idempotents of a monoid M by E(M). Thus if
M is an inverse monoid, then E(M) is a submonoid of M that is a semilattice,
referred to as the semilattice of idempotents of M . Every inverse monoid M comes
equipped with a natural partial order defined by

a ≤ b if and only if a = eb for some idempotent e ∈ M .

If e = e2 is an idempotent of a monoid M , then the set

He = {a ∈ M : ae = ea = e and ∃b ∈ M such that ab = ba = e}

is a subgroup of M with identity e (i.e., it forms a group with identity e relative to
the multiplication in M). Clearly He is the largest subgroup of M with identity e,
and He ∩ Hf = ∅ if e �= f . It is also clear that H1 = U(M), the group of units
of the monoid M . The subgroups He, e ∈ E(M), are referred to as the maximal
subgroups of M . The semilattice of idempotents and the maximal subgroups of
an inverse monoid M give us a good deal of information about M , but do not by
any means determine the structure of M : in general, not all elements of an inverse
monoid need belong to subgroups of the monoid.

A standard example of a regular monoid is the full transformation monoid on a
set X, which consists of all functions from X to itself with respect to composition
of functions. The group of units of this monoid is of course the symmetric group
on X. Idempotents in this monoid consist of functions that are identity maps on
their ranges, and the maximal subgroup corresponding to such an idempotent is
isomorphic to the symmetric group on the range of the map. Every semigroup
can be embedded in an appropriate full transformation monoid (see Clifford and
Preston [30], Volume 1).

Another standard example of a regular semigroup is the full linear monoid Mn(k)
of n × n matrices with entries in a field k, with respect to matrix multiplication.
The group of units of Mn(k) is the general linear group GLn(k). From elementary
linear algebra we know that an idempotent matrix of rank r is similar to the diag-
onal matrix with block diagonal identity matrix Ir in the top left hand corner and
zeroes elsewhere. The group GLn(k) acts by conjugation on the set of idempotent
matrices, and the orbits of this action consist of idempotent matrices of a fixed
rank. The idempotent matrices in Mn(k) may be identified with pairs of oppo-
site parabolic subgroups of GLn(k). The maximal subgroup corresponding to an
idempotent matrix of rank r is isomorphic to the general linear group GLr(k). Of
course the idempotents of Mn(k) do not form a subsemigroup if n > 1. We refer
to Okninski’s book [106] for a detailed description of this monoid, and to Putcha’s
book [114] for an introduction to the elegant theory of linear algebraic monoids.
A linear algebraic monoid is regular if and only if its group of units is a reductive
group: the subgroup structure of the group of units of a linear algebraic monoid
provides very detailed information about the structure of the monoid (see [114]).

Clearly every group is an inverse monoid (in fact groups are just regular monoids
with precisely one idempotent), and every semilattice E is an inverse monoid with
e−1 = e and with He = {e}, for all e ∈ E. A more enlightening example of an
inverse monoid is the symmetric inverse monoid on a set X, denoted by SIM (X).
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The monoid SIM (X) is the monoid of all partial one-one maps (i.e., one-one maps
from subsets of X to subsets of X) with respect to multiplication of partial maps: if
α and β are partial one-one maps, then αβ(x) = α(β(x)) whenever this makes sense,
i.e., if x ∈ dom(β) and β(x) ∈ dom(α). The group of units of SIM (X) is obviously
the symmetric group (the group of permutations) on X, and the idempotents of
SIM (X) are the identity maps on subsets of X, so the semilattice of idempotents of
SIM (X) is isomorphic to the lattice of subsets of X. The empty subset corresponds
to the zero of SIM (X): a product αβ of two partial one-one maps on X is zero (the
empty map) if range(β) ∩ dom(α) = ∅. The maximal subgroup corresponding to
the identity map on the subset Y of X is the symmetric group on Y . The natural
partial order on SIM (X) is defined by domain restriction of a partial one-one map,
i.e., α ≤ β iff dom(α) ⊆ dom(β) and α = β|dom(α). (I note that the definition
of SIM (X) given here is the dual of the usual definition found in many books on
semigroup theory, where functions are traditionally written on the right rather than
the left.)

Symmetric inverse monoids are in a sense generic inverse monoids.

Theorem 6 (Vagner–Preston) Every inverse monoid embeds in a suitable sym-
metric inverse monoid.

Thus inverse monoids may be viewed as monoids of partial one-one maps, in
much the same way as groups may be viewed as groups of permutations. Inverse
monoids arise naturally whenever one encounters partial one-one maps throughout
mathematics. For example, the Vagner–Preston theorem has been extended by
Barnes [10] and Duncan and Paterson [44] to show that every inverse monoid
embeds as a monoid of partial isometries of some Hilbert space, and from this
point of view, inverse monoids play an increasingly important role in the theory of
operator algebras (see the book by Paterson [110] for an introduction to the role
of inverse monoids in this theory). The book by Petrich [111] or the more recent
book by Lawson [76] provide an account of the general theory of inverse monoids
and some of their connections with other areas of mathematics.

Another natural class of examples of inverse monoids arises in connection with
submonoids of groups. Note that any submonoid P of a group must be a left and
right cancellative monoid. Let P be any left cancellative monoid. The left regular
representation a → λa, where λa : x → ax for all a, x ∈ P , defines an embedding
of P into the symmetric inverse monoid SIM (P ), since each map λa is clearly
a partial one-one map on P with domain P and range aP . The submonoid of
SIM (P ) generated by the image of P in this embedding into SIM (P ) is an inverse
monoid, referred to as the (left) inverse hull Il(P ) of P . Of course there is a dual
inverse monoid Ir(P ) that arises from the right regular representation of a right
cancellative monoid P . This is the most obvious way in which inverse monoids
arise in connection with submonoids of groups. I will discuss some other ways of
associating inverse monoids with submonoids of groups later in this paper.

The ideal structure of a monoid provides a basic tool for beginning to study
the structure of the monoid. It will be convenient to introduce some standard
terminology along these lines. There are five equivalence relations, known as the
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Green’s relations R, L, J , H and D that play a prominent role in the theory. For
a monoid M we define

R = {(a, b) ∈ M × M : aM = bM},

L = {(a, b) ∈ M × M : Ma = Mb},

J = {(a, b) ∈ M × M : MaM = MbM},

H = R∩ L,

and D = R∨L (the join of R and L in the lattice of equivalence relations on M).

The corresponding equivalence classes containing a ∈ M are denoted by Ra, La,
Ja, Ha and Da respectively. Clearly H ⊆ R, L ⊆ D ⊆ J . It is a fortunate
fact in semigroup theory that the equivalence relations R and L commute, i.e.,
R◦L = L ◦R, and it follows that D = R◦L = L ◦R. Thus aDb in M iff ∃c ∈ M
such that aR cL b iff ∃d ∈ M such that aL dR b. For an inverse monoid M it is
easy to see that aR b iff aa−1 = bb−1 and aL b iff a−1a = b−1b. It is a well-known
fact that if P is a cancellative monoid, then P embeds as the R-class R1 of 1 in its
right inverse hull Ir(P ) and as the L-class L1 of 1 in its left inverse hull Il(P ).

It is informative to provide an explicit description of the Green’s relations in the
full linear monoid Mn(k). If A and B are two matrices in Mn(k), then

A R B iff AGLn(k) = B GLn(k) iff Col(A) = Col(B),

A L B iff GLn(k)A = GLn(k)B iff Nul(A) = Nul(B),

A J B iff GLn(k)AGLn(k) = GLn(k)B GLn(k) iff rank(A) = rank(B), and

J = D.
Furthermore, for each fixed r ≤ n, the group GLn(k) acts transitively by left

multiplication [resp., right multiplication] on the set of R-classes of Mn(k) [resp.,
L-classes of Mn(k)] within the J -class Jr consisting of the matrices of rank r. In
addition, if Yr denotes the set of all matrices of rank r that are in reduced row
echelon form and if Xr is the set of transposes of elements of Yr, then the R-classes
of Mn(k) in the J -class Jr are in one-one correspondence with the matrices in Xr,
and the L-classes of Mn(k) in the J -class Jr are in one-one correspondence with
the matrices in Yr. Every matrix in Jr has a unique decomposition of the form
XGY with X ∈ Xr, Y ∈ Yr and G ∈ GLn(k). Proofs of all of these facts and
much additional interesting information about full linear monoids may be found
in [106].

It is a well known fact in semigroup theory that if a D-class contains a regular
element, then every element of that D-class is regular. The structure of regular
D-classes is very nice: for example, all H-classes within the D-class are of the same
cardinality, an H-class is a maximal subgroup iff it contains an idempotent, and
two maximal subgroups contained in the same D-class are isomorphic. A D-class
is regular iff it contains an idempotent, and if a is a regular element of M , then
every inverse of a lies in the D-class Da. A product ab lies in the H-class Ra ∩ Lb

iff La ∩ Rb contains an idempotent. Proofs of these facts may be found in any
standard book on semigroup theory, for example [30].

A semigroup S is called simple [resp., bisimple] if it contains just one J -class
[resp., D-class]. A semigroup with just one H-class is a group. A semigroup S with
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a zero element 0 is called 0-simple if S2 �= 0 and S has only two J -classes ({0} and
S−{0}). Such a semigroup is called 0-bisimple if it has just two D-classes ({0} and
S − {0}). The structure of finite simple and 0-simple semigroups was determined
by Suschkewitsch in 1928 [142]. This was extended by Rees [117] in 1940 to a class
of simple [resp., 0-simple] semigroups known as completely simple [resp., completely
0-simple] semigroups. We refer to [30] for an account of this important work.

Bisimple inverse monoids may be constructed from right cancellative monoids
whose principal left ideals form a semilattice. The following theorem was proved
by Clifford [29] in 1953.

Theorem 7 (Clifford, 1953) Let M be a bisimple inverse monoid with identity 1
and let R = R1, the R-class of 1. Then R is a right cancellative monoid and
the principal left ideals of R form a semilattice under intersection, i.e., for each
a, b ∈ R, there exists c ∈ R such that Ra ∩ Rb = Rc. Conversely, let R be a right
cancellative monoid in which the intersection of any two principal left ideals is a
principal left ideal. Then the (right) inverse hull of R is a bisimple inverse monoid
and the R-class of 1 in this monoid is a submonoid that is isomorphic to R.

Again, there is an obvious dual construction of bisimple inverse monoids from left
cancellative monoids whose principal right ideals form a semilattice. We thus have
the following corollary of Garside’s theorem (Theorem 3) and Clifford’s theorem
(Theorem 7): the result extends to Artin groups of finite type, Garside groups,
thin groups of quotients, etc.

Corollary 1 The inverse hull of the braid monoid Bn is a bisimple inverse monoid.

If S is an inverse semigroup, then the natural partial order induces a homo-
morphism from S onto its maximal group homomorphic image. For S an inverse
semigroup and a, b ∈ S we define an equivalence relation σ on S by a σ b iff ∃c ∈ S
such that c ≤ a and c ≤ b. It is easy to see that σ is a congruence on S (i.e., it is
compatible with respect to multiplication on both sides), so the set of σ-classes of S
forms a semigroup S/σ with respect to the obvious multiplication, and there is a
natural map (which we denote again by σ) from S onto S/σ. It is straightforward
to see that S/σ is a group, the maximal group homomorphic image of S.

The inverse semigroup S is called E-unitary if the inverse image under σ of the
identity of the group S/σ consists just of the semilattice E(S) of idempotents of S.
Equivalently, S is E-unitary if a ≥ e and e ∈ E(S) implies a ∈ E(S). E-unitary
inverse semigroups play an essential role in the theory of inverse semigroups. Their
structure has been determined by McAlister [96] by means of a group acting by
order automorphisms on a partially ordered set with an embedded semilattice.
Furthermore, McAlister proved [97] that if S is any inverse semigroup, then there
is some E-unitary inverse semigroup T and an idempotent-separating homomor-
phism f from T onto S (a homomorphism f : T → S is called “idempotent-
separating” if distinct idempotents of T are mapped to distinct idempotents of S).
In this situation, we refer to T as an E-unitary cover of S over the group G, where
G is the maximal group homomorphic image of T . We refer to Lawson [76] for
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