
LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor: Professor N. J. Hitchin, Mathematical Institute, University of Oxford, 24-29
St Giles, Oxford OX1 3LB, United Kingdom

The titles below are available from booksellers, or from Cambridge University Press at www.
cambridge.org/mathematics

209 Arithmetic of diagonal hypersurfaces over finite fields, F.Q. GOUVÉA & N. YUI
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Preface to the Second Edition (2006)

The First Edition (1981) of “Synthetic Differential Geometry” has been
out of print since the early 1990s. I felt that there was still a need for the
book, even though other accounts of the subject have in the meantime
come into existence.

Therefore I decided to bring out this Second Edition. It is a com-
promise between a mere photographic reproduction of the First Edition,
and a complete rewriting of it. I realized that a rewriting would quickly
lead to an almost new book. I do indeed intend to write a new book,
but prefer it to be a sequel to the old one, rather than a rewriting of it.

For the same reason, I have refrained from attempting an account of
all the developments that have taken place since the First Edition; only
very minimal and incomplete pointers to the newer literature (1981–
2006) have been included as “Notes 2006” at the end of each of the
Parts of the book.

Most of the basic notions of synthetic differential geometry were al-
ready in the 1981 book; the main exception being the general notion
of “strong infinitesimal linearity” or “microlinearity”, which came into
being just too late to be included. A small Appendix D on this notion
is therefore added.

Otherwise, the present edition is a re-typing of the old one, with only
minor corrections, where necessary. In particular, the numberings of
Parts, equations, etc. are unchanged. The bibliography consists of two
parts: the first one (entries [1] to [81]) is identical to the bibliography
from the 1981 edition, the second one (from entry [82] onwards) contains
later literature, as referred to in the end-notes (so it is not meant to be
complete; I hope in a possible forthcoming Second Book to be able to
survey the field more completely).

Besides the thanks that are expressed in the Preface to the 1981 edi-

vii
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viii Preface to the Second Edition (2006)

tion (as reprinted following), I would like to express thanks to Prof.
Andrée Charles Ehresmann for her tireless work in running the jour-
nal Cahiers de Topologie et Géométrie Différentielle Catégoriques. This
journal has for a couple of decades been essential for the exchange and
dissemination of knowledge about Synthetic Differential Geometry (as
well as of many other topics in Mathematics).

I would like to thank Eduardo Dubuc, Joachim Kock, Bill Lawvere,
and Gonzalo Reyes for useful comments on this Second Edition.

I also want to thank the staff of Cambridge University Press for techni-
cal assistance in the preparation of this Second Edition. Most diagrams
were drawn using Paul Taylor’s “Diagrams” package.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-68738-6 - Synthetic Differential Geometry: 2nd Edition
Anders Kock
Frontmatter
More information

http://www.cambridge.org/9780521687386
http://www.cambridge.org
http://www.cambridge.org


Preface to the First Edition (1981)

The aim of the present book is to describe a foundation for synthetic
reasoning in differential geometry. We hope that such a foundational
treatise will put the reader in a position where he, in his study of differ-
ential geometry, can utilize the synthetic method freely and rigorously,
and that it will give him notions and language by which such study can
be communicated.

That such notions and language is something that till recently seems
to have existed only in an inadequate way is borne out by the following
statement of Sophus Lie, in the preface to one of his fundamental articles:

“The reason why I have postponed for so long these investigations,
which are basic to my other work in this field, is essentially the
following. I found these theories originally by synthetic conside-
rations. But I soon realized that, as expedient [zweckmässig] the
synthetic method is for discovery, as difficult it is to give a clear
exposition on synthetic investigations, which deal with objects that
till now have almost exclusively been considered analytically. Af-
ter long vacillations, I have decided to use a half synthetic, half
analytic form. I hope my work will serve to bring justification to
the synthetic method besides the analytical one.”

(Allgemeine Theorie der partiellen Differentialgleichungen erster
Ordnung, Math. Ann. 9 (1876).)

What is meant by “synthetic” reasoning? Of course, we do not know
exactly what Lie meant, but the following is the way we would describe
it: It deals with space forms in terms of their structure, i.e. the basic
geometric and conceptual constructions that can be performed on them.
Roughly, these constructions are the morphisms which constitute the

ix
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x Preface to the First Edition (1981)

base category in terms of which we work; the space forms themselves
being objects of it.

This category is cartesian closed, since, whenever we have formed ideas
of “spaces” A and B, we can form the idea of BA, the “space” of all
functions from A to B.

The category theoretic viewpoint prevents the identification of A and
B with point sets (and hence also prevents the formation of “random”
maps from A to B). This is an old tradition in synthetic geometry,
where one, for instance, distinguishes between a “line” and the “range
of points on it” (cf. e.g. Coxeter [8] p. 20).

What categories in the “Bourbakian” universe of mathematics are
mathematical models of this intuitively conceived geometric category?
The answer is: many of the “gros toposes” considered since the early
1960s by Grothendieck and others, – the simplest example being the
category of functors from commutative rings to sets. We deal with these
topos theoretic examples in Part III of the book. We do not begin
with them, but rather with the axiomatic development of differential
geometry on a synthetic basis (Part I), as well as a method of interpreting
such development in cartesian closed categories (Part II). We chose this
ordering because we want to stress that the axioms are intended to reflect
some true properties of the geometric and physical reality; the models in
Part III are only servants providing consistency proofs and inspiration
for new true axioms or theorems. We present in particular some models
E which contain the category of smooth manifolds as a full subcategory
in such a way that “analytic” differential geometry for these corresponds
exactly to “synthetic” differential geometry in E .

Most of Part I, as well as several of the papers in the bibliography
which go deeper into actual geometric matters with synthetic methods,
are written in the “naive” style.1 By this, we mean that all notions,
constructions, and proofs involved are presented as if the base category
were the category of sets; in particular all constructions on the objects
involved are described in terms of “elements” of them. However, it is
necessary and possible to be able to understand this naive writing as
referring to cartesian closed categories. It is necessary because the basic
axioms of synthetic differential geometry have no models in the category
of sets (cf. I §1); and it is possible: this is what Part II is about. The
method is that we have to understand by an element b of an object B a
generalized element, that is, a map b : X → B, where X is an arbitrary
object, called the stage of definition, or the domain of variation of the
element b.
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Preface to the First Edition (1981) xi

Elements “defined at different stages” have a long tradition in geom-
etry. In fact, a special case of it is when the geometers say: A circle has
no real points at infinity, but there are two imaginary points at infinity
such that every circle passes through them. Here R and C are two dif-
ferent stages of mathematical knowledge, and something that does not
yet exist at stage R may come into existence at the “later” or “deeper”
stage C. – More important for the developments here are passage from
stage R to stage R[ε], the “ring of dual numbers over R”:

R[ε] = R[x]/(x2).

It is true, and will be apparent in Part III, that the notion of elements
defined at different stages does correspond to this classical notion of
elements defined relative to different commutative rings, like R, C, and
R[ε], cf. the remarks at the end of III §1.

When thinking in terms of physics (of which geometry of space forms
is a special case), the reason for the name “domain of variation” (instead
of “stage of definition”) becomes clear: for a non-atomistic point of view,
a body B is not described just in terms of its “atoms” b ∈ B, that is,
maps 1 → B, but in terms of “particles” of varying size X, or in terms
of motions that take place in B and are parametrized by a temporal
extent X; both of these situations being described by maps X → B for
suitable domain of variation X.

————————–

The exercises at the end of each paragraph are intended to serve as a
further source of information, and if one does not want to solve them,
one might read them.

Historical remarks and credits concerning the main text are collected
at the end of the book. If a specific result is not credited to anybody, it
does not necessarily mean that I claim credit for it. Many things devel-
oped during discussions between Lawvere, Wraith, myself, Reyes, Joyal,
Dubuc, Coste, Coste-Roy, Bkouche, Veit, Penon, and others. Person-
ally, I want to acknowledge also stimulating questions, comments, and
encouragement from Dana Scott, J. Bénabou, P. Johnstone, and from
my audiences in Milano, Montréal, Paris, Zaragoza, Buffalo, Oxford,
and, in particular, Aarhus. I want also to thank Henry Thomsen for
valuable comments to the early drafts of the book.

The Danish Natural Science Research Council has on several occasions
made it possible to gather some of the above-mentioned mathematicians
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xii Preface to the First Edition (1981)

for work sessions in Aarhus. This has been vital to the progress of the
subject treated here, and I want to express my thanks.

Warm thanks also to the secretaries at Matematisk Institut, Aarhus,
for their friendly help, and in particular, to Else Yndgaard for her expert
typing of this book.2

Finally, I want to thank my family for all their support, and for their
patience with me and the above-mentioned friends and colleagues.

Notes 2006
1Lavendhomme [131] uses the word ‘naive’ synonymously with ‘synthetic’.

Modelled after Synthetic Differential Geometry, the idea of a Synthetic Do-
main Theory came into being in the late 1980s, cf. [102]. A study of topos
models for both these “synthetic” theories is promised for Johnstone’s forth-
coming “Elephant” Vol. III, [104].

2This refers to the First Edition, 1981; the present Second Edition was
scanned/typed by myself.
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