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1.1 Fundamental quantities 
and units
In science there are five fundamental, or base,
quantities – all other quantities are related to these.
Mass (symbol m), length (l) and time (t) are three of
these quantities. We will use two others later: electric
current and temperature. All other quantities are
derived quantities.

To measure a physical quantity we compare it with a
standard known as the unit of the quantity. Each base
quantity has a base unit (Table 1.1).

Table 1.1 Names and symbols for base SI units
Physical quantity Name of SI Symbol

Base unit for unit
Length metre m
Mass kilogram kg
Time second s

A quantity is written as its value followed by its unit,
e.g. the height of a girl might be 1.40 m. The system
we use is called the Système International d’Unités or
the SI system.

1.2 Derived quantities
We can multiply or divide base quantities with their
units to produce derived quantities with their units.
The area of a rectangle with sides 0.6 m and 0.5 m is
given by the product of the sides, i.e. (0.6 m) x (0.5 m)
= 0.3 m². Thus in the SI system the unit of area is the
squared metre (m²).

The speed of an object is the distance, in metres,
travelled each second. The unit of speed is metres per
second. This is written m s−¹; s−¹ means ‘per second’.

1.3 Length
In your practical course you will use several
instruments to measure lengths. A rule is one of the
most common. With a rule we can usually measure
length to the nearest millimetre.

A rule is not suitable for short distances such as the
diameter of wires, thin sheets of material or round
objects. In these cases we use a micrometer or calipers.

1 Measurement and units
[syllabus sections A.1.1–1.4, 2.8–2.12]

Micrometer
Figure 1.1 shows a micrometer screw gauge. The
horizontal scale is marked in millimetres (mm). As the
screw rotates once, the micrometer opens 0.5 mm. Each
of the 50 divisions on the circular scale is 0.01 mm. To
read the micrometer, we add the reading on the
horizontal scale to the reading on the circular scale. We
check and allow for any zero error when using a
micrometer.

Fig.1.1 Micrometer screw gauge

Calipers
We use calipers to measure diameters of rods and balls.
We then measure the distance between the caliper
points using a rule (see Fig.1.2a).

Fig.1.2 (a) Calipers 

Fig.1.2 (b) Vernier calipers

horizontal scale

circular scale

(a)

(b)

vernier scale

reading 0.01 mm

main scale 

reading 2.5 mm
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2

We also use vernier calipers and the vernier scale
permits greater precision, to 0.01 cm. A vernier scale is a
small scale that slides along the main scale (see Fig.1.2b).

We see that one mark on the vernier scale coincides
with a mark on the main scale. In Fig.1.2b the zero
mark on the vernier indicates that the reading is 2.5 cm
and a bit. The first mark on the vernier coincides with
a mark on the main scale, showing the full reading to
be 2.51 cm.

1.4 Area
The area of a square = (side)2.

With irregular shapes we can divide the area into
small squares, of known size, and estimate the total
number of squares.

Fig. 1.3

1.5 Volume
To find the volumes of rectangular solids we measure
the lengths of the sides. Then

volume = length × width × height

(For irregular solids see Section 1.7.)

We find the volume of liquids using a measuring
cylinder and looking carefully at the meniscus.
Remember: we read the base of the meniscus for water
and the top of the meniscus for mercury.

Fig. 1.4

We also use pipettes and burettes to measure volumes
of liquids more accurately.

1.6 Mass
A chemical balance is used to measure mass very
accurately but a lever balance is often accurate enough
(Fig.1.5).

The scale on a lever balance is a non-linear scale –
the marks are not evenly spaced. Most scales that we
use are linear scales – the marks are evenly spaced.

In Unit 4 we look at the important distinction
between mass and weight.

Fig.1.5 Lever balance

1.7 Density
Blocks of material can have the same volume but
different masses. A wooden block may have a mass of
48 g while a block of iron of the same volume has a
mass of about 420 g. The materials have different
densities.

The density (ρ) of a material is defined as its mass
per unit volume:

density =
mass (kg)

volume (m³)

The unit of density is kg m−³ (remember that the m−³
means ‘per metre cubed’). The density of water is 
1 000 kg m−³ or 1 g cm−³. The latter unit is used in
measurements involving small masses and volumes.

Determination of the density of
solids
We measure the mass and volume of a sample and
calculate the density. We use a lever balance to find the
mass of the sample. 
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We find the volume of rectangular solids by
measuring the lengths of the sides and finding the
product of the length, width and height.

We immerse irregular objects, such as stones, in
water. The volume of water that they displace equals
the volume of the object. For a large object we use a
‘eureka’ or displacement can. We measure the volume
of water that overf lows (Fig.1.6.).

Fig. 1.6 Using a eureka can

We can add a small object directly to water in a measuring
cylinder. The rise in the reading is equal to the volume of
the object. Care must be taken to submerge the object
carefully without splashing to prevent droplets from
sticking to the sides of the container.

1.8 Time
You will use a stopwatch or stop clock to measure time
intervals. Your reaction time causes inaccuracy in your
timings. You should repeat timings and average your
results. Many schools use stop clocks that have an error
of ± 0.5 s.

Simple pendulum
A simple pendulum is a small mass hanging on a thin
string. It oscillates from side to side.

The time period of a simple pendulum is the time
taken for one oscillation. (A complete oscillation is
from one side, across to the other side and back to the
original point.) 

thread

object

V

eureka can

water
Fig. 1.7 One complete oscillation

The amplitude of the oscillator is the maximum
distance of the bob from its rest position. 

You will investigate the factors that determine the
time period. You should time 20 or more vibrations,
more than once, to improve the accuracy. You should
consider changing the mass of the bob, the amplitude
of the oscillation and the length of the string. You must
change just one factor (or variable) at a time.

You will find that the time period depends only on
the length of the string (as long as the amplitude is not
too large i.e. <10° from vertical).

1.9 Relative density
It is useful to compare the density of a substance with
the density of water.

Relative density (ρr) is defined as follows:

density of the substance
relative density of a substance =

density of water

Relative density is a ratio and has no unit.
We can also use the following expression:

Relative density  =
mass of a volume of the substance
mass of the same volume of water

1.10 Quality control
In order to protect the consumer, quality control
standards are developed and enforced, e.g. 

1 Regular checks are made of weighing machines.
2 Electrical appliances must meet strict safety

standards. Safety standards are also applied to the
construction and wiring of buildings.

3 The strength of milk or beer can be checked by
measurements of their densities.

4 The amount of possibly harmful chemicals in
processed food is monitored.

A

A B C B

B

A

C
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2 Measurement and mathematics
[syllabus sections A1.4–1.6, 3.1–3.3]

4

2.1 Measurement and significant
figures
During your physics course you will record results of
experiments. Look at Fig. 2.1. You can see that the
length of side AB is somewhere between 2.0 cm and 2.1
cm and you might estimate the length to be 2.08 cm.
However, the ‘8’ is not very certain. The number of
figures that you write gives an indication of your
confidence in the result. It would not be sensible in this
example to write 2.085 cm. It is best written 2.1 cm.

Fig. 2.1 Approximate measurement

Lengths measured with a metre rule can often only be
written to the nearest millimetre. So we may write, for
example, 24.2 cm (or 0.242 m). In each case here we
have three significant figures. When we calculate a
value from our results the answer should be written to
the same numbers of significant figures as the original
results.

If the two sides of a rectangle are measured as 
24.2 cm and 18.3 cm, then

Area of rectangle = 24.2 cm × 18.3 cm
= 442.86 cm² (by calculator)
= 443 cm² (three significant figures)

In any calculation, the reading with the smallest
number of significant figures determines the number of
significant figures of the final answer.

2.2 Reading scales
Many readings you make in physics are taken from a
scale on an instrument. Some were described in Unit 1;
thermometers (temperature), ammeters (electric
current) and spring balances (force) are other examples.

When reading a scale you make an estimate when the
pointer is not actually on a mark on the scale. Fig. 2.2 is
part of the scale of an ammeter used to measure current
in amperes (A). This would be recorded as 1.35 A.
Results can often be taken to three significant figures.

Fig. 2.2 Ammeter scale

2.3 Accuracy of results
For an experiment to be useful we must obtain
accurate results. In any reading there is some
uncertainty, which we can reduce as follows:

1 We can take the same reading more than once and
calculate an average value.

2 We can measure a large number of a quantity and
calculate the value for one. For example, if we
have to find the thickness of a sheet of paper we
can measure the thickness of 300 sheets. We then
divide our result by 300 to find the thickness of
one sheet.

3 We can select an instrument that is appropriate to
the reading. If a current of about 0.4 A is being
measured, we use an ammeter with a range of 
0 to 1 A, not 0 to 5 A.

4 We take particular care to avoid ‘parallax’ (see 
Unit 17). We always read scales from directly over
the mark (Fig. 2.3).

Fig. 2.3 Reading a scale

5
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1

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-69294-6 - CSEC Revision Guides for Physics
Peter Whiteley and Haydn Bassarath
Excerpt
More information

http://www.cambridge.org/0521692946
http://www.cambridge.org
http://www.cambridge.org


2.4 Large and small numbers
When we have very large and small numbers there are
useful alternative ways to write them.

Standard form
In standard form we write numbers in two parts as
follows:

100 = 10 × 10 = 10² = 1.0 × 10²
240 = 2.4 × 100 = 2.4 × 10²

3 600 000 = 3.6 × 1 000 000 = 3.6 × 10⁶

0.3 = = 3 × = 3.0 × 10−¹

0.0024 = 2.4 × = 2.4 × 10−³

You should also be able to multiply and divide numbers
in standard form:

(3 × 10²) × (2 × 10³) = 6 × 10⁵
(4 × 10²) × (6 × 10) = 2.4 × 10⁴
(6 × 10⁴) / (3 × 10²) = 2 × 10²
(6 × 10³) / (3 × 10⁵) = 2 × 10−²

Prefixes
We also use prefixes for convenience. The following
examples show their meaning.

1 MJ = 1 megajoule = 1 million joules = 10⁶ J
1 km = 1 kilometre = 1 thousand metres = 10³ m
1 cm = 1 centimetre = 1 hundredth metre = 10−² m
1 mm = 1 millimetre = 1 thousandth metre = 10−³ m
1 µA = 1 microampere = 1 millionth ampere = 10−⁶ A

Changing units from one to the other
1 m³ = 1 m × 1 m × 1 m

= 100 cm × 100 cm × 100 cm
= 10⁶

i.e. 1 m³ = 10⁶ cm³

also 1 m² = (100 × 100) cm²
1 m² = 10000 cm²

Sometimes these conversions are necessary because we
would not record the volume of a medicine bottle in
m³ but in the more convenient form of cm³.

Density may be expressed in kg m−³, but in a
situation involving small quantities it may be more
practical to express it in g cm−³.

1
10³

1
10¹

3
10

In converting 1 g cm−³ to kg m−³, the following
reasoning is used:

1 kg = 1000 g
1 m³ = 10⁶ cm³
1 g is divided by 1 000 to covert to kg

and 1 cm−³ is multiplied by 10⁶ to convert to m−³

i.e. 1 g cm−³ = ×

1 g cm−³ = 1000 kg m−³

2.5 Graphs
A common way to present results is to draw a graph.
The graph often provides us with extra information
and helps our understanding.

When plotting a graph the axes are labelled with the
quantities involved, their symbols and the units of the
quantities. We choose a sensible and convenient scale so
that the results occupy most of the graph. For instance,
if a set of results of length has a range from 1.2 cm to
8.4 cm, the scale would be 0 to 10 cm, not 0 to 100 cm.

We use a small cross, or a dot with a small circle
around it, to indicate the plotted points. We plot results
as accurately as possible – we do not ‘round off’ to
make them easier to plot.

Our results are often approximately in a straight line.
We draw a line of best fit. This line goes as close as
possible to as many points as possible. The points
should also be ‘balanced’ about the line, with equal
numbers above and below the line (if they are not
exactly on the line). Sometimes the shape of a graph
will be a smooth curve.

The line of best fit has the effect of averaging
experimental inaccuracies.

Common graphs
If a graph is a straight line passing through the origin,
this means that the two quantities are proportional to
each other (Fig. 2.4).

Fig. 2.4 Straight-line graph passing through origin
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1
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A graph can also be a straight line but not pass through
the origin – the quantities are then linearly related to
each other but are not proportional to each other 
(Fig. 2.5).

Fig. 2.5 Straight-line graph not passing through origin

Gradient and intercepts of a graph
Two important quantities of a straight-line graph are its
gradient and its intercepts on the axes.

In Figs. 2.5 and 2.6 the intercept on the Y-axis is 4.
If we draw the graph line until it hits the X-axis, the
intercept is a negative value -8 (Fig. 2.6). 

This triangle should be wider than half the width of
the graph paper and the height should be greater than
half the height of the page. 

Fig. 2.6 Intercepts on a graph

gradient = =

In our example the gradient is:

= = 

Questions on Unit 2
1 Calculate the values of the following:

a (6 × 10³) x (5 × 10⁴)
b (4 × 10−³) × (3 × 10²)
c (6 × 10³) / (3 × 10⁵)
d (4 × 10−⁴) / (2 × 10−⁵)

2 A student carries out an experiment to find the
density of wood in a wooden block. The mass of
the block is recorded as 163 g and its volume as
240 cm³. Which of the following values should the
student write for the density of the material?
a 0.7 g cm−³ b 0.68 g cm−³
c 0.679 g cm−³ d 0.6791 g cm−³
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3 Examine the graph drawn below.

a What is the gradient of this graph?
b What is the value of T when m is 8.0?
c What is the value of m when T is 0.0?
d Does this graph indicate that m and T are

proportional to each other? Explain your
answer.
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3.1 Vectors and scalars
Some quantities need to have both their size and
direction stated to fully describe the quantity. These
quantities are known as vectors. Examples of vectors
are displacement, velocity, acceleration and force.

Other quantities, which only have size (but no
direction), are known as scalars. Examples of scalars
are distance, speed and mass.

In Unit 5 we discuss the addition of vectors and scalars.

3.2 Distance and displacement
When we calculate the total distance travelled by an
object we take no account of the directions in which it
travels. Distance is a scalar quantity.

The displacement is defined as the distance moved
in a particular direction. Displacement is a vector
quantity.

Figure 3.1 represents a man walking on a football
field. He starts at P and walks 50 m due east – a
displacement. He then walks 50 m due north. The
total distance he has travelled is 100 m but his
displacement is about 71 m north-east of his starting
point.

Fig. 3.1 Distance and displacement

We can draw a scale diagram to represent his
movement. We could use a scale in which 1 cm
represents 10 m. If we take north as being up the page
we then obtain a diagram that is two sides of a triangle,
similar to Fig. 3.1. 

The length of the third side of this triangle, the
hypotenuse, is measured and is about 7.1 cm. This
represents the displacement in both size and direction.

3.3 Speed
Speed is defined as the distance moved per second.
Speed is a scalar quantity.

If the speed does not vary (if it is constant or
uniform) then

speed =

Distance is measured in metres and time in seconds.
The unit of speed is metres per second, m s−¹.
Remember, in the unit m s−¹ the  −1 means ‘divided
by’ or ‘per’. The symbol for speed is v.

3.4 Velocity
Velocity is defined as the displacement per second.
Thus the velocity is the distance moved per second in a
particular direction. Velocity is a vector quantity.
If the velocity is constant, 

velocity =

The unit of velocity is metres per second, m s−¹. The
symbol for velocity is also v. For a velocity to be
constant, both the speed and direction must be
constant.

Changing m s−¹ to km h−¹

20 m s−¹ =( × ) km h−¹

we divide by 1 000 to change metres to seconds and we
multiply by 3 600 to change ‘per second’ to ‘per hour’.
(There are 3600 s in 1 h.)

3.5 Acceleration
Acceleration is defined as the rate of change of velocity,
i.e. the change of velocity per second. 

If the acceleration is constant, 

acceleration =

The unit of acceleration is metres per second squared,
m s−². This means a certain change of velocity, in m s−¹,
each second.

Acceleration is a vector quantity and its symbol is a.

change of velocity
time taken 

3 600
1

20
1 000

displacement
time taken 

distance travelled
time taken 

7

3 Motion
[syllabus sections B2.1–2.4, 3.2–3.4]
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3.6 Representing motion using
graphs
We use graphs to represent and analyse motion. The
most useful to us are graphs of displacement against
time, and velocity against time.

Constant velocity
If a car is moving at a constant velocity of 15 m s−¹,
then each second it will travel 15 metres, in the same
direction.

Two graphs can represent this motion:
1 Displacement/time graph – the graph (Fig. 3.2)

represents the car’s motion. The gradient of the
line is 60⁄4 = 15. The gradient of a displacement/
time graph always represents the velocity.

Fig. 3.2 Displacement/time graph

2 Velocity/time graph – the gradient of the graph
represents the acceleration. In the example 
(Fig. 3.3) the velocity is constant, so the gradient
and acceleration are zero.

Fig. 3.3 Velocity/time graph: constant velocity

The area under a velocity/time graph represents the
distance travelled. So in the 4 s, the distance 
travelled is 60 m.

Velocity/time graphs are more useful than
distance/time graphs. All four quantities are represented
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on a velocity/time graph: velocity, time, distance and
acceleration.

Uniform acceleration
If a car starts from rest and has an acceleration of 5 m s−¹,
each second its velocity increases by 5 m s−¹. We
represent this in a velocity/time graph (Fig. 3.4).

Fig. 3.4 Velocity/time graph: uniform acceleration

We can use the graph to calculate the distance travelled
in 6 s. Remember that the distance travelled is
represented by the area under the graph. The triangle
has an area of 

1⁄2 × base × height = 1⁄2 × 6 × 30 = 90

The distance travelled in 6 s is 90 m.

Example
A bus starts from rest and accelerates at 3 m s−¹ for 5 s.
It travels at a constant speed for 10 s and then quickly
comes to a halt in a further 3 s. 

Draw a velocity/time graph to represent this motion
and calculate the distance between the two stops.

Answer
The distance travelled is equal to the area under the
graph. We calculate this area by considering the three
stages separately.
1 During the acceleration the area under the graph

is the area of the triangle, 1⁄2 × 5 × 15 = 37.5 m².
2 During the constant speed the area of the

rectangle is 10 × 15 = 150 m².
3 During the deceleration the area is again the area

of a triangle: 
1⁄2 × 3 × 15 = 22.5
The total area is 37.5 + 150 + 22.5 = 210
The distance travelled is 210 m.
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area = 1⁄2 × 6 × 30 = 90
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3.7 Equations of uniformly
accelerated motion
When we have objects moving with a constant
acceleration we can also use certain equations to solve
problems. In these equations we use the following
symbols:

initial velocity u final velocity v

acceleration a displacement x

time t

acceleration =
change in velocity

time taken

a =
v − u

t

Rearranging, at = v − u

and v = u + at (1)

Also, 

velocity =
displacement
time taken

displacement = velocity × time taken

This is only true if the velocity is constant. If the
velocity is changing then

displacement = average velocity × time taken

x =
(u + v)

× t
(2)

2

We now substitute into equation (2).
As v = u + at

x =
(u + [u + at]) × t

2

Thus x = ut + 1⁄2 at² (3)

Also, substituting t =
v − u  

in equation (2)
a

x = ×

Rearranging, 2 ax = v² − u²
and v² = u² + 2ax (4)

( v − u)
a

(u + v)
2

0
0

5

10

15

5 10 15 2018

Equations (1), (2), (3) and (4) are called the equations
of motion. We can only apply them when the
acceleration is constant throughout the motion.

In applying the equations of motion, the student
should read the questions carefully, write down all data
given and decide which variable has to be found. It is
then easy to match up which of the four examples of
motion he/she can use.

Examples of use of equations of
motion
1 A racing car has a constant acceleration, from rest,

of 4.0 m s−². How far does it travel in the first 10 s?
The initial velocity is zero, u = 0, a = 4.0 m s−², 
t = 10 s, x = ? m.
We use the third equation of motion:
x = ut + 1⁄2 at²
x = 0 × t + 1⁄2 × 4 × 10²
x = 2 × 100 = 200 m

2 What deceleration is needed to bring a car, with a
velocity of 20 m s−¹, to rest in 80 m?
The final velocity is zero, v = 0, u = 20 m s−¹, 
s = 80 m, a = ? m s−²

v² = u² + 2 ax

0 = 20² + 2 × a × 80
= 400 + 160 a

−400 = 160 a
−400

= a = −2.5 m s−²
160

A deceleration is a negative acceleration.

3.8 Measuring velocities and
accelerations
In the laboratory we use a ticker-tape timer to measure
velocities and accelerations (Fig. 3.5). It has a strip of
metal that vibrates 60 times a second. A dot is printed
at each 1/60th second on the paper that runs
underneath.

Fig. 3.5 Ticker-tape timer
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ticker tape

carbon disc
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The tape can be pulled at a constant speed through the
timer. The tape is then cut up into sections of ‘10-dot’
lengths, each 1/6th second. If the speed is constant then
the sections of the tape obtained are the same length.
The length of each of the strips is the distance travelled
in 1/6th second. 

The speed, distance per second, is calculated by
multiplying by 6, the distance travelled in 1/6th second.
A graph can also be made from the tapes (Fig.3.6).

Fig. 3.6 Graph from ticker-tape timer

Calculating acceleration from the
tapes
If the tape is pulled so that it accelerates through the
timer, the spacing of the dots increases. We cut 10-dot
lengths and make a new graph (Fig. 3.7). The lengths
of the tapes increase as the speed increases. The rate of
increase is constant if the acceleration is constant.

We calculate the acceleration by measuring the
change of speed in a certain time. The initial velocity
in Fig. 3.7 was 15 cm s−¹ and after one second the
velocity was 165 cm s−¹.

acceleration =
change in velocity

time taken

=
165 − 15

= 150 cm s−²
1

1 2 3 4 5

Fig. 3.7 Calculating acceleration

3.9 Falling objects
We can drop a large stone and a piece of chalk from a
height of 3 or 4 m and they will land simultaneously.
However, a stone will reach the ground faster than a
piece of paper. If the stone and paper are allowed to fall
in a vacuum, they fall together.

When objects fall in air, the resistance of the air has a
greater effect on objects with larger surface areas, such
as paper, than on heavy ones, such as the stone. Fluid
friction (or viscous drag) always opposes the fall of
objects through f luids, i.e. liquids and gases.

Acceleration due to gravity
If the effects of air resistance are eliminated or are
negligible, then all objects fall with the same acceleration.
This is called the acceleration due to gravity, g.

The acceleration due to gravity has slightly different
values in different parts of the world but the average
value is 9.81 m s−². We often take g as 10 m s−², as a
convenient approximation.

An object falling vertically gains speed, 10 m s−¹ in
each second.
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