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0. Introduction

The purpose of the present work is to provide examples of HI Banach spaces
with no reflexive subspace and study their structure. As is well known W.T.
Gowers [G1] has constructed a Banach space Xgt with a boundedly complete
basis (en)n, not containing `1, and such that all of its infinite dimensional
subspaces have non separable dual. We shall refer to this space as the Gowers
Tree space. The predual (Xgt)∗, namely the space generated by the biorthogo-
nal of the basis, also has the property that it does not contain c0 or a reflexive
subspace. It remains unknown whether Xgt is HI and moreover the structure
of L(Xgt) is unclear. Notice that Gowers dichotomy [G2] yields that Xgt and
(Xgt)∗ contain HI subspaces. The structure of X

∗
gt also remains unclear. The

main obstacle for understanding the structure of Xgt or L(Xgt) is the use of
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2 SPIROS A. ARGYROS, ALEXANDER D. ARVANITAKIS, AND ANDREAS G. TOLIAS

a probabilistic argument for establishing the existence of vectors with certain
properties.

Our approach in constructing HI spaces with no reflexive subspace, is dif-
ferent from Gowers’ one. In particular we avoid the use of any probabilistic
argument and thus we are able to control the structure of the spaces as well as
the structure of the spaces of bounded linear operators acting on them. More-
over we are able to provide examples of spaces X exhibiting a vast difference
between the structures of X and X∗.

The following are the highlight of our results:

• There exists a HI Banach space X with a shrinking basis and with no
reflexive subspace. Moreover every T : X → X is of the form λI + W
with W weakly compact (and hence strictly singular).

The absence of reflexive subspaces in X in conjunction with the property that
every strictly singular operator is weakly compact is evidence supporting the
existence of Banach spaces such that every non Fredholm operator is compact.

• The dual X∗ of the previous X is HI and reflexively saturated and
the dual of every subspace Y of X is also HI.

This shows a strong divergence between the structure of X and X∗. We recall
that in [AT2] a reflexive HI space X is constructed whose dual X∗ is uncondi-
tionally saturated. The analogue of this in the present setting is the following
one:

• There exists a HI Banach space Y with a shrinking basis and with
no reflexive subspace, such that the dual space Y ∗ is reflexive and
unconditionally saturated.

The definition of the space Y requires an adaptation of the methods of [AT2]
within the present framework of building spaces with no reflexive subspace.

• There exists a partition of the basis (en)n of the previous X into two
sets (en)n∈L1

, (en)n∈L2
such that setting XL1

= span{en : n ∈ L1},
XL2

= span{en : n ∈ L2}, both X∗
L1

, X∗
L2

are HI with no reflexive
subspace.

The pairs XLi
, X∗

Li
for i = 1, 2 share similar properties with the pair (Xgt)∗

and Xgt.

• The space X∗∗ is non separable and every w∗-closed subspace of X∗∗,
is either isomorphic to `2 or is non-separable and contains `2. There-
fore every quotient of X∗ has a further quotient isomorphic to `2.
Moreover X∗∗/X is isomorphic to `2(Γ).

It seems also possible that X
∗
gt satisfies a similar to the above property al-

though this is not easily shown. Further X∗ is the first example of a HI space
with the following property: X∗/Y is HI whenever Y is w∗-closed (this is
equivalent to say that for every subspace Z of X, Z∗ is HI) and also every
quotient of X∗ has a further quotient which is isomorphic to `2.

• There exists a non separable HI Banach space Z not containing a
reflexive subspace and such that every bounded linear operator T :
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Z → Z is of the form T = λI + W with W a weakly compact (hence
strictly singular) operator with separable range.

This is an extreme construction resulting from a variation of the methods used
in the construction of the space X involved in the previous results. The fact of
the matter is that these methods are not stable. Thus some minor changes in
the initial data could produce spaces with entirely different structure. Notice
that the space Z is of the form Y ∗∗ with Y and Y ∗ sharing similar properties
with the pair X, X∗ appearing in the previous statements.

We shall proceed to a more detailed presentation of the results of the paper
and also of the methods used for constructing the spaces, which are interesting
on their own. We have divided the rest of the introduction in three subsec-
tions. The first concerns the structure of Banach spaces not containing `1, c0

or reflexive subspace. The second is devoted to saturated extensions and in
the third we explain the method of attractors which permits the construction
of dual pairs X,X∗ with strongly divergent structure.

0.1. Hereditarily James Tree spaces. Separable spaces like Gowers Tree
space undoubtedly have peculiar structure. Roughly speaking, in every sub-
space one can find a structure similar to the James tree basis. Next we shall
attempt to be more precise. Thus we shall define the Hereditarily James Tree
spaces, making more transparent their structure. We begin by recalling some
of the fundamental characteristics of James’ paradigm.

In the sequel we shall denote by (D,≺) the dyadic tree and by [D], the set
of all branches (or the body) of D. As usual we would consider that the nodes
of D consist of finite sequences of 0’s and 1’s and a ≺ b iff a is an initial part
of b. The lexicographic order of D, denoted by ≺lex defines a well ordering
which is consistent with the tree order (i.e. a ≺ b yields that a ≺lex b).

The space JT.
The James Tree space JT ([J]) is defined as the completion of (c00(D), ‖ ·

‖JT ) where for x ∈ c00(D), ‖x‖JT is defined as follows:

‖x‖JT = sup
{(

n
∑

i=1

(

∑

n∈si

x(n)
)2)1/2

: (si)
n
i=1 pairwise disjoint segments

}

.

The main properties of the space JT, is that does not contain `1 and has
nonseparable dual.

Next, we list some properties of JT related to our consideration.

• The Hamel basis (ea)a∈D of c00(D) ordered with the lexicographic
order defines a (conditional) boundedly complete basis of JT.

• For every branch b in [D], b = (a1 ≺ a2 ≺ · · · ≺ an · · · ) the sequence
(ean

)n is non trivial weak Cauchy and moreover b∗ = w∗ −
∑∞

n=1 e∗an

defines a norm one functional in JT ∗.
• The biorthogonal functionals of the basis (e∗a)a∈D generate the predual

JT∗ of JT and they satisfy the following property.
For every segment s of D setting s∗ =

∑

a∈s e∗a we have that ‖s∗‖ =
1.
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It is worth pointing out an alternative definition of the norm of JT. Thus
we consider the following subset of c00(D),

GJT =
{

n
∑

i=1

λis
∗
i : (si)

n
i=1 are disjoint finite segments and

n
∑

i=1

λ2
i ≤ 1

}

Here s∗i are defined as before. It is an easy exercise to see that the norm
induced by the set GJT on c00(D) coincides with the norm of JT.

The James Tree properties.
Let X be a space with a Schauder basis (en)n. A block subspace Y of X

has the boundedly complete (shrinking) James tree property if there exists
a seminormalized block (in the lexicographical order ≺lex of D) sequence
(ya)a∈D in Y and a c > 0 such that the following holds.

(1) (boundedly complete) There exists a bounded family (b∗)b∈[D]

in X∗, such that for each b ∈ [D], b = (a1, a2, . . . , an, . . . ) the se-
quence (yan

)n is non trivial weakly Cauchy with lim b∗(yan
) > c and

lim b∗1(yan
) = 0 for all b1 6= b.

(2) (shrinking) For all finite segments s of D, ‖
∑

a∈s
ya‖ ≤ c.

Let’s observe that (ea)a∈D in JT satisfies the boundedly complete James
Tree property while (e∗a)a∈D in JT∗ satisfies the shrinking one. Also, if the
initial space X has a boundedly complete basis only the boundedly complete
James Tree property could occur. A similar result holds if X has a shrinking
basis. Finally if Y has the boundedly complete James Tree property, then
Y ∗ is non separable and if X has a shrinking basis and Y has the (shrinking)
James Tree property, then Y ∗∗ is non separable.

For simplicity, in the sequel we shall consider that the initial space X has
either a boundedly complete or a shrinking basis. Thus if a block subspace
has the James Tree property, then it will be determined as either boundedly
complete or shrinking according to the corresponding property of the initial
basis.

Definition 0.1. Let X be a Banach space with a Schauder basis.

(a) A family L of block subspaces of X has the James Tree property,
provided every Y in L has that property.

(b) The space X is said to be Hereditarily James Tree (HJT) if it does
not contain c0, `1 and every block subspace Y of X, has the James
Tree property.

It follows from Gowers’ construction that the Gowers Tree space Xgt, and
its predual (Xgt)∗ are HJT spaces.

One of the results of the present work is that HJT property is not preserved
under duality. Namely, there exists a HJT space X with a shrinking basis,
such that X∗ is reflexively (even unconditionally) saturated. However, in the
same example there exists a subspace Y of X with Y ∗ also an HJT space.

One of the basic ingredients in our approach to building HJT spaces is the
following space:
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THE ATTRACTORS METHOD AND HEREDITARILY JAMES TREE SPACES 5

Proposition 0.2. There exists a space JTF2
with a boundedly complete basis

(en)n such that the following hold:

(i) The space JTF2
is `2 saturated.

(ii) The basis (en)n is normalized weakly null and for every M ∈ [N] the
subspace XM = span{en : n ∈ M} has the James tree property.

It is clear that none subsequence (en)n∈M is unconditional. Thus the basis
of JTF2

shares similar properties with the classical Maurey Rosenthal example
[MR]. We shall return to this space in the sequel explaining more about its
structure and its difference from Gowers’ space.

Codings and tree structures. As is well known, every attempt to impose
tight (or conditional) structure in some Banach space, requires the definition
of the conditional elements which in turn results from the existence of special
sequences defined with the use of a coding. What is less well known is that the
codings induce a tree structure in the special sequences. As we shall explain
shortly, the James tree structure in the subspaces of HJT spaces, like Xgt,
(Xgt)∗ or the spaces presented in this paper, are directly related to codings.

Let’s start with a general definition of a coding, and the obtained spe-
cial sequences. Consider a collection (Fj)j with each Fj a countable family
of elements of c00(N). To make more transparent the meaning of our defi-
nitions, let’s assume that each Fj = { 1

m2

j

∑

k∈F e∗k : F ⊂ N, #F ≤ nj}

where (mj), (nj) are appropriate fast increasing sequences of natural num-
bers. Notice that the elements of the family T = ∪jFj and the combinations
of them will play the role of functionals belonging to a norming set. This
explains the use of e∗k instead of ek. For simplicity, we also assume that the
families (Fj)j are pairwise disjoint. This happens in the aforementioned ex-
ample although it is not always true. Under this additional assumption to
each φ ∈ ∪jFj corresponds a unique index by the rule ind(φ) = j iff φ ∈ Fj .
Further for a finite block sequence s = (φ1, . . . , φd) with each φi ∈ ∪jFj , we
define ind(s) = {ind(φ1), . . . , ind(φd)}.

The σ-coding: Let Ω1, Ω2 be a partition of N into two infinite disjoint
subsets. We denote by S the family of all block sequences s = (φ1 < φ2 <
· · · < φd) such that φi ∈ ∪jFj , ind(φ1) ∈ Ω1, {ind(φ2) < · · · < ind(φd)} ⊂ Ω2.
Clearly S is countable, hence there exists an injection

σ : S → Ω2

satisfying σ(s) > ind(s) for every s ∈ S.
The σ-special sequences: A sequence s = (φ1 < φ2 < · · · < φn) in S is

said to be a σ-special sequence iff for every 1 ≤ i < n setting si = (φ1 < · · · <
φi) we have that

φi+1 ∈ Fσ(si).

The following tree-like interference holds for σ-special sequences.
Let s, t be two σ-special sequences with s = (φ1, . . . , φn), t = (ψ1, . . . , ψm).

We set

is,t = max{i : ind(φi) = ind(ψi)}
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6 SPIROS A. ARGYROS, ALEXANDER D. ARVANITAKIS, AND ANDREAS G. TOLIAS

if the later set is non empty. Otherwise we set is,t = 0. Then the following
are easily checked.

(a) For every i < is,t we have that φi = ψi.
(b) {ind(φi) : i > is,t} ∩ {ind(ψj) : j > is,t} = ∅.

These two properties immediately yield that the set T ∪j Fj endowed with
the partial order φ ≺σ ψ iff there exists a σ-special sequence (φ1, . . . , φn) and
1 ≤ i < j ≤ n with φ = φi and ψ = φj is a tree.

Now for the given tree structure (T ,≺σ) we will define norms similar to
the classical James tree norm mentioned above.

The space JTF2
: For the first application the family (Fj)j is the one

defined above.
For a σ-special sequence s = (φ1, . . . , φn) and an interval E of N we set

s∗ =
∑n

k=1 φk and let Es∗ be the restriction of s∗ on E (or the pointwise
product s∗χE). A σ-special functional x∗ is any element Es∗ as before.

Also, for a σ-special functional x∗ = Es∗, s = (φ1, . . . , φn), we let ind(x∗) =
{ind(φk) : suppφk ∩ E 6= ∅}. We consider the following set

F2 ={±e∗n : n ∈ N} ∪ {
d

∑

i=1

aix
∗
i : ai ∈ Q,

d
∑

i=1

a2
i ≤ 1, (x∗

i )
d
i=1 are

σ-special functionals with (ind(x∗
i ))

d
i=1 pairwise disjoint, d ∈ N}

The space JTF2
is the completion of (c00, ‖.‖F2

) where for x ∈ c00,

‖x‖F2
= sup{φ(x) : φ ∈ F2}.

Comparing the norming set F2 with the norming set GJT of JT one ob-
serves that σ-special functionals in F2 play the role of the functionals s∗

defined by the segments of the dyadic tree D. As we have mentioned in Propo-
sition 0.2, the space JTF2

, like JT , is `2 saturated, but for every M ∈ [N],
the subspace XM span{en : n ∈ M} has non separable dual. The later is a
consequence of the fact that the tree structure (T ,≺σ) is richer than that of
the dyadic tree basis in JT . Indeed, it is easy to check that for every M ∈ [N]
we can construct a block sequence (φa)a∈D such that

(i) φa = 1
m2

ja

∑

k∈Fa
e∗k where #Fa = nja

and Fa ⊂ M , while Fa < Fβ if

a ≺lex β.
(ii) For a branch b = (a1 ≺ a2 ≺ · · · ≺ an ≺ · · · ) of D and for every n ∈ N

we have that (φa1
, . . . , φan

) is a σ-special sequence.

Defining now xa =
m2

ja

nja

∑

k∈Fa
ek, the family (xa)a∈D provides the James

tree structure of XM .
The Gowers Tree space. The definition of Xgt uses similar ingredients

with the corresponding of JTF2
although structurally the two spaces are en-

tirely different. The norming set Ggt of Gowers space is saturated under the
operations (Anj

, 1
mj

)j . We recall that a subset G of c00 is closed (or saturated)

for the operation (An, 1
m ) if for every φ1 < φ2 < · · · < φk, k ≤ n with φi ∈ G,

i = 1, . . . , k, the functional φ = 1
m

∑k
i=1 φi belongs to G.
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The norming set Ggt is the minimal subset of c00 satisfying the following
conditions:

(i) {±e∗k : k ∈ N} ⊂ Ggt, Ggt is symmetric and closed under the operation
of restricting elements to the intervals.

(ii) Ggt is closed in the (Anj
, 1

mj
)j operations. We also set

Kj = {φ ∈ Ggt : φ is the result of a (Anj
,

1

mj
) operation}

(iii) Ggt contains the set

{

d
∑

i=1

aix
∗
i : ai ∈ Q,

d
∑

i=1

a2
i ≤ 1, (x∗

i )
d
i=1, σ-special functionals

with (ind(x∗
i ))

d
i=1 pairwise disjoint, d ∈ N

}

(iv) Ggt is rationally convex.

We explain briefly condition (iii). For a coding σ, the σ-special sequences
(φ1, . . . , φn) are defined as in the case of F2. Here the set Kj plays the role
of the corresponding Fj in F2. The σ-special functionals x∗, are defined as in
the case of F2.

Let’s observe that Ggt is almost identical with F2, although the spaces
defined by them are entirely different. The essential difference between F2

and Ggt is that in the case of F2 each Fj , j ∈ N does not norm any sub-
space of JTF2

, while in Xgt each Kj defines an equivalent norm on Xgt.
The later means that in every subspace Y of Xgt, the families Kj , j ∈

N as well as {x∗ : x∗ is a σ-special functional} and {
d
∑

i=1

λix
∗
i :

n
∑

i=1

λ2
i ≤

1, (ind(x∗
i ))

d
i=1 are pairwise disjoint} define equivalent norms making it diffi-

cult to distinguish the action of them on the elements of Y. Thus, while the
spaces of the form JTF2

can be studied in terms of the classical theory, the
space Xgt requires advanced tools, like Gowers probabilistic argument, which
do not permit a complete understanding of its structure.

0.2. Saturated extensions. The method of HI extensions appeared in the
Memoirs monograph [AT1] and was used to derive the following two results:

• Every separable Banach space Z not containing `1 is a quotient of
a separable HI space X, with the additional property that Q∗Z∗ is
a complemented subspace of X∗. (Here Q denotes the quotient map
from X to Z.)

• There exists a nonseparable HI Banach space.

Roughly speaking, the method of HI extensions provides a tool to connect
a given norm, usually defined through a norming set G with a HI norm. The
resulting new norm will preserve some of the ingredients of the initial norm
and will also be HI. To some extent, HI extensions, have similar goals with
HI interpolations ([AF]) and some of the results could be obtained with both
methods. However it seems that the method of extensions is very efficient
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8 SPIROS A. ARGYROS, ALEXANDER D. ARVANITAKIS, AND ANDREAS G. TOLIAS

when we want to construct dual pairs X, X∗ with divergent structure. This
actually requires the combination of extensions with the method of attractors,
which appeared in [AT2] where a reflexive HI space X is constructed with X∗

unconditionally saturated.
In the sequel we shall provide a general definition of saturated extensions

which include several forms of extensions which appeared elsewhere (c.f. [AT1,
AT2, ArTo])

Let M be a compact family of finite subsets of N. For the purposes of the
present paper, M will be either some An = {F ⊂ N : #F ≤ n}, or some Sn,
the nth Schreier family. For 0 < θ < 1, the (M, θ)-operation on c00 is a map
which assigns to each M-admissible block sequence (φ1 < φ2 < · · · < φn),
the functional θ

∑n
i=1 φi. (We recall that φ1, φ2, . . . , φn is M-admissible if

{min suppφi : i = 1, . . . , n} belongs to M.) A subset G of c00 is said to
be closed in the (M, θ)-operation, if for every M-admissible block sequence
φ1, . . . , φn, with each φi ∈ G, the functional θ

∑n
i=1 φi belongs to G. When

we refer to saturated norms we shall mean that there exists a norming set G
which is closed under certain (Mj , θj)j operations.

Let G be a subset of c00. The set G is said to be a ground set if it is
symmetric, {e∗n : n ∈ N} is contained in G, ‖φ‖∞ ≤ 1, φ(n) ∈ Q for all
φ ∈ G and G is closed under the restriction of its elements to intervals of N.
A ground norm, ‖ · ‖G is any norm induced on c00 by a ground set G. It turns
out that for every space (X, ‖ · ‖X) with a normalized Schauder basis (xn)n

there exists a ground set GX such that the natural map en 7→ xn defines an
isomorphism between (X, ‖ · ‖X) and (c00, ‖ · ‖GX

).
Saturated extensions of a ground set G. Let G be a ground set,

(mj)j an appropriate sequence of natural numbers and (Mj)j a sequence of
compact families such that (Mj)j is either (Anj

)j or (Snj
)j .

Denote by EG the minimal subset of c00 such that

(i) The ground set G is a subset of EG.
(ii) The set EG is closed in the (Mj ,

1
mj

) operation.

(iii) The set EG is rationally convex.

Definition 0.3. A subset DG of EG is said to be a saturated extension of
the ground set G if the following hold:

(i) The set DG is a subset of EG, the ground set G is contained in DG

and DG is closed under restrictions of its elements to intervals.
(ii) The set DG is closed under even operations (M2j ,

1
m2j

)j .

(iii) The set DG is rationally convex.
(iv) Every φ ∈ DG admits a tree analysis (ft)t∈T with each ft ∈ DG.

Denoting by ‖ · ‖DG
the norm on c00 induced by DG and letting XDG

be the space (c00, ‖ · ‖DG
), we call XDG

a saturated extension of the space

XG = (c00, ‖ · ‖G).
Let’s point out that the basis (en)n of c00 is a bimonotone boundedly

complete Schauder basis of XDG
and that the identity I : XDG

→ XG is a
norm one operator. Observe also that we make no assumption concerning the
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THE ATTRACTORS METHOD AND HEREDITARILY JAMES TREE SPACES 9

odd operations. As we will see later making several assumptions for the odd
operations, we will derive saturated extensions with different properties.

A last comment on the definition of DG, is related to the condition (iv).
The tree analysis (ft)t∈T of a functional f in EG describes an inductive pro-
cedure for obtaining f starting from elements of the ground set G and either
applying operations (Mj ,

1
mj

) or taking rational convex combinations. This

tree structure is completely irrelevant to the tree structures discussed in the
previous subsection. Its role is to help estimate upper bounds of the norm of
vectors in XDG

.
Properties and variants of Saturated extensions.
As we have mentioned, for x ∈ c00, ‖x‖G ≤ ‖x‖DG

. This is an immediate
consequence of the fact that G ⊂ DG. On the other hand, there are cases of
ground sets G such that DG does not add more information beyond G itself.
Such a case is when G defines a norm ‖ · ‖G equivalent to the `1 norm. The
measure of the fact that ‖ · ‖DG

is strictly greater than ‖ · ‖G on a subspace
Y of XDG

is that the identity operator I : XDG
→ XG restricted to Y is

a strictly singular one. If I : XDG
→ XG is strictly singular, then we refer

to strictly singular extensions. The first result we want to mention is that
strictly singular extensions are reflexive ones. More precisely the following
holds:

Proposition 0.4. Let Y be a closed subspace of XDG
such that I|Y : Y →

XG is strictly singular. Then Y is reflexively saturated. In particular XDG
is

reflexively saturated whenever it is a strictly singular extension.

Next we proceed to specify the odd operations and to derive additional
information on the structure of XDG

whenever XDG
is a strictly singular

extension.
(a) Unconditionally saturated extensions.
This is the case where DG = EG = Du

G. In this case the following holds:

Proposition 0.5. Let Y be a closed subspace of XDu
G

such that I|Y : Y →
XG is strictly singular. Then Y is unconditionally (and reflexively) saturated.

(b) Hereditarily Indecomposable extensions.
HI extensions, are the most important ones. In this case the norming set

Dhi
G is defined as follows. Dhi

G is the minimal subset of c00 satisfying the
following conditions

(i) {e∗n : n ∈ N} ⊂ Dhi
G , Dhi

G is symmetric and closed under restriction
of its elements to intervals.

(ii) Dhi
G is closed under (M2j ,

1
m2j

)j operations.

(iii) For each j, Dhi
G is closed under (M2j−1,

1
m2j−1

) operation on 2j − 1

special sequences.
(iv) Dhi

G is rationally convex.

The 2j − 1 special sequences are defined through a coding σ and satisfy
the following conditions.

(a) (f1, . . . , fd) is M2j−1 admissible
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(b) For i ≤ i ≤ d there exists some j ∈ N such that fi ∈ K2j =
{

1
m2j

k
∑

l=1

φl : φ1 < · · · < φk is M2j admissible, φl ∈ Dhi
G } and if

i > 1 then 2j = σ(f1, . . . , fi−1).

Notice that in the definition of Dhi
G we do not refer to the tree analysis. The

reason is that the existence of a tree analysis follows from the minimality of
Dhi

G and the conditions involved in its definition.
The analogue of the previous results also holds for HI extensions.

Proposition 0.6. Let Y be a closed subspace of XDhi
G

such that I|Y : Y →
XG is strictly singular. Then Y is a HI space. In particular strictly singular
and HI extensions yield HI spaces.

The above three propositions indicate that if we wish to have additional
structure on XDG

, XDu
G
, XDhi

G
we need to consider strictly singular extensions.

As is shown in [AT1], this is always possible. Indeed, for every ground set
G such that the corresponding space XG does not contain `1 there exists a
family (Mj ,

1
mj

)j such that the saturated extension of G by this family is a

strictly singular one. Thus the following is proven ([AT1]).

Theorem 0.7. Let X be a Banach space with a normalized Schauder basis
(xn)n such that X contains no isomorphic copy of `1. Then there exists a
HI space Z with a normalized basis (zn)n such that the map zn 7→ xn has a
linear extension to a bounded operator T : Z → X.

This theorem in conjunction with the following one yields that every sep-
arable Banach space X not containing `1 is the quotient of a HI space.

Theorem 0.8 ([AT1]). Let X be a separable Banach space not containing
`1. Then there exists a space Y not containing `1, with a normalized Schauder
basis (yn)n and a bounded linear operator T : Y → X such that (Tyn)n is a
dense subset of the unit sphere of X.

The predual (XDhi
G

)∗. As we have mentioned before the basis (en)n∈N

of XDhi
G

is boundedly complete, hence the space (XDhi
G

)∗, which is the sub-

space of X∗

Dhi
G

norm generated by the biorthogonal functionals (e∗n)n∈N, is a

predual of XDhi
G

. In many cases it is shown that (XDhi
G

)∗ is also a HI space.

This requires some additional information concerning the weakly null block
sequences in XG, which is stronger than the assumption that the identity
map I : XDhi

G
→ XG is strictly singular. For example in [AT1], for extensions

using the operations (Snj
, 1

mj
)j , had been assumed that the ground set G is

S2 bounded. In the present paper for the operations (Anj
, 1

mj
)j we introduce

the concept of strongly strictly singular extension which yields that (XDhi
G

)∗
is HI. It is also worth pointing out that (XDhi

G
)∗ is not necessarily reflexively

saturated as happens for the strictly singular extensions XDG
XDhi

G
. This

actually will be a key point in our approach for constructing HI spaces with
no reflexive subspace.
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