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Affine embeddings of homogeneous spaces

Ivan V. Arzhantsev

Introduction

Throughout the paper G denotes a connected reductive algebraic group,

unless otherwise specified, and H an algebraic subgroup of G. All groups

and algebraic varieties considered are over an algebraically closed field

K of characteristic zero, unless otherwise specified. Let K[X ] be the

algebra of regular functions on an algebraic variety X and K(X) the

field of rational functions on X provided X is irreducible. Our general

references are [30] for algebraic groups and [56, 37, 29] for algebraic

transformation groups and invariant theory.

Affine embeddings: definitions. Let us recall that an irreducible

algebraic G-variety X is said to be an embedding of the homogeneous

space G/H if X contains an open G-orbit isomorphic to G/H . We shall

denote this relationship by G/H →֒ X . Let us say that an embedding

G/H →֒ X is affine if the variety X is affine. In many problems of

invariant theory, representation theory and other branches of mathe-

matics, only affine embeddings of homogeneous spaces arise. This is

why it is reasonable to study specific properties of affine embeddings in

the framework of a well-developed general embedding theory.

Which homogeneous spaces admit an affine embedding? It is

easy to show that a homogeneous space G/H admits an affine embed-

ding if and only if G/H is quasi-affine (as an algebraic variety). In

this situation, the subgroup H is said to be observable in G. A closed

subgroup H of G is observable if and only if there exist a rational finite-

dimensional G-module V and a vector v ∈ V such that the stabilizer Gv

coincides with H . (This follows from the fact that any affine G-variety

may be realized as a closed invariant subvariety in a finite-dimensional

G-module [56, Th.1.5].) There is a nice group-theoretic description of

1

www.cambridge.org/9780521691826
www.cambridge.org


Cambridge University Press
978-0-521-69182-6 — Surveys in Geometry and Number Theory
Edited by Nicholas Young
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 I. V. Arzhantsev

observable subgroups due to A. Sukhanov: a subgroup H is observable

in G if and only if there exists a quasi-parabolic subgroup Q ⊂ G such

that H ⊂ Q and the unipotent radical Hu is contained in the unipotent

radical Qu, see [63], [29, Th.7.3]. (Let us recall that a subgroup Q is

said to be quasi-parabolic if Q is the stabilizer of a highest weight vector

in some G-module V .)

It follows from Chevalley’s theorem that any subgroup H without non-

trivial characters (in particular, any unipotent subgroup) is observable.

By Matsushima’s criterion, a homogeneous space G/H is affine if and

only if H is reductive. (For a simple proof, see [42] or [4]; a characteristic-

free proof can be found in [57].) In particular, any reductive subgroup

is observable. A description of affine homogeneous spaces G/H for non-

reductive G is still an open problem.

Complexity of reductive group actions. Now we define the notion

of complexity, which we shall encounter many times in the text. Let

us fix the notation. By B = TU denote a Borel subgroup of G with

a maximal torus T and the unipotent radical U . By definition, the

complexity c(X) of a G-variety X is the codimension of a B-orbit of

general position in X for the restricted action B : X . This notion firstly

appeared in [45] and [70]. Now it plays a central role in embedding

theory. By Rosenlicht’s theorem, c(X) is equal to the transcendence

degree of the field K(X)B of rational B-invariant functions on X . A

normal G-variety X is called spherical if c(X) = 0 or, equivalently,

K(X)B = K. A homogeneous space G/H and a subgroup H ⊆ G are

said to be spherical if G/H is a spherical G-variety.

Rational representations, the isotypic decomposition and G-

algebras. A linear action of G in vector space W is said to be rational

if for any vector w ∈ W the linear span 〈Gw〉 is finite-dimensional and

the action G : 〈Gw〉 defines a representation of an algebraic group. Since

any finite-dimensional representation of G is completely reducible, it is

easy to prove that W is a direct sum of finite-dimensional simple G-

modules.

Let Ξ+(G) be the semigroup of dominant weights of G. For any

λ ∈ Ξ+(G), denote by Wλ the sum of all simple submodules in W of

highest weight λ. The subspace Wλ is called an isotypic component of

W of weight λ, and the decomposition

W = ⊕λ∈Ξ+(G)Wλ

is called the isotypic decomposition of W .
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Affine embeddings of homogeneous spaces 3

If G acts on an affine variety X , the linear action G : K[X ], (gf)(x) :=

f(g−1x), is rational [56, Lemma 1.4]. (Note that for irreducible X the

action on rational functions G : K(X) defined by the same formula is

not rational.) The isotypic decomposition

K[X ] = ⊕λ∈Ξ+(G)K[X ]λ

and its interaction with the multiplicative structure on K[X ] give im-

portant technical tools for the study of affine embeddings.

An affine G-variety X is spherical if and only if K[X ]λ is either zero

or a simple G-module for any λ ∈ Ξ+(G) [32].

Suppose that A is a commutative associative algebra with unit over

K. If G acts on A by automorphisms and the action G : A is rational,

we say that A is a G-algebra. The algebra K[X ] is a G-algebra for any

affine G-variety X . Moreover, any finitely generated G-algebra without

nilpotents arises in this way.

We conclude the introduction with a review of the contents of this

survey.

One of the pioneering works in embedding theory was a classification of

normal affine SL(2)-embeddings due to V. L. Popov, see [52, 37]. In the

same period (early seventies) the theory of toric varieties was developed.

A toric variety may be considered as an equivariant embedding of an

algebraic torus T . Such embeddings are described in terms of convex

fans. Any cone in the fan of a toric variety X represents an affine toric

variety. This reflects the fact that X has a covering by T -invariant affine

charts. In 1972, V. L. Popov and E. B. Vinberg [55] described affine

embeddings of quasi-affine homogeneous spaces G/H , where H contains

a maximal unipotent subgroup of G. In Section 1 we discuss briefly these

results together with a more recent one: a remarkable classification of

algebraic monoids with a reductive group G as the group of invertible

elements (E. B. Vinberg [71]). This is precisely the classification of affine

embeddings of the space (G × G)/∆(G), where ∆(G) is the diagonal

subgroup.

In Section 2 we consider connections of the theory of affine embeddings

with Hilbert’s 14th problem. Let H be an observable subgroup of G.

By the Grosshans theorem, the following conditions are equivalent:

1) the algebra of invariants K[V ]H is finitely generated for any G-module

V ;

2) the algebra of regular functions K[G/H ] is finitely generated;
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3) there exists a (normal) affine embedding G/H →֒ X such that

codimX(X \ (G/H)) ≥ 2

(such an embedding is called the canonical embedding of G/H).

It was proved by F. Knop that if c(G/H) ≤ 1 then the algebra K[G/H ]

is finitely generated. This result provides a large class of subgroups with

a positive solution of Hilbert’s 14th problem. In particular, Knop’s the-

orem together with Grosshans’ theorem on the unipotent radical P u of a

parabolic subgroup P ⊂ G includes almost all known results on Popov-

Pommerening’s conjecture (see 2.2). We study the canonical embedding

of G/P u from a geometric view-point. Finally, we mention counterex-

amples to Hilbert’s 14th problem due to M. Nagata, P. Roberts, and

R. Steinberg.

In Section 3 we introduce the notion of an affinely closed space, i.e.

an affine homogeneous space admitting no non-trivial affine embeddings,

and discuss the result of D. Luna related to this notion. (We say that

an affine embedding G/H →֒ X is trivial if X = G/H .) Affinely closed

spaces of an arbitrary affine algebraic group are characterized and some

elementary properties of affine embeddings are formulated.

Section 4 is devoted to affine embeddings with a finite number of or-

bits. We give a characterization of affine homogeneous spaces G/H such

that any affine embedding of G/H contains a finite number of orbits.

More generally, we compute the maximal number of parameters in a

continuous family of G-orbits over all affine embeddings of a given affine

homogeneous space G/H . The group of equivariant automorphisms of

an affine embedding is also studied here.

Some applications of the theory of affine embeddings to functional

analysis are given in Section 5. Let M = K/L be a homogeneous space of

a connected compact Lie group K, and C(M) the commutative Banach

algebra of all complex-valued continuous functions on M . The K-action

on C(M) is defined by the formula (kf)(x) = f(k−1x), k ∈ K, x ∈ M .

We shall say that A is an invariant algebra on M if A is a K-invariant

uniformly closed subalgebra with unit in C(M). Denote by G and H the

complexifications of K and L respectively. Then G is a reductive alge-

braic group with reductive subgroup H . There exists a correspondence

between finitely generated invariant algebras on M and affine embed-

dings of G/F with some additional data, where F is an observable sub-

group of G containing H . This correspondence was introduced by V. M.

Gichev [25], I. A. Latypov [38, 39] and, in a more algebraic way, by E. B.
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Vinberg. We give a precise formulation of this correspondence and refor-

mulate some facts on affine embeddings in terms of invariant algebras.

Some results of this section are new and not published elsewhere.

The last section is devoted to G-algebras. It is easy to prove that any

subalgebra in the polynomial algebra K[x] is finitely generated. On the

other hand, one can construct many non-finitely generated subalgebras

in K[x1, . . . , xn] for n ≥ 2. More generally, every subalgebra in an as-

sociative commutative finitely generated integral domain A with unit is

finitely generated if and only if KdimA ≤ 1, where KdimA is the Krull

dimension of A (Proposition 6.5). In Section 6 we obtain an equivari-

ant version of this result. The problem was motivated by the study of

invariant algebras in the previous section. The proof of the main re-

sult (Theorem 6.3) is based on a geometric method for constructing a

non-finitely generated subalgebra in a finitely generated G-algebra and

on properties of affine embeddings obtained above. In particular, the

notion of an affinely closed space is crucial for the classification of G-

algebras with finitely generated invariant subalgebras. The arguments

used in this text are slightly different from the original ones [9]. A char-

acterization of G-algebras with finitely generated invariant subalgebras

for non-reductive G is also given in this section.
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1 Remarkable classes of affine embeddings

1.1 Affine toric varieties

We begin with some notation. Let T be an algebraic torus and Ξ(T )

the lattice of its characters. A T -action on an affine variety X defines

a Ξ(T )-grading on the algebra K[X ] = ⊕χ∈Ξ(T )K[X ]χ, where K[X ]χ =

{f | tf = χ(t)f for any t ∈ T }. (This grading is just the isotypic

decomposition, see the introduction.) If X is irreducible, then the set

L(X) = {χ | K[X ]χ �= 0} is a submonoid in Ξ(T ).
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Definition 1.1. An affine toric variety X is a normal affine T -variety

with an open T -orbit isomorphic to T .

Below we list some basic properties of T -actions:

• An action T : X has an open orbit if and only if dimK[X ]χ = 1 for any

χ ∈ L(X). In this situation K[X ] is T -isomorphic to the semigroup

algebra KL(X).

• An action T : X is effective if and only if the subgroup in Ξ(T )

generated by L(X) coincides with Ξ(T ).

• Suppose that T : X is an effective action with an open orbit. Then

the following conditions are equivalent:

1) X is normal;

2) the semigroup algebra KL(X) is integrally closed;

3) if χ ∈ Ξ(T ) and there exists n ∈ N, n > 0, such that nχ ∈ L(X),

then χ ∈ L(X) (the saturation condition);

4) there exists a solid convex polyhedral cone K in Ξ(T ) ⊗Z Q such

that L(X) = K ∩ Ξ(T ).

In this situation, any T -invariant radical ideal of K[X ] corresponds to

the subsemigroup L(X) \ M for a fixed face M of the cone K. This

correspondence defines a bijection between T -invariant radical ideals

of K[X ] and faces of K.

The proof of these properties can be found, for example, in [23]. Sum-

marizing all the results, we obtain

Theorem 1.2. Affine toric varieties are in one-to-one correspondence

with solid convex polyhedral cones in the space Ξ(T )⊗Z Q; and T -orbits

on a toric variety are in one-to-one correspondence with faces of the

cone.

The classification of affine toric varieties will serve us as a sample for

studying more complicated classes of affine embeddings. Generalizations

of a combinatorial description of toric varieties were obtained for spher-

ical varieties [45, 33, 18], and for embeddings of complexity one [68].

In this more general context, the idea that normal G-varieties may be

described by some convex cones becomes rigorous through the method

of U -invariants developed by D. Luna and Th. Vust. The essence of this

method is contained in the following theorem (see [72, 37, 54, 29]).

Theorem 1.3. Let A be a G-algebra and U a maximal unipotent sub-

group of G. Consider the following properties of an algebra:
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• it is finitely generated;

• it has no nilpotent elements;

• it has no zero divisors;

• it is integrally closed.

If (P) is any of these properties, then the algebra A has property (P) if

and only if the algebra AU has property (P).

We try to demonstrate briefly some applications of the method of

U -invariants in the following subsections.

1.2 Normal affine SL(2)-embeddings

Suppose that the group SL(2) acts on a normal affine variety X and

there is a point x ∈ X such that the stabilizer of x is trivial and the

orbit SL(2)x is open in X . We say in this case that X is a normal

SL(2)-embedding.

Let Um be a finite extension of the standard maximal unipotent sub-

group in SL(2):

Um =

{(

ǫ a

0 ǫ−1

)

| ǫm = 1, a ∈ K

}

.

Theorem 1.4 ([52]). Normal non-trivial SL(2)-embeddings are in one-

to-one correspondence with rational numbers h ∈ (0, 1]. Furthermore,

• h = 1 corresponds to a (unique) smooth SL(2)-embedding with two

orbits: X = SL(2) ∪ SL(2)/T ;

• if h = p
q

< 1 and (p, q) = 1, then X = SL(2) ∪ SL(2)/Up+q ∪ {pt},

and {pt} is an isolated singular point in X.

The proof of Theorem 1.4 can be found in [52], [37, Ch. 3]. Here we

give only some examples and explain what the number h (which is called

the height of X) means in terms of the algebra K[X ].

Example 1.5. 1) The group SL(2) acts tautologically on the space K2

and by conjugation on the space Mat(2 × 2). Consider the point

x =

{(

1 0

0 −1

)

,

(

1

0

)}

∈ Mat(2 × 2) × K2

and its orbit

SL(2)x = {(A, v) | detA = −1, tr A = 0, Av = v, v �= 0}.

www.cambridge.org/9780521691826
www.cambridge.org


Cambridge University Press
978-0-521-69182-6 — Surveys in Geometry and Number Theory
Edited by Nicholas Young
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 I. V. Arzhantsev

It is easy to see that the closure

X = SL(2)x = {(A, v) | detA = −1, tr A = 0, Av = v}

is a smooth SL(2)-embedding with two orbits, hence X corresponds to

h = 1.

2) Let Vd = 〈xd, xd−1y, . . . , yd〉 be the SL(2)-module of binary forms

of degree d. It is possible to check that

X = SL(2)(x, x2y) ⊂ V1 ⊕ V3

is a normal SL(2)-embedding with the orbit decomposition X = SL(2)∪

SL(2)/U3 ∪ {pt}, hence X corresponds to h = 1
2 .

An embedding SL(2) →֒ X , g → gx determines the injective homo-

morphism A = K[X ] → K[SL(2)] with QA = QK[SL(2)], where QA

is the quotient field of A. Let U− be the unipotent subgroup of SL(2)

opposite to U . Then

K[SL(2)]U
−

= {f ∈ K[SL(2)] | f(ug) = f(g), g ∈ SL(2), u ∈ U−}

= K[A, B],

where A

(

a b

c d

)

= a and B

(

a b

c d

)

= b.

Below we list some facts ([37, Ch. 3]) that allow us to introduce the

height of an SL(2)-embedding X .

• If C is an integral F -domain, where F is a unipotent group, then

Q(CF ) = (QC)F . In particular, if C ⊆ A and QA = QC, then

Q(AU−

) = Q(CU−

).

• Suppose that limt→0

(

t 0

0 t−1

)

x exists. Then A ∈ K[SL(2)] ⊂

K(X) is regular on X .

• Let D ⊂ K[x, y] be a homogeneous integrally closed subalgebra in the

polynomial algebra such that QD = K(x, y) and x ∈ D. Then D is

generated by monomials.

In our situation, the algebra D = A
U−

⊂ K[A, B] is homogeneous

because it is T -stable (since T normalizes U−).

• There exists rational h ∈ (0, 1] such that

A
U−

= A(h) = 〈AiBj |
j

i
≤ h〉.

Moreover, for any rational h ∈ (0, 1] the subspace 〈SL(2)A(h)〉 ⊂

K[SL(2)] is a subalgebra.

www.cambridge.org/9780521691826
www.cambridge.org


Cambridge University Press
978-0-521-69182-6 — Surveys in Geometry and Number Theory
Edited by Nicholas Young
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Affine embeddings of homogeneous spaces 9

Remark . While normal SL(2)-embeddings are parametrized by a dis-

crete parameter h, there are families of non-isomorphic non-normal SL(2)-

embeddings over a base of arbitrary dimension [13].

Remark . A classification of SL(2)-actions on normal three-dimensional

affine varieties without open orbit can be found in [6, 5].

1.3 HV -varieties and S-varieties

In this subsection we discuss the results of V. L. Popov and E. B. Vin-

berg [55]. Throughout G denotes a connected and simply connected

semisimple group.

Definition 1.6. An HV -variety X is the closure of the orbit of a highest

weight vector in a simple G-module.

Let V (λ) be the simple G-module with highest weight λ and vλ a

highest weight vector in V (λ). Denote by λ∗ the highest weight of the

dual G-module V (λ)∗.

• X(λ) = Gvλ∗ is a normal affine variety consisting of two orbits:

X(λ) = Gvλ∗ ∪ {0}.

• K[X(λ)] = K[Gvλ∗ ] = ⊕m≥0K[X(λ)]mλ, any isotypic component

K[X(λ)]mλ is a simple G-module, and

K[X(λ)]m1λK[X(λ)]m2λ = K[X(λ)](m1+m2)λ.

• The algebra K[X(λ)] is a unique factorization domain if and only if λ

is a fundamental weight of G.

Example 1.7. 1) The quadratic cone KQn = {x ∈ Kn | x2
1 + · · · +

x2
n = 0} (n ≥ 3) is an HV -variety for the tautological representation

SO(n) : Kn. (In fact, the group SO(n) is not simply connected and

we consider the corresponding module as a Spin(n)-module.) It follows

that KQn is normal and it is factorial if and only if n ≥ 5.

2) The Grassmannian cone KGn,m (n ≥ 2, 1 ≤ m ≤ n − 1) (i.e.

the cone over the projective variety of m-subspaces in Kn) is an HV -

variety associated with the fundamental SL(n)-representation in the

space
∧m

Kn, hence it is factorial.

Definition 1.8. An irreducible affine variety X with an action of a

connected reductive group G is said to be an S-variety if X has an open

G-orbit and the stabilizer of a point in this orbit contains a maximal

unipotent subgroup of G.
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Any S-variety may be realized as X = Gv, where v = vλ∗

1
+ · · ·+ vλ∗

k

is a sum of highest weight vectors vλ∗

i
in some G-module V . We have

the isotypic decomposition

K[X ] = ⊕λ∈L(X)K[X ]λ,

where L(X) is the semigroup generated by λ1, . . . , λk, any K[X ]λ is a

simple G-module, and K[X ]λK[X ]μ = K[X ]λ+μ. The last condition

determines uniquely (up to G-isomorphism) the multiplicative structure

on the G-module K[X ]. This shows that there is a bijection between

S-varieties and finitely generated submonoids in Ξ+(G).

Consider the cone K = Q+L(X). As in the toric case, normality of

X is equivalent to the saturation condition for the semigroup L(X), and

G-orbits on X are in one-to-one correspondence with faces of K. On

the other hand, there are phenomena which are specific for S-varieties.

For example, the complement to the open orbit in X has codimension

≥ 2 if and only if ZL(X)∩Ξ+(G) ⊆ Q+L(X) (this is never the case for

non-trivial toric varieties). Also, an S-variety X is factorial if and only

if L(X) is generated by fundamental weights.

Finally, we mention one more result on this subject. Say that an

action G : X on an affine variety X is special (or horospherical) if there

is an open dense subset W ⊂ X such that the stabilizer of any point of

W contains a maximal unipotent subgroup of G.

Theorem 1.9 ([54]). The following conditions are equivalent:

• the action G : X is special;

• the stabilizer of any point on X contains a maximal unipotent sub-

group;

• K[X ]λK[X ]μ ⊆ K[X ]λ+μ for any λ, μ ∈ Ξ+(G).

1.4 Algebraic monoids

The general theory of algebraic semigroups was developed by M. S.

Putcha, L. Renner and E. B. Vinberg. In this subsection we recall

briefly the classification results following [71].

Definition 1.10. An (affine) algebraic semigroup is an (affine) algebraic

variety S with an associative multiplication

μ : S × S → S,

which is a morphism of algebraic varieties. An algebraic semigroup S is

normal if S is a normal algebraic variety.
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