
1
The Problems

1. The Lion and the Christian. A lion and a Christian in a closed circular Roman
arena have equal maximum speeds. What tactics should the lion employ to be sure
of his meal? In other words, can the lion catch the Christian in finite time?

Fig. 1. A Roman lion.

2. Integer Sequences

(i) Show that among n + 1 positive integers none of which is greater than 2n
there are two such that one divides the other.

(ii) Show that among n + 1 positive integers none of which is greater than 2n
there are two that are relatively prime.
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2 1. The Problems

(iii) Suppose that we have n natural numbers none of which is greater than 2n
such that the least common multiple of any two is greater than 2n. Show
that all n numbers are greater than 2n/3.

(iv) Show that every sequence of n = rs + 1 distinct integers with r, s ≥ 1 has
an increasing subsequence of length r + 1 or a decreasing subsequence of
length s + 1.

3. Points on a Circle

(i) Let X and Y be subsets of the vertex set of a regular n-gon. Show that there
is a rotation � of this polygon such that |X ∩ �(Y )| ≥ |X ||Y |/n, where, as
usual, |Z | denotes the number of elements in a finite set Z .

(ii) Let S = F1 ∪ F2, where F1 and F2 are closed subsets of S, the unit circle
in R

2. Show that either F1 or F2 is such that, for every angle 0 < α ≤ π , it
contains two points that form angle α with the centre.

(iii) A set S of integers is sum-free if x+y = z has no solution in S, i.e. x+y �∈ S
whenever x, y ∈ S. Show that every set of n ≥ 1 non-zero integers contains
a sum-free subset of size greater than n/3.

4. Partitions into Closed Sets. Can the plane be partitioned into countably many
non-empty closed sets? And what about R

n?

5. Triangles and Squares. What is the maximal area of a triangle contained in a
unit square? And the minimal area of a triangle containing a unit square?

6. Polygons and Rectangles. Show that every convex polygon of area 1 is con-
tained in a rectangle of area 2.

7. African Rally. A car circuit goes through the towns T1, T2, . . . , Tn in this cyclic
order (so from Ti the route leads to Ti+1 and from Tn back to T1), and a car is to
travel around this circuit, starting from one of the towns. At the start of the journey,
the tank of the car is empty, but in each town Ti it can pick up pi amount of fuel.

(i) Show that if
∑n

i=1 pi is precisely sufficient to drive round the entire circuit
then there is a town such that if the car starts from there then it can complete
the entire circuit without running out of fuel.

(ii) Show that if each section of the circuit (from town Ti to Ti+1) needs an
integer amount of fuel, each pi is an integer and

∑n
i=1 pi is precisely 1

more than the amount of fuel needed to drive round the entire course, then
there is precisely one town such that, starting from there, there is at least
1 unit of fuel in the tank not only at the end but throughout the circuit.
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1. The Problems 3

8. Fixing Convex Domains. A convex board is surrounded by some nails ham-
mered into a table: the nails make impossible to slide the board in any direction,
but if any of them is missing then this is no longer true. What is the maximal
number of nails?

9. Nested Subsets. Is an infinite family of nested subsets of a countable set
necessarily countable?

10. Almost Disjoint Subsets. Call two sets almost disjoint if their intersection is
finite. Is there an uncountable family of almost disjoint subsets of a countable set?

11. Loaded Dice. We have two loaded dice, with 1, 2, . . . , 6 coming up with vari-
ous (possibly different) probabilities on each. Is it possible that when we roll them
both, each of the sums 2, 3, . . . , 12 comes up with the same probability?

12. An Unexpected Inequality. Let a1, a2, . . . be positive reals. Show that

lim sup
n→∞

(1 + an+1

an

)n ≥ e.

Show also that the inequality need not hold with e replaced by a larger number.

13. Colouring Lines. Let L be a collection of k-element subsets of a set X . We
call the elements of X points, and the k-subsets belonging to L lines. ‘Maker’ and
‘Breaker’ play a game by alternately colouring the points of X red and blue, with
Breaker making the first move. Once a point is coloured, it is never recoloured.
Maker aims to ‘make’ a red line, a line all whose points are coloured red, and
Breaker wants to prevent this. Show that if there are 2k − 1 lines then Breaker
has a winning strategy, but for some arrangement of 2k lines Maker has a winning
strategy. What are the corresponding numbers if Maker makes the first move?

14. Independent Sets. Let G be a graph with vertex set V, and write d(v) for the
degree of a vertex v. Show that G contains at least

∑
v∈V

1
d(v) + 1

independent vertices.
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4 1. The Problems

15. Expansion into Sums 2i3 j . Every natural number may be expressed in binary
form, i.e., is the sum of some numbers 1, 2, 22, 23, . . . . In every such expansion, of
any two of the summands one divides the other. Is it possible to write every natural
number as a sum of numbers of the form 2i3 j such that no summand divides the
other? It is easily checked that the first few numbers have such representations; for
example, 19 = 4 + 6 + 9, 23 = 6 + 8 + 9, 115 = 16 + 27 + 72.

16. A Tennis Match. Alice and Bob are about to play a tennis match consisting of
a single set. They decide that Alice will serve in the first game, and the first to reach
twelve games wins the match (whether two games ahead or not). However, they
are considering two serving schemes: the alternating serves scheme, in which the
servers alternate game by game (how surprising!), and the winner serves scheme,
in which the winner of a game serves in the next.

Fig. 2. The big question.

Alice estimates that she has 0.71 chance of winning her serve, while Bob has
only 0.67 chance to hold serve. Which scheme should Alice choose to maximize
her chances of winning?

17. A Triangle Inequality. Let R be the circumradius of an acute-angled triangle,
r its inradius and h the length of the longest height. Show that r + R ≤ h. When
does equality hold?
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1. The Problems 5

18. Planar Domains of Diameter 1. Show that every planar domain D of diame-
ter 1 is contained in a regular hexagon of width 1, i.e., side-length

√
3/3.

Deduce that every planar domain of diameter 1 can be partitioned into three sets
of diameter at most

√
3/2.

19. Orienting Graphs. Show that for every graph there is an orientation of the
edges such that for every vertex the out-degree and in-degree differ by at most 1.

20. A Simple Clock. How many times a day is it impossible to tell the time by a
clock with identical hour and minute hands, provided we can always tell whether it
is a.m. or p.m.?

21. Neighbours in a Matrix. Show that every n × n matrix whose entries are
1, 2, . . . , n2 in some order has two neighbouring entries (in a row or in a column)
that differ by at least n.

22. Separately Continuous Functions. Let f : S = [0, 1]2 → R be separately
continuous in its variables, i.e., continuous in x for every fixed y, and continuous
in y for every fixed x . Show that if f −1(0) is dense in the square S then it is
identically 0.

23. Boundary Cubes. A down-set in the solid d-dimensional cube [0, n]d ⊂ R
d is

a set D ⊂ [0, n]d such that if 0 ≤ xi ≤ yi ≤ n for i = 1, . . . , n, and y = (yi )d1 ∈ D
then x = (xi )d1 ∈ D as well. What is the maximal number of boundary integral unit
cubes, i.e., solid unit cubes

[c1 − 1, c1] × [c2 − 1, c2] × · · · × [cd − 1, cd ],
with each ci an integer, 1 ≤ ci ≤ n, that meets both a down-set D and its comple-
ment D?

24. Lozenge Tilings. A lozenge or calisson is a rhombus of side-length 1, with
angles π/3 and 2π/3, i.e., the union of two equilateral triangles of side-length 1
that share a side. Figure 3 shows a tiling of a regular hexagon with lozenges.

Show that no matter how we tile a regular hexagon with lozenges, we must use
the same number of tiles of each orientation.

25. A Continuum Independent Set. To every real number x , assign a finite set
�(x) ⊂ R \ {x}. Call a set S ⊂ R independent if x ∈ �(y) does not hold for
x, y ∈ S, that is if S ∩ �(S) = ∅. Show that there is an independent set S ⊂ R

whose cardinality is that of the continuum.
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6 1. The Problems

Fig. 3. The beginning of a tiling of the regular hexagon with lozenges.

26. Separating Families of Sets. Given an n-element set S, what is the minimal
number of subsets S1, . . . , Sk of S needed to separate all pairs of elements of S,
i.e., so that for all x, y ∈ S there is a set Si containing one of x and y, but not the
other?

Equivalently, at least how many bipartite graphs are needed to cover (all the
edges of) a complete graph on n vertices?

27. Bipartite Covers of Complete Graphs. Suppose that a family of bipartite
graphs covers all the edges of a complete graph Kn . Show that altogether there are
at least n log2 n vertices in these bipartite graphs.

More precisely, show that if n = 2k + � < 2k+1, � ≥ 0, then the minimum is
precisely nk + 2�.

28. Convexity and Intersecting Simplices

(i) Let X = {x1, x2, . . . , xn+2} be a set of n + 2 points in R
n and, for a

non-empty subset I of {1, . . . , n + 2}, let X (I ) be the convex hull of the
points xi , i ∈ I . Show that there are disjoint sets I, J such that X (I ) ∩
X (J ) �= ∅.

(ii) The convex hull convX of a set X ⊂ R
n is the smallest convex set contain-

ing X : the intersection of all convex sets containing it. Equivalently,

convX =
{ k∑
i=1

λixi : xi ∈ X, λi ≥ 0,

k∑
i=1

λi = 1, k = 1, 2, . . .

}
.
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1. The Problems 7

Show that in the sums above we need not take more than n + 1 terms, i.e., the
convex hull of a set X ⊂ R

n is

convX =
{n+1∑
i=1

λixi : xi ∈ X, λi ≥ 0,

n+1∑
i=1

λi = 1

}
.

29. Intersecting Convex Sets. Let C be a finite family of convex sets in R
n such

that for k ≤ n + 1 any k members of C have a non-empty intersection. Show that
the intersection of all members of C is non-empty.

30. Judicious Partitions of Points. Let P1, . . . , Pn be n points in the plane. Show
that there is a point P such that every line through P has at least n/3 points Pi in
each of the two closed half-planes it determines.

31. Further Lozenge Tilings. Consider a hexagon in which every angle is 2π/3
and the side-lengths are a1, . . . , a6. For what values of a1, . . . , a6 is there a tiling
of this hexagon with ‘lozenges’ of the three possible orientations, as in Problem 24;
see Figure 4. How many lozenges are there of each orientation?

a6

a1

a2

a3

a4

a5

Fig. 4. A hexagon H(a), with the beginning of a lozenge tiling.

32. Two Squares in a Square. Place two squares (with disjoint interiors) into a
unit square. Show that the sum of the side-lengths is at most 1.

33. Lines Through Points. Let n points (of a Euclidean space) have the property
that the line joining any two of them passes through a third point of the set. Must
the n points all lie on one line?
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8 1. The Problems

34. The Spread of Infection on a Square Grid. A disease spreads on an n by
n grid Gn as follows. At time 0 some of the sites (vertices, lattice points, grid
points) are infected, the others are healthy but susceptible. Infected sites remain
infected for ever, and at every time t , t = 1, 2, . . ., every healthy site with at least
two infected neighbours becomes itself infected. More formally, at time t = 0 we
have a set S0 of infected sites, and at each time step t , t = 1, 2, . . . , we let St be
the set of sites with at least two neighbours in St−1, together with the sites in St−1.
St is the set of sites infected at time t . A set S0 of initially infected sites is said to
percolate on the board Gn , with 2-neighbour infection or parameter 2, if, for some
t , St is the entire set of sites, i.e., if, eventually, every site becomes infected, as in
Figure 5. What is the minimal number of initially infected sites that percolate?

Fig. 5. The spread of a disease on a 6 by 6 grid, with the newly infected sites denoted by open
circles ◦. At time t = 0 we have 11 infected sites, and at time 4 there are 29. In another two steps
all sites become infected.

35. The Spread of Infection in a d-dimensional Box. Let us consider the fol-
lowing extension of Problem 34. This time the disease spreads in a d-dimensional
n × n × · · · × n box

B = [n]d = {(xi )d1 ∈ Z
d : 1 ≤ xi ≤ n, i = 1, . . . , d}

with nd sites. As in Problem 34, the disease starts with a set S of infected sites
in B. Every site with at least two infected neighbours becomes infected, and so is
ready to infect other (neighbouring) sites. What is the minimal number of sites in
S if eventually every site in B becomes infected?

36. Sums of Integers. Let 1 ≤ a1 < a2 < · · · < a� ≤ n be integers with
� > (n + 1)/2. Show that ai + a j = ak for some 1 ≤ i < j < k ≤ �.

37. Normal Numbers. Given a real number

x = 0.x1x2 · · · =
∞∑
i=1

xi10−i

written in base 10, and a sequence (word)

w = w1w2 . . . wk =
k∑
i=1

wi10k−i ,
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1. The Problems 9

with terms (letters) 0, 1, . . . , 9, write fn(w; x) for the number of times x1x2 . . . xn
contains w, i.e., the number of suffices i , 0 ≤ i ≤ n − k, such that k j = wi+ j

for j = 1, . . . , k. Note that if the letters of w are chosen at random (with every
number 0, 1, . . . , 9 having probability 1/10) then the expectation of fn(w; x) is
(n − k + 1)10−k ∼ n10−k .

A real number is normal in base 10 if for every k-letter word w = w1w2 . . . wk

with letters 0, 1, . . . , 9, we have limn→∞ fn(w; x)/n = 10−k .
Let γ = 0.12 3 . . . 9 10 11 . . . 99 100 101 . . . be the real number whose signif-

icant digits are formed by the concatenation of all the natural numbers. Show that
γ is normal in base 10.

38. Random Walks on Graphs. Let s and t be vertices of a graph G. A random
walk on G starts at s and stops at t . Show that the expected number of times this
walk traverses the edges of a cycle in one direction is equal to the expected number
of traversals in the other direction.

39. Simple Tilings of Rectangles. A tiling of a rectangle R with n ≥ 2 rectangles
is called simple if no rectangle strictly inside R is a union of at least two rectangles
of the tiling. For what values of n is there a simple tiling of a rectangle? Also, for
large values of n, at least how many essentially different rectangles are there?

40. L-tilings. Cut out a square of a 2n by 2n chess board. Show that the remaining
22n −1 squares can be tiled with L-tiles, where an L-tile is a union of three squares
sharing a vertex, as the tiles in Figure 6.

Fig. 6. An L-tiling of the 8 × 8 board with the bottom left square cut out.
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10 1. The Problems

41. Antipodal Points and Maps. For D ⊂ R
n and R ⊂ R

m , a map f : D → R
is said to be odd if f (−x) = − f (x) for every x ∈ D. Two points x and y of
the unit sphere Sn ⊂ R

n+1 are antipodal if y = −x . In view of this, an odd map
Sn → Sm is also said to be antipodal, since it maps antipodal points into antipodal
points. Borsuk proved that continuous antipodal maps Sn → Sn have odd degrees:
in particular, they are not null-homotopic. This implies that

(1) there is no continuous antipodal map Sn → Sn−1.

Show that (1) is equivalent to each of the following three statements.

(2) Every continuous map Sn → R
n sends at least one pair of antipodal points

into the same point.
(3) Every continuous odd map Sn → R

n sends at least one point (and so at
least one pair of antipodal points) into the origin of R

n .
(4) For every family of n + 1 closed sets covering Sn , one of the sets contains

a pair of antipodal points.

42. Bodies of Diameter 1. Let K ⊂ R
d be a body of diameter 1. Show that K is

contained in a (closed) ball of radius r = √
d/(2d + 2), and deduce that it can be

partitioned into 2d−1 + 1 sets, each of diameter strictly less than 1.

43. Equilateral Triangles. Show that if equilateral triangles are erected externally
(or internally) on the sides of a triangle as in Figure 7 then the centres of the new
triangles form an equilateral triangle whose centroid is the centroid of the original
triangle.

A

C

A′

C ′

B′

B

Fig. 7. Three equilateral triangles erected on a triangle ABC , with centroids A′, B ′ and C ′.
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