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Preliminaries

Summary. Key ideas about probability models and the objectives of statist-
ical analysis are introduced. The differences between frequentist and Bayesian
analyses are illustrated in a very special case. Some slightly more complicated
models are introduced as reference points for the following discussion.

1.1 Starting point

We typically start with a subject-matter question. Data are or become available
to address this question. After preliminary screening, checks of data quality and
simple tabulations and graphs, more formal analysis starts with a provisional
model. The data are typically split in two parts (y : z), where y is regarded as the
observed value of a vector random variable Y and z is treated as fixed. Sometimes
the components of y are direct measurements of relevant properties on study
individuals and sometimes they are themselves the outcome of some preliminary
analysis, such as means, measures of variability, regression coefficients and so
on. The set of variables z typically specifies aspects of the system under study
that are best treated as purely explanatory and whose observed values are not
usefully represented by random variables. That is, we are interested solely in the
distribution of outcome or response variables conditionally on the variables z; a
particular example is where z represents treatments in a randomized experiment.

We use throughout the notation that observable random variables are rep-
resented by capital letters and observations by the corresponding lower case
letters.

A model, or strictly a family of models, specifies the density of Y to be

fY (y : z; θ), (1.1)
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2 Preliminaries

where θ ⊂ �θ is unknown. The distribution may depend also on design fea-
tures of the study that generated the data. We typically simplify the notation to
fY (y; θ), although the explanatory variables z are frequently essential in specific
applications.

To choose the model appropriately is crucial to fruitful application.
We follow the very convenient, although deplorable, practice of using the term

density both for continuous random variables and for the probability function
of discrete random variables. The deplorability comes from the functions being
dimensionally different, probabilities per unit of measurement in continuous
problems and pure numbers in discrete problems. In line with this convention
in what follows integrals are to be interpreted as sums where necessary. Thus
we write

E(Y) = E(Y ; θ) =
∫

y fY (y; θ)dy (1.2)

for the expectation of Y , showing the dependence on θ only when relevant. The
integral is interpreted as a sum over the points of support in a purely discrete case.
Next, for each aspect of the research question we partition θ as (ψ , λ), where ψ

is called the parameter of interest and λ is included to complete the specification
and commonly called a nuisance parameter. Usually, but not necessarily, ψ and
λ are variation independent in that �θ is the Cartesian product �ψ × �λ. That
is, any value of ψ may occur in connection with any value of λ. The choice of
ψ is a subject-matter question. In many applications it is best to arrange that ψ

is a scalar parameter, i.e., to break the research question of interest into simple
components corresponding to strongly focused and incisive research questions,
but this is not necessary for the theoretical discussion.

It is often helpful to distinguish between the primary features of a model
and the secondary features. If the former are changed the research questions of
interest have either been changed or at least formulated in an importantly differ-
ent way, whereas if the secondary features are changed the research questions
are essentially unaltered. This does not mean that the secondary features are
unimportant but rather that their influence is typically on the method of estima-
tion to be used and on the assessment of precision, whereas misformulation of
the primary features leads to the wrong question being addressed.

We concentrate on problems where �θ is a subset of Rd , i.e., d-dimensional
real space. These are so-called fully parametric problems. Other possibilities
are to have semiparametric problems or fully nonparametric problems. These
typically involve fewer assumptions of structure and distributional form but
usually contain strong assumptions about independencies. To an appreciable

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68567-2 - Principles of Statistical Inference
D. R. Cox
Excerpt
More information

http://www.cambridge.org/0521685672
http://www.cambridge.org
http://www.cambridge.org


1.3 Some simple models 3

extent the formal theory of semiparametric models aims to parallel that of
parametric models.

The probability model and the choice of ψ serve to translate a subject-matter
question into a mathematical and statistical one and clearly the faithfulness of
the translation is crucial. To check on the appropriateness of a new type of model
to represent a data-generating process it is sometimes helpful to consider how
the model could be used to generate synthetic data. This is especially the case
for stochastic process models. Understanding of new or unfamiliar models can
be obtained both by mathematical analysis and by simulation, exploiting the
power of modern computational techniques to assess the kind of data generated
by a specific kind of model.

1.2 Role of formal theory of inference

The formal theory of inference initially takes the family of models as given and
the objective as being to answer questions about the model in the light of the
data. Choice of the family of models is, as already remarked, obviously crucial
but outside the scope of the present discussion. More than one choice may be
needed to answer different questions.

A second and complementary phase of the theory concerns what is sometimes
called model criticism, addressing whether the data suggest minor or major
modification of the model or in extreme cases whether the whole focus of
the analysis should be changed. While model criticism is often done rather
informally in practice, it is important for any formal theory of inference that it
embraces the issues involved in such checking.

1.3 Some simple models

General notation is often not best suited to special cases and so we use more
conventional notation where appropriate.

Example 1.1. The normal mean. Whenever it is required to illustrate some
point in simplest form it is almost inevitable to return to the most hackneyed
of examples, which is therefore given first. Suppose that Y1, . . . , Yn are inde-
pendently normally distributed with unknown mean µ and known variance σ 2

0 .
Here µ plays the role of the unknown parameter θ in the general formulation.
In one of many possible generalizations, the variance σ 2 also is unknown. The
parameter vector is then (µ, σ 2). The component of interest ψ would often be µ
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4 Preliminaries

but could be, for example, σ 2 or µ/σ , depending on the focus of subject-matter
interest.

Example 1.2. Linear regression. Here the data are n pairs (y1, z1), . . . , (yn, zn)

and the model is that Y1, . . . , Yn are independently normally distributed with
variance σ 2 and with

E(Yk) = α + βzk . (1.3)

Here typically, but not necessarily, the parameter of interest is ψ = β and the
nuisance parameter is λ = (α, σ 2). Other possible parameters of interest include
the intercept at z = 0, namely α, and −α/β, the intercept of the regression line
on the z-axis.

Example 1.3. Linear regression in semiparametric form. In Example 1.2
replace the assumption of normality by an assumption that the Yk are uncorrel-
ated with constant variance. This is semiparametric in that the systematic part
of the variation, the linear dependence on zk , is specified parametrically and the
random part is specified only via its covariance matrix, leaving the functional
form of its distribution open. A complementary form would leave the system-
atic part of the variation a largely arbitrary function and specify the distribution
of error parametrically, possibly of the same normal form as in Example 1.2.
This would lead to a discussion of smoothing techniques.

Example 1.4. Linear model. We have an n × 1 vector Y and an n × q matrix z
of fixed constants such that

E(Y) = zβ, cov(Y) = σ 2I , (1.4)

where β is a q × 1 vector of unknown parameters, I is the n × n identity
matrix and with, in the analogue of Example 1.2, the components independently
normally distributed. Here z is, in initial discussion at least, assumed of full
rank q < n. A relatively simple but important generalization has cov(Y) =
σ 2V , where V is a given positive definite matrix. There is a corresponding
semiparametric version generalizing Example 1.3.

Both Examples 1.1 and 1.2 are special cases, in the former the matrix z
consisting of a column of 1s.

Example 1.5. Normal-theory nonlinear regression. Of the many generaliza-
tions of Examples 1.2 and 1.4, one important possibility is that the dependence
on the parameters specifying the systematic part of the structure is nonlinear.
For example, instead of the linear regression of Example 1.2 we might wish to
consider

E(Yk) = α + β exp(γ zk), (1.5)
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1.3 Some simple models 5

where from the viewpoint of statistical theory the important nonlinearity is not
in the dependence on the variable z but rather that on the parameter γ .

More generally the equation E(Y) = zβ in (1.4) may be replaced by

E(Y) = µ(β), (1.6)

where the n × 1 vector µ(β) is in general a nonlinear function of the unknown
parameter β and also of the explanatory variables.

Example 1.6. Exponential distribution. Here the data are (y1, . . . , yn) and the
model takes Y1, . . . , Yn to be independently exponentially distributed with dens-
ity ρe−ρy, for y > 0, where ρ > 0 is an unknown rate parameter. Note that
possible parameters of interest are ρ, log ρ and 1/ρ and the issue will arise of
possible invariance or equivariance of the inference under reparameterization,
i.e., shifts from, say, ρ to 1/ρ. The observations might be intervals between
successive points in a Poisson process of rate ρ. The interpretation of 1/ρ is
then as a mean interval between successive points in the Poisson process. The
use of log ρ would be natural were ρ to be decomposed into a product of effects
of different explanatory variables and in particular if the ratio of two rates were
of interest.

Example 1.7. Comparison of binomial probabilities. Suppose that the data are
(r0, n0) and (r1, n1), where rk denotes the number of successes in nk binary trials
under condition k. The simplest model is that the trials are mutually independent
with probabilities of success π0 and π1. Then the random variables R0 and R1

have independent binomial distributions. We want to compare the probabilities
and for this may take various forms for the parameter of interest, for example

ψ = log{π1/(1 − π1)} − log{π0/(1 − π0)}, or ψ = π1 − π0, (1.7)

and so on. For many purposes it is immaterial how we define the complementary
parameter λ. Interest in the nonlinear function log{π/(1 − π)} of a probability
π stems partly from the interpretation as a log odds, partly because it maps the
parameter space (0, 1) onto the real line and partly from the simplicity of some
resulting mathematical models of more complicated dependences, for example
on a number of explanatory variables.

Example 1.8. Location and related problems. A different generalization of
Example 1.1 is to suppose that Y1, . . . , Yn are independently distributed all with
the density g(y − µ), where g(y) is a given probability density. We call µ
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6 Preliminaries

a location parameter; often it may by convention be taken to be the mean or
median of the density.

A further generalization is to densities of the form τ−1g{(y−µ)/τ }, where τ

is a positive parameter called a scale parameter and the family of distributions
is called a location and scale family.

Central to the general discussion of such models is the notion of a family of
transformations of the underlying random variable and the parameters. In the
location and scale family if Yk is transformed to aYk +b, where a > 0 and b are
arbitrary, then the new random variable has a distribution of the original form
with transformed parameter values

aµ + b, aτ . (1.8)

The implication for most purposes is that any method of analysis should obey
the same transformation properties. That is, if the limits of uncertainty for say
µ, based on the original data, are centred on ỹ, then the limits of uncertainty for
the corresponding parameter after transformation are centred on aỹ + b.

Typically this represents, in particular, the notion that conclusions should not
depend on the units of measurement. Of course, some care is needed with this
idea. If the observations are temperatures, for some purposes arbitrary changes
of scale and location, i.e., of the nominal zero of temperature, are allowable,
whereas for others recognition of the absolute zero of temperature is essential.
In the latter case only transformations from kelvins to some multiple of kelvins
would be acceptable.

It is sometimes important to distinguish invariance that springs from some
subject-matter convention, such as the choice of units of measurement from
invariance arising out of some mathematical formalism.

The idea underlying the above example can be expressed in much more gen-
eral form involving two groups of transformations, one on the sample space
and one on the parameter space. Data recorded as directions of vectors on a
circle or sphere provide one example. Another example is that some of the
techniques of normal-theory multivariate analysis are invariant under arbitrary
nonsingular linear transformations of the observed vector, whereas other meth-
ods, notably principal component analysis, are invariant only under orthogonal
transformations.

The object of the study of a theory of statistical inference is to provide a
set of ideas that deal systematically with the above relatively simple situations
and, more importantly still, enable us to deal with new models that arise in new
applications.
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1.5 Two broad approaches to statistical inference 7

1.4 Formulation of objectives

We can, as already noted, formulate possible objectives in two parts as follows.
Part I takes the family of models as given and aims to:

• give intervals or in general sets of values within which ψ is in some sense
likely to lie;

• assess the consistency of the data with a particular parameter value ψ0;
• predict as yet unobserved random variables from the same random system

that generated the data;
• use the data to choose one of a given set of decisions D, requiring the

specification of the consequences of various decisions.

Part II uses the data to examine the family of models via a process of model
criticism. We return to this issue in Section 3.2.

We shall concentrate in this book largely but not entirely on the first two
of the objectives in Part I, interval estimation and measuring consistency with
specified values of ψ .

To an appreciable extent the theory of inference is concerned with general-
izing to a wide class of models two approaches to these issues which will be
outlined in the next section and with a critical assessment of these approaches.

1.5 Two broad approaches to statistical inference

1.5.1 General remarks

Consider the first objective above, that of providing intervals or sets of values
likely in some sense to contain the parameter of interest, ψ .

There are two broad approaches, called frequentist and Bayesian, respect-
ively, both with variants. Alternatively the former approach may be said to be
based on sampling theory and an older term for the latter is that it uses inverse
probability. Much of the rest of the book is concerned with the similarities
and differences between these two approaches. As a prelude to the general
development we show a very simple example of the arguments involved.

We take for illustration Example 1.1, which concerns a normal distribution
with unknown mean µ and known variance. In the formulation probability is
used to model variability as experienced in the phenomenon under study and
its meaning is as a long-run frequency in repetitions, possibly, or indeed often,
hypothetical, of that phenomenon.

What can reasonably be said about µ on the basis of observations y1, . . . , yn

and the assumptions about the model?
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8 Preliminaries

1.5.2 Frequentist discussion

In the first approach we make no further probabilistic assumptions. In partic-
ular we treat µ as an unknown constant. Strong arguments can be produced
for reducing the data to their mean ȳ = �yk/n, which is the observed value
of the corresponding random variable Ȳ . This random variable has under the
assumptions of the model a normal distribution of mean µ and variance σ 2

0 /n,
so that in particular

P(Ȳ > µ − k∗
c σ0/

√
n) = 1 − c, (1.9)

where, with 
(.) denoting the standard normal integral, 
(k∗
c ) = 1 − c. For

example with c = 0.025, k∗
c = 1.96. For a sketch of the proof, see Note 1.5.

Thus the statement equivalent to (1.9) that

P(µ < Ȳ + k∗
c σ0/

√
n) = 1 − c, (1.10)

can be interpreted as specifying a hypothetical long run of statements about µ

a proportion 1 − c of which are correct. We have observed the value ȳ of the
random variable Ȳ and the statement

µ < ȳ + k∗
c σ0/

√
n (1.11)

is thus one of this long run of statements, a specified proportion of which are
correct. In the most direct formulation of this µ is fixed and the statements vary
and this distinguishes the statement from a probability distribution for µ. In fact
a similar interpretation holds if the repetitions concern an arbitrary sequence of
fixed values of the mean.

There are a large number of generalizations of this result, many underpinning
standard elementary statistical techniques. For instance, if the variance σ 2 is
unknown and estimated by �(yk − ȳ)2/(n − 1) in (1.9), then k∗

c is replaced
by the corresponding point in the Student t distribution with n − 1 degrees of
freedom.

There is no need to restrict the analysis to a single level c and provided
concordant procedures are used at the different c a formal distribution is built up.

Arguments involving probability only via its (hypothetical) long-run fre-
quency interpretation are called frequentist. That is, we define procedures for
assessing evidence that are calibrated by how they would perform were they
used repeatedly. In that sense they do not differ from other measuring instru-
ments. We intend, of course, that this long-run behaviour is some assurance that
with our particular data currently under analysis sound conclusions are drawn.
This raises important issues of ensuring, as far as is feasible, the relevance of
the long run to the specific instance.
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1.5 Two broad approaches to statistical inference 9

1.5.3 Bayesian discussion

In the second approach to the problem we treat µ as having a probability dis-
tribution both with and without the data. This raises two questions: what is the
meaning of probability in such a context, some extended or modified notion of
probability usually being involved, and how do we obtain numerical values for
the relevant probabilities? This is discussed further later, especially in Chapter 5.
For the moment we assume some such notion of probability concerned with
measuring uncertainty is available.

If indeed we can treat µ as the realized but unobserved value of a random
variable M, all is in principle straightforward. By Bayes’ theorem, i.e., by simple
laws of probability,

fM|Y (µ | y) = fY |M(y | µ) fM(µ)
/ ∫

fY |M(y | φ) fM(φ)dφ. (1.12)

The left-hand side is called the posterior density of M and of the two terms in the
numerator the first is determined by the model and the other, fM(µ), forms the
prior distribution summarizing information about M not arising from y. Any
method of inference treating the unknown parameter as having a probability
distribution is called Bayesian or, in an older terminology, an argument of
inverse probability. The latter name arises from the inversion of the order of
target and conditioning events as between the model and the posterior density.

The intuitive idea is that in such cases all relevant information about µ is
then contained in the conditional distribution of the parameter given the data,
that this is determined by the elementary formulae of probability theory and
that remaining problems are solely computational.

In our example suppose that the prior for µ is normal with known mean m
and variance v. Then the posterior density for µ is proportional to

exp{−�(yk − µ)2/(2σ 2
0 ) − (µ − m)2/(2v)} (1.13)

considered as a function of µ. On completing the square as a function of µ,
there results a normal distribution of mean and variance respectively

ȳ/(σ 2
0 /n) + m/v

1/(σ 2
0 /n) + 1/v

, (1.14)

1

1/(σ 2
0 /n) + 1/v

; (1.15)

for more details of the argument, see Note 1.5. Thus an upper limit for µ satisfied
with posterior probability 1 − c is

ȳ/(σ 2
0 /n) + m/v

1/(σ 2
0 /n) + 1/v

+ k∗
c
√ 1

1/(σ 2
0 /n) + 1/v

. (1.16)
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10 Preliminaries

If v is large compared with σ 2
0 /n and m is not very different from ȳ these

limits agree closely with those obtained by the frequentist method. If there is a
serious discrepancy between ȳ and m this indicates either a flaw in the data or
a misspecification of the prior distribution.

This broad parallel between the two types of analysis is in no way specific
to the normal distribution.

1.6 Some further discussion

We now give some more detailed discussion especially of Example 1.4 and
outline a number of special models that illustrate important issues.

The linear model of Example 1.4 and methods of analysis of it stemming
from the method of least squares are of much direct importance and also are the
base of many generalizations. The central results can be expressed in matrix
form centring on the least squares estimating equations

zT zβ̂ = zT Y , (1.17)

the vector of fitted values

Ŷ = zβ̂, (1.18)

and the residual sum of squares

RSS = (Y − Ŷ)T (Y − Ŷ) = YT Y − β̂T (zT z)β̂. (1.19)

Insight into the form of these results is obtained by noting that were it not
for random error the vector Y would lie in the space spanned by the columns
of z, that Ŷ is the orthogonal projection of Y onto that space, defined thus by

zT (Y − Ŷ) = zT (Y − zβ̂) = 0 (1.20)

and that the residual sum of squares is the squared norm of the component of
Y orthogonal to the columns of z. See Figure 1.1.

There is a fairly direct generalization of these results to the nonlinear regres-
sion model of Example 1.5. Here if there were no error the observations would
lie on the surface defined by the vector µ(β) as β varies. Orthogonal projection
involves finding the point µ(β̂) closest to Y in the least squares sense, i.e., min-
imizing the sum of squares of deviations {Y −µ(β)}T {Y −µ(β)}. The resulting
equations defining β̂ are best expressed by defining

zT (β) = ∇µT (β), (1.21)

where ∇ is the q × 1 gradient operator with respect to β, i.e., ∇T =
(∂/∂β1, . . . , ∂/∂βq). Thus z(β) is an n × q matrix, reducing to the previous z

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68567-2 - Principles of Statistical Inference
D. R. Cox
Excerpt
More information

http://www.cambridge.org/0521685672
http://www.cambridge.org
http://www.cambridge.org

