Author Index

Abrahamsen, A., 209
Ackerman, T. A., 319
Adams, R., 222
Adams, R. J., 225
Afflerbach, P., 153
Allen, N., 229
Almond, R. G., 9, 22, 178, 189, 207, 225, 234, 247
Alonzo, A. C., 176, 177, 186, 195
Anastasi, A., 5
Anderson, J. R., 10, 124, 127, 155, 213, 221, 242, 245, 247, 248
Artelt, C., 213
Baddeley, A. D., 152
Baird, A. B., 22
Bait, V., 211
Bandalos, D. L., 148
Bara, B. G., 160, 161, 162
Baron, J., 160
Bauer, M., 175, 179, 180, 181, 195
Baumert, J., 213
Baxter, G. P., 21, 22, 52, 244, 245, 256, 266
Bearden, W. O., 185
Beaton, A. E., 229
Bechtel, W., 209
Bechtold, H. P., 110
Behrens, J. T., 175, 179, 180, 181, 195
Bejar, I. I., 21
Bennett, E., 151
Bennett, R. E., 20–21, 189, 321
Berger, A. E., 151
Bergin, K., 189
Birenbaum, M., 221, 278
Bisanz, J., 266
Black, P. J., 31, 52, 312
Bollen, K. A., 102
Bolt, D., 223
Borsboom, D., 7, 111, 235
Bothell, D., 242
Bradlow, E. T., 225, 234
Braunstein, M. L., 152
Brennan, R. L., 21, 146, 147, 222
Briggs, D. C., 176, 177, 186, 195
Britton, B. K., 124
Brown, A. L., 245
Brown, J. S., 124, 126, 245
Bruce, F. A., 55
Buck, G., 50
Burton, R. R., 124, 126, 245
Bybee, R., 189
Byrne, M. D., 242
Byrne, R. M., 160
Cahallan, C., 22
Calfee, R. C., 210
Camacho, F., 49, 320, 322, 326, 327
Campbell, D. T., 102
Carlin, B. P., 292, 293
Carlin, J. B., 288, 289, 290, 292, 299
Carlo, M. S., 247
Carpenter, P. A., 131, 132
Carroll, J. B., 219
Carroll, J. S., 152
Champagne, A., 189
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charness, N.</td>
<td>125</td>
</tr>
<tr>
<td>Chernick, H.</td>
<td>22</td>
</tr>
<tr>
<td>Chi, M. T. H.</td>
<td>125, 147, 151, 153, 155, 156, 157, 158, 165, 166, 167</td>
</tr>
<tr>
<td>Chilukuri, R.</td>
<td>321</td>
</tr>
<tr>
<td>Chipman, S. F.</td>
<td>21, 146, 147, 212, 222</td>
</tr>
<tr>
<td>Chiu, M. H.</td>
<td>156, 167</td>
</tr>
<tr>
<td>Chudowsky, N.</td>
<td>312</td>
</tr>
<tr>
<td>Cisero, C. A.</td>
<td>247</td>
</tr>
<tr>
<td>Clark, A.</td>
<td>209</td>
</tr>
<tr>
<td>Clayton, D. B.</td>
<td>245</td>
</tr>
<tr>
<td>Cliff, N.</td>
<td>320</td>
</tr>
<tr>
<td>Cocking, R. R.</td>
<td>245</td>
</tr>
<tr>
<td>Coffey, J.</td>
<td>312</td>
</tr>
<tr>
<td>Collins, A. M.</td>
<td>125</td>
</tr>
<tr>
<td>Cook, L. K.</td>
<td>210</td>
</tr>
<tr>
<td>Cook, T. D.</td>
<td>102</td>
</tr>
<tr>
<td>Cooney, T.</td>
<td>275</td>
</tr>
<tr>
<td>Corbett, A. T.</td>
<td>10</td>
</tr>
<tr>
<td>Corder, J. E.</td>
<td>178, 278</td>
</tr>
<tr>
<td>Coulson, R. L.</td>
<td>21</td>
</tr>
<tr>
<td>Cowles, M. K.</td>
<td>293</td>
</tr>
<tr>
<td>Cronbach, L. J.</td>
<td>3, 4, 7, 13, 65, 105, 107, 110, 121, 122, 275</td>
</tr>
<tr>
<td>Crone, C.</td>
<td>50</td>
</tr>
<tr>
<td>Cross, D. R.</td>
<td>174, 188</td>
</tr>
<tr>
<td>Crosswhite, F.</td>
<td>275</td>
</tr>
<tr>
<td>Cui, Y</td>
<td>262</td>
</tr>
<tr>
<td>Das, J. P.</td>
<td>125</td>
</tr>
<tr>
<td>Dawson, M. R. W.</td>
<td>169, 247</td>
</tr>
<tr>
<td>Dayton, C. M.</td>
<td>137</td>
</tr>
<tr>
<td>De Boeck, P.</td>
<td>94, 100, 225</td>
</tr>
<tr>
<td>De Groot, A. D.</td>
<td>108</td>
</tr>
<tr>
<td>de la Torre, J.</td>
<td>119, 178, 181, 182, 183, 185, 195, 196, 210, 223, 235, 244, 250, 283</td>
</tr>
<tr>
<td>DeMark, S. F.</td>
<td>175</td>
</tr>
<tr>
<td>DeMette, L. M.</td>
<td>155</td>
</tr>
<tr>
<td>DeMark, S. F.</td>
<td>175</td>
</tr>
<tr>
<td>DeVellis, R. F.</td>
<td>185</td>
</tr>
<tr>
<td>Devine, O.</td>
<td>292</td>
</tr>
<tr>
<td>Diehl, K. A.</td>
<td>196</td>
</tr>
<tr>
<td>Dionne, J. P.</td>
<td>154–155, 247</td>
</tr>
<tr>
<td>Divine, K. P.</td>
<td>55</td>
</tr>
<tr>
<td>Doignon, J. P.</td>
<td>119</td>
</tr>
<tr>
<td>Dolan, C. V.</td>
<td>95, 101</td>
</tr>
<tr>
<td>Donovan, M. S.</td>
<td>245</td>
</tr>
<tr>
<td>Dorans, N. J.</td>
<td>297</td>
</tr>
<tr>
<td>Dossey, J.</td>
<td>275</td>
</tr>
<tr>
<td>Douglas, J. A.</td>
<td>119, 193, 222, 287–288</td>
</tr>
<tr>
<td>Douglass, S.</td>
<td>242</td>
</tr>
<tr>
<td>Draney, K. L.</td>
<td>119</td>
</tr>
<tr>
<td>Drasgow, F.</td>
<td>321</td>
</tr>
<tr>
<td>Drum, P. A.</td>
<td>210</td>
</tr>
<tr>
<td>Duncan, T.</td>
<td>321</td>
</tr>
<tr>
<td>Dusch, R.</td>
<td>189</td>
</tr>
<tr>
<td>Eckhart, T. J.</td>
<td>148</td>
</tr>
<tr>
<td>Edwards, C.</td>
<td>232</td>
</tr>
<tr>
<td>Edwards, M. C.</td>
<td>49, 326</td>
</tr>
<tr>
<td>Embretson, S. E.</td>
<td>3, 6, 8, 21, 100, 120, 122, 125, 129, 130, 131, 132–133, 135, 136, 137, 139, 141, 151, 178, 181, 182, 183, 185, 195, 196, 210, 223, 235, 244, 250, 283</td>
</tr>
<tr>
<td>Enright, M. K.</td>
<td>212</td>
</tr>
<tr>
<td>Ericsson, K. A.</td>
<td>8, 125, 147, 151, 152, 153, 155, 156, 157, 158, 169, 195, 247</td>
</tr>
<tr>
<td>Evans, J.</td>
<td>160</td>
</tr>
<tr>
<td>Falmagne, J. C.</td>
<td>119</td>
</tr>
<tr>
<td>Farr, M.</td>
<td>125</td>
</tr>
<tr>
<td>Feigenbaum, M.</td>
<td>327</td>
</tr>
<tr>
<td>Feltovich, P. J.</td>
<td>21</td>
</tr>
<tr>
<td>Ferrara, S.</td>
<td>321</td>
</tr>
<tr>
<td>Fife, J.</td>
<td>278</td>
</tr>
<tr>
<td>Fischer, G. H.</td>
<td>20, 217</td>
</tr>
<tr>
<td>Fodor, J. A.</td>
<td>247</td>
</tr>
<tr>
<td>Folske, J. C.</td>
<td>326</td>
</tr>
<tr>
<td>Forman, A. K.</td>
<td>20, 222</td>
</tr>
<tr>
<td>Foy, P.</td>
<td>213</td>
</tr>
<tr>
<td>Frederiksen, J.</td>
<td>124</td>
</tr>
<tr>
<td>Frederiksen, N.</td>
<td>189</td>
</tr>
<tr>
<td>Freed, R.</td>
<td>321</td>
</tr>
<tr>
<td>Freidel, R.</td>
<td>210</td>
</tr>
<tr>
<td>Freidin, R.</td>
<td>211</td>
</tr>
<tr>
<td>Frey, A.</td>
<td>229</td>
</tr>
<tr>
<td>Fu, J.</td>
<td>223</td>
</tr>
<tr>
<td>Galotti, K. M.</td>
<td>160</td>
</tr>
<tr>
<td>Garcia, P.</td>
<td>210</td>
</tr>
<tr>
<td>Gay, A.</td>
<td>55</td>
</tr>
<tr>
<td>Gelman, A.</td>
<td>288, 289, 290, 292, 299</td>
</tr>
<tr>
<td>Gertner, A.</td>
<td>190</td>
</tr>
<tr>
<td>Gessaroli, M. E.</td>
<td>326</td>
</tr>
<tr>
<td>Giallager, J.</td>
<td>189</td>
</tr>
<tr>
<td>Ginther, A.</td>
<td>21, 210</td>
</tr>
</tbody>
</table>
Author Index

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girotto, V.</td>
<td>158</td>
</tr>
<tr>
<td>Glaser, R.</td>
<td>3, 21, 22, 52, 125, 224, 244, 245, 256, 266</td>
</tr>
<tr>
<td>Glaser, R.C.</td>
<td>107</td>
</tr>
<tr>
<td>Gluck, K.A.</td>
<td>10, 213</td>
</tr>
<tr>
<td>Gokiert, R.</td>
<td>158, 162, 163, 245</td>
</tr>
<tr>
<td>Goodman, D.F.</td>
<td>24, 47, 54, 244, 264, 265</td>
</tr>
<tr>
<td>Gorin, J.</td>
<td>8, 21, 151</td>
</tr>
<tr>
<td>Gorin, J.S.</td>
<td>182, 183, 185, 195, 196, 210</td>
</tr>
<tr>
<td>Gorsuch, R.L.</td>
<td>326</td>
</tr>
<tr>
<td>Grabe, W.</td>
<td>212</td>
</tr>
<tr>
<td>Graesser, A.</td>
<td>50, 265</td>
</tr>
<tr>
<td>Graham, G.</td>
<td>209</td>
</tr>
<tr>
<td>Greene, J.</td>
<td>148</td>
</tr>
<tr>
<td>Greeno, J.G.</td>
<td>209</td>
</tr>
<tr>
<td>Gross, A.L.</td>
<td>107</td>
</tr>
<tr>
<td>Guerrero, A.</td>
<td>278</td>
</tr>
<tr>
<td>Guttmann, L.</td>
<td>99, 129, 217</td>
</tr>
<tr>
<td>Haack, P.</td>
<td>245</td>
</tr>
<tr>
<td>Habermas, J.</td>
<td>72, 73</td>
</tr>
<tr>
<td>Haertel, E.H.</td>
<td>222</td>
</tr>
<tr>
<td>Hamilton, R.K.</td>
<td>47, 54, 98, 103, 210, 244, 264, 265, 286, 319</td>
</tr>
<tr>
<td>Hamel, L.</td>
<td>22</td>
</tr>
<tr>
<td>Hamilton, L.S.</td>
<td>149, 151</td>
</tr>
<tr>
<td>Handley, S.J.</td>
<td>160</td>
</tr>
<tr>
<td>Harper, C.N.</td>
<td>160</td>
</tr>
<tr>
<td>Hare, R.</td>
<td>68</td>
</tr>
<tr>
<td>Hartig, J.</td>
<td>229</td>
</tr>
<tr>
<td>Hartz, S.M.</td>
<td>119, 178, 223, 276, 283, 287</td>
</tr>
<tr>
<td>He, X.</td>
<td>224, 305</td>
</tr>
<tr>
<td>Healy, A.F.</td>
<td>10</td>
</tr>
<tr>
<td>Hessen, D.J.</td>
<td>101</td>
</tr>
<tr>
<td>Hively, W.</td>
<td>216</td>
</tr>
<tr>
<td>Hoogstraten, J.</td>
<td>99, 102</td>
</tr>
<tr>
<td>Hunka, S.M.</td>
<td>21, 119, 120, 142, 159, 178, 243, 249, 250, 256, 262, 321, 325</td>
</tr>
<tr>
<td>Hunt, E.</td>
<td>244</td>
</tr>
<tr>
<td>Impara, J.C.</td>
<td>55</td>
</tr>
<tr>
<td>Inhelder, B.</td>
<td>89, 95</td>
</tr>
<tr>
<td>Ippel, M.J.</td>
<td>129</td>
</tr>
<tr>
<td>Irvine, S.H.</td>
<td>128, 321</td>
</tr>
<tr>
<td>Jackson, D.N.</td>
<td>99</td>
</tr>
<tr>
<td>Jacquemin, D.</td>
<td>21</td>
</tr>
<tr>
<td>Jaeger, R.</td>
<td>55</td>
</tr>
<tr>
<td>Jamieson, J.</td>
<td>210</td>
</tr>
<tr>
<td>Jang, E.E.</td>
<td>278, 279, 280, 290, 291, 292, 294, 298, 299, 303, 310</td>
</tr>
<tr>
<td>Jansen, B.R.</td>
<td>89, 95</td>
</tr>
<tr>
<td>Jebbett, L.</td>
<td>195</td>
</tr>
<tr>
<td>Jenkins, F.</td>
<td>189</td>
</tr>
<tr>
<td>Jiang, H.</td>
<td>283</td>
</tr>
<tr>
<td>Johnson, E.J.</td>
<td>152</td>
</tr>
<tr>
<td>Johnson, M.S.</td>
<td>299</td>
</tr>
<tr>
<td>Johnson, P.J.</td>
<td>124</td>
</tr>
<tr>
<td>Johnson-Laird, P.N.</td>
<td>159, 161, 162, 166</td>
</tr>
<tr>
<td>Jöreskog, K.G.</td>
<td>326</td>
</tr>
<tr>
<td>Juhasz, B.J.</td>
<td>195</td>
</tr>
<tr>
<td>Junker, B.W.</td>
<td>119, 136–137, 222, 224, 226, 285, 287, 289</td>
</tr>
<tr>
<td>Just, M.A.</td>
<td>131, 132</td>
</tr>
<tr>
<td>Kane, M.T.</td>
<td>4, 7, 13, 129</td>
</tr>
<tr>
<td>Kaplan, D.</td>
<td>102</td>
</tr>
<tr>
<td>Katz, I.R.</td>
<td>151</td>
</tr>
<tr>
<td>Keller, T.</td>
<td>312</td>
</tr>
<tr>
<td>Kifer, E.</td>
<td>275</td>
</tr>
<tr>
<td>Kindfield, A.C.H.</td>
<td>22</td>
</tr>
<tr>
<td>Kintsch, w.</td>
<td>51</td>
</tr>
<tr>
<td>Kirby, J.R.</td>
<td>125</td>
</tr>
<tr>
<td>Kitcher, P.</td>
<td>66, 67</td>
</tr>
<tr>
<td>Klein, M.E.</td>
<td>221</td>
</tr>
<tr>
<td>Klieme, E.</td>
<td>213</td>
</tr>
<tr>
<td>Koch, G.C.</td>
<td>306</td>
</tr>
<tr>
<td>Koda, K.</td>
<td>212</td>
</tr>
<tr>
<td>Koedinger, K.R.</td>
<td>10</td>
</tr>
<tr>
<td>Kostin, L.</td>
<td>50, 210</td>
</tr>
<tr>
<td>Kuhn, D.</td>
<td>247</td>
</tr>
<tr>
<td>Kylloinen, P.C.</td>
<td>128, 321</td>
</tr>
<tr>
<td>Lajoie, S.</td>
<td>224, 245, 266</td>
</tr>
<tr>
<td>Landis, J.R.</td>
<td>306</td>
</tr>
<tr>
<td>LaVancher, C.</td>
<td>156, 167</td>
</tr>
<tr>
<td>Lebiere, C.</td>
<td>242</td>
</tr>
<tr>
<td>LeFloh, K.C.</td>
<td>155</td>
</tr>
<tr>
<td>Leighton, J.P.</td>
<td>3–9, 21, 63, 79, 119, 120, 142, 148, 149, 151, 158, 159, 162, 163, 169, 178, 185, 195, 243, 245, 246, 247, 249, 250, 254, 256, 262, 321, 325</td>
</tr>
<tr>
<td>Lesgold, A.</td>
<td>224, 245, 266</td>
</tr>
<tr>
<td>Leucht, R.M.</td>
<td>320, 321</td>
</tr>
<tr>
<td>Levy, R.</td>
<td>175, 179, 232, 234</td>
</tr>
<tr>
<td>Li, Y.Y.</td>
<td>266</td>
</tr>
</tbody>
</table>
Author Index

Lin, Y., 124
Liu, J., 327
Liverman, M. R., 55
Liversedge, S. P., 195
Loevinger, J., 3, 10, 110
Loftus, E. F., 125
Lohman, D. F., 3, 4, 8, 9, 11, 13, 14, 20, 21, 100, 125, 128, 129, 147, 149, 150, 153, 219, 246, 275, 351
Longford, N. T., 335
Lord, F. M., 9, 103, 104, 210
Louwerse, M., 50, 265
Luecht, R. M., 53, 321–322, 323, 326
Lukin, L. E., 148
Lutz, D., 50
MacCorquodale, K., 63
Macready, G. B., 137
Maris, E., 100, 119, 222, 282, 283, 284
Marshall, S. P., 129, 177, 193
Martin, M. O., 213
McErlean, J., 65
McGivern, J., 321
McKeachie, W. J., 124
McKnight, C., 275
McNamara, D. S., 50, 265
Meara, K., 55
Meehl, P. E., 3, 4, 13, 63, 110, 121, 122
Mellenbergh, G. J., 7, 99, 101, 102, 104, 107, 111, 235
Meng, X. L., 299
Meredith, W., 101, 104
Messick, S., 3, 4, 6, 7, 8, 10, 11, 13, 20, 93, 100, 103, 108, 110, 111, 120, 121, 122, 185, 205, 235, 242, 351
Michell, J., 91
Mickelson, K., 148
Millman, J., 148
Millsap, R. E., 104, 106, 111
Mischel, W., 65
Mislevy, R. J., 5, 9, 21, 22, 120, 141, 150, 175, 178, 179, 180, 181, 189, 195, 207, 210, 225, 232, 234, 235, 247, 266, 321
Molenar, I. W., 103
Moore, J. L., 209
Morley, M. E., 21, 50, 327, 328
Morningstar, M., 217
Moshenthal, P. B., 210, 212
Moulding, B., 312
Mulcahy-Ernt, P., 212
Mulholland, J., 292
Mullis, I. V. S., 213
Muthén, B. O., 224
Nagel, E., 66
Naglieri, J. A., 125
Naveh-Benjamin, M., 124
Neale, M. C., 95
Nelson, L., 49, 320, 322, 326, 327
Netemeyer, R. G., 185
Neubrand, M., 213
Newell, A., 6, 156, 166, 208, 212, 219
Nichols, P. D., 4, 9, 11, 12, 13, 21, 22, 49, 52, 146, 147, 149, 150, 158, 159, 222, 235, 244, 256
Nisbett, R., 152
Nishisato, S., 326
Nitko, A. J., 20
Norris, S. P., 63, 71, 75, 79, 153, 245
North, B., 228
Notar, C. E., 31, 52
Novick, M. R., 104, 210
Nunan, D., 232
Nussbaum, E. M., 149, 151
O’Callaghan, R. K., 50, 327, 328
O’Neil, T., 23
Oort, F. J., 104
Oosterveld, P., 99
Page, S. H., 216
Paris, S. G., 174, 188
Patterson, H. L., 216
Patz, R. J., 224, 287, 289
Payne, J. W., 152
Peak, H., 7
Pek, P., 190
Pellegrino, J. W., 3, 21, 22, 52, 244, 245, 256, 265, 266, 312
Pelletier, R., 10
Perfetti, C. A., 51
Perie, M., 321
Persky, H., 189
Phelps, M., 50
Phillips, L. M., 63, 75, 79, 245
Piaget, J., 89, 95
Piroilli, P., 119
Poggio, A., 245
Poggio, J., 245
Poh, K. L., 190
Popham, W. J., 108, 312
Porch, F., 288
Prenzel, M., 213
Pressley, M., 153
Author Index

Proctor, C. H., 137
Psotka, J., 127
Qin, Y., 242
Rabe-Hesketh, S., 224
Rasch, G., 282
Ratcliff, R., 94
Raven, J. C., 130, 131
Rayner, K., 195
Reder, L. M., 247
Reeve, B. B., 49, 320, 322, 326, 327
Reichenbach, H., 65
Reise, S. P., 100
Rescher, N., 65
Riconscente, M. M., 22, 321
Roberts, K., 195
Roberts, M. J., 160
Rosta, K., 49, 320, 322, 326, 327
Rost, J., 229
Royer, J. M., 247
Rubin, D. R., 288, 289, 290, 292, 299
Rumelhart, D. A., 221
Rumelhart, D. E., 125
Rupp, A. A., 210, 222, 225
Russo, J. E., 152
Sabini, J. P., 160
Salmon, W. C., 65
Samejima, F., 125, 128, 281
Sandifer, P., 312
Schedl, M., 21, 212
Scheiblecher, H., 217
Scheider, G., 228
Schiefele, U., 213
Schmittmann, V. D., 95
Schneider, W., 213
Schaagen, J. M., 212
Schum, D. A., 206
Schwab, C., 176, 177, 186, 195
Schwartz, A., 50, 327, 328
Scriven, M., 66, 243
Senturk, D., 22
Shadish, W. R., 102
Shalin, V. J., 212
Sharma, S., 185
Shavelson, R. J., 312
Sheehan, K. M., 21, 119, 210
Shell, P., 131, 132
Shepard, L. A., 312
Shunn, C. D., 245, 248
Shute, V. J., 127
Siegelr, R. S., 166
Sijtsma, K., 103, 119, 136–137, 222
Simon, H. A., 6, 8, 147, 151, 152, 153, 155, 156, 157, 158, 166, 169, 195, 208, 212, 219, 247
Singley, M. K., 21
Sinhaary, S., 293, 299, 300
Sireci, S. G., 21, 23, 53, 194
Skronodal, A., 224
Slater, S., 55
Sloane, K., 176
Snow, R. E., 5, 4, 8, 9, 11, 13, 14, 20, 21, 100, 125, 128, 149, 151, 219, 246, 275, 351
Spiro, R. J., 21
Stanat, P., 213
Standiford, S. N., 221
Steffen, M., 21
Steinberg, L. S., 9, 22, 175, 178, 179, 180, 181, 189, 195, 207, 247
Stephens, D. L., 152
Stern, H. S., 288, 289, 290, 292, 299
Sternberg, R. J., 4, 14, 154, 219
Stiggins, R., 31, 52
Stout, W. F., 21, 119, 127, 223, 224, 276, 278, 280, 281, 284–285, 287, 308, 309, 310, 311
347
Stoughard, M. E. A., 99, 102
Su, W. H., 107
Sugrue, B., 256
Suppes, P., 217
Swafford, J., 275
Swaminathan, H., 98, 103, 286, 319
Swan, M., 232
Swanson, D. B., 326
Swygert, K. A., 49, 320, 322, 326, 327
Tan, X., 321–322, 326
Tatsuoka, C., 278
Tatsuoka, K. K., 21, 49, 50, 119, 151, 159, 178, 221, 225, 254, 278, 281
Taylor, C., 73
Taylor, K. L., 154–155, 247
Teague, K. W., 124
Templin, J. L., 137, 223, 224, 225, 278, 279, 280, 288, 290, 291, 294, 298, 299, 303, 307, 308, 309, 310, 311
Thissen, D., 49, 320, 322, 326, 327
Thomas, J., 245
Tidwell, P., 124
Author Index

Tillman, K. J., 213
Tolbert, P., 292
Tomko, T. N., 63
Toulmin, S. E., 206
Travers, K., 275
Tuerlinckx, F., 94
Uebersax, J. S., 95
Underwood, G., 195, 211
Van der Linden, W. J., 103, 107, 210
Van der Maas, H. L. J., 89, 95
Van der Veen, A. A., 50, 265, 327, 328
van Heerden, J., 7, 111, 235
van Lehnn, K., 213, 221
Van Essen, T., 50
Van Lehn, K. A., 166, 190, 191
Vevea, J. L., 49, 320, 322, 326, 327
von Davier, M., 225
Wainer, H., 49, 55, 225, 234, 320, 322, 326, 327
Walker, C., 319
Walker, M. E., 327
Wang, W. C., 222
Wang, X., 225, 234
Warren, T., 195
Waxman, M., 125, 129
Webb, N. L., 257
Weiβ, M., 213
Weiss, A., 189
White, B., 124
Wicherts, J. M., 101
William, D., 31, 52, 312
Williamson, D. M., 175, 179, 180, 181, 195
Willis, G. B., 147, 155
Willis, J., 232
Wilson, J. D., 31, 52
Wilson, M. R., 100, 119, 176, 177, 185, 186, 195, 222, 224, 225
Wilson, T. D., 152
Xia, H., 292
Xin, T., 278
Xu, Z., 278
Yamada, Y., 278
Yan, D., 22, 234
Yang, X., 136
Yunker, B. D., 31, 52
Zenisky, A. L., 21, 53, 194
Zuelke, D. C., 31, 52
ability parameters
Bayesian framework for, 286–287
in Fusion Model, 293–294
Abstract Reasoning Test (ART), 130–132
cognitive psychometric item properties
modeling, 132–134
item structures of, 132, 136
acceptability, judgment of, 74
achievement
cognitive models of, 15
educational assessment of, 10
normative foundations of, 62
achievement tests
diagnostic, remedial uses of, 63
inferences about, 74
understanding and, 61
ACT®, 25, 31
action, understanding and, 77
Advanced Progressive Matrix test, 131
AHM. See Attribute Hierarchy Method
Andes Intelligent Tutoring System, 190
aptitude, achievement and learning,
thories of, 8
Arpeggio, 276, 280, 287
ART. See Abstract Reasoning Test
ART data
latent ability state representation of, 140
latent class models fitted to, 138–139
parameter estimates, 138–139
ART item structures, 132
ability states and, 136
assessment(s). See also classroom-based
assessment; cognitive diagnostic
assessment; commercial assessments;
computer-based assessment systems;
diagnostic assessment; educational
assessment(s); large-scale assessments
of achievement, 10
cognitive model role in, 76
cognitive theories about, 10
curriculum, instruction and, 22
design templates, 22
educational benefits from, 22
formative vs. summative, 277
instructional-relevant results from, 24–47
teacher produced, 29
technology and, 52–53
underlying model of learning and,
51–52
assessment analysis, IRT and, 280
assessment design
evidence-centered, 22
psychometric vs. cognitive approaches
to, 19, 21–24
assessment developers
commercial assessment use and, 29
demand for CDA from, 19–24
educators’ needs and, 47
assessment systems, standards movement
for, 275, 276
assessment tasks, cultural symbolism and,
211
attribute(s)
as composites, 97–98, 99
item response and, 89, 97–98
as latent variables, 89
measurement process and, 89
as moderators, 93–94
ordering of, 249–250
as parameters, 93–94
quantitative structure of, 91
response process and, 96
structure of, 88
test scores and, 93, 109
attribute hierarchy, 249–252, 253
in Johnson-Laird theory, 159–161
sequencing of, 164
task performance and, 159
Attribute Hierarchy Method (AHM), 119, 178
for CDA, 16, 243, 249–265, 266–267
convergent, 251
four-step diagnosis process for, 249–250
linear, 250
within mathematics, 252–253
Q matrix in, 255
rule-space approach to, 252–253
unstructured, 250
attribute probabilities, calculation of, 268–269
augmented scores, 332–337
anomalous results for, 333
reliability coefficients for, 335
balance scale test, 89, 90
BEAR Assessment system, 176
behavioral observations, 194
behavioral perspective, psychometric models with, 216–217
behavioral psychology, 208
beliefs, causal efficacy of, 70–71
Binet, Alfred, 4
Brennan, Robert, 3
British Columbia (BC) Ministry of Education, 54
California Achievement Test, 25
CAT. See computerized adaptive testing systems
causation
beliefs and, 70–71
constant conjunctive view of, 67
explanation and, 62–70
Harre’s view of, 68–69
nominalism and, 65
randomized experiments for, 101
regularity view of, 65
understanding and, 61, 70–75
CDA. See cognitive diagnostic assessment
CDM. See cognitive-diagnostic models
CDS. See Cognitive Design System
CEF. See Common European Framework of Reference for Languages
Chipman, Susan, 3
classical test theory, 8
classroom-based assessment
CDAs and, 16, 31, 147–148, 349–350
diagnostic information from, 29
state standards and, 47
of student strengths and weaknesses, 52
cognitive theories, instruction and, 245
cognitive antecedents, of problem-solving behaviors, 6
cognitive assessment
AHM for, 243, 249–265, 266–267
balance scale test, 89, 90
cognitive competencies
convergent hierarchy and, 251
divergent hierarchy and, 251
linear hierarchy and, 250
unstructured hierarchy and, 250
Cognitive Design System (CDS), 181–184
advantages of, 182
Model Evaluation, 181–182
procedural framework of, 181
cognitive development, stages in, 89
cognitive diagnostic assessment (CDA), 146
AHM model for, 16, 243, 249–265, 266–267
assessment developer demand for, 19–24
classroom-based assessment and, 31, 147–148, 349–350
cognitive processes, components, capacities and, 125
computer technology for, 350
construct representation study for, 135–140
construct validation and, 7, 15, 119–120, 123–140
development, validation of, 169
educators demand for, 19, 24–47
empirical grounding of, i
foundations of, 14–15
future research, 341–343
Subject Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>goals of</td>
<td>124–125</td>
</tr>
<tr>
<td>higher-order thinking skills and</td>
<td>125</td>
</tr>
<tr>
<td>history of</td>
<td>3</td>
</tr>
<tr>
<td>influential articles on</td>
<td>3</td>
</tr>
<tr>
<td>item design impact on</td>
<td>128</td>
</tr>
<tr>
<td>in K-12 education</td>
<td>19</td>
</tr>
<tr>
<td>large-scale assessments and</td>
<td>49–51</td>
</tr>
<tr>
<td>learning environment integration of</td>
<td>244</td>
</tr>
<tr>
<td>literature on</td>
<td>19, 20–21</td>
</tr>
<tr>
<td>mental processes and</td>
<td>120</td>
</tr>
<tr>
<td>NAEP vs.</td>
<td>148</td>
</tr>
<tr>
<td>PISA vs.</td>
<td>148</td>
</tr>
<tr>
<td>potential benefits of</td>
<td>245–246</td>
</tr>
<tr>
<td>principle test design for</td>
<td>343–345</td>
</tr>
<tr>
<td>problem-solving and</td>
<td>146</td>
</tr>
<tr>
<td>program validity required by</td>
<td>12–14</td>
</tr>
<tr>
<td>protocol, verbal analysis and</td>
<td>147–150</td>
</tr>
<tr>
<td>SAIP vs.</td>
<td>148</td>
</tr>
<tr>
<td>SAT vs.</td>
<td>148</td>
</tr>
<tr>
<td>score reporting for</td>
<td>265</td>
</tr>
<tr>
<td>skill profiles, knowledge and</td>
<td>125</td>
</tr>
<tr>
<td>structural fidelity in</td>
<td>12</td>
</tr>
<tr>
<td>structured procedure, knowledge network</td>
<td>125</td>
</tr>
<tr>
<td>term usage</td>
<td>19–20</td>
</tr>
<tr>
<td>test development</td>
<td>11–12</td>
</tr>
<tr>
<td>test items in</td>
<td>149</td>
</tr>
<tr>
<td>thinking patterns and</td>
<td>167</td>
</tr>
<tr>
<td>traditional large-scale tests vs.</td>
<td>147–148</td>
</tr>
<tr>
<td>for trait measurement</td>
<td>130–140</td>
</tr>
<tr>
<td>validity of</td>
<td>141</td>
</tr>
<tr>
<td>value of</td>
<td>147–150</td>
</tr>
<tr>
<td>verbal reports and</td>
<td>147</td>
</tr>
<tr>
<td>cognitive diagnostic methods</td>
<td>278</td>
</tr>
<tr>
<td>applications of</td>
<td>278</td>
</tr>
<tr>
<td>cognitive functioning</td>
<td></td>
</tr>
<tr>
<td>computer models of</td>
<td>8</td>
</tr>
<tr>
<td>item difficulty and</td>
<td>20</td>
</tr>
<tr>
<td>cognitive information, psychometric models</td>
<td>16</td>
</tr>
<tr>
<td>cognitive information processing</td>
<td></td>
</tr>
<tr>
<td>trait performance and</td>
<td>242</td>
</tr>
<tr>
<td>cognitive item design</td>
<td>120, 182, 257–264</td>
</tr>
<tr>
<td>cognitive model(s)</td>
<td></td>
</tr>
<tr>
<td>of achievement</td>
<td>15</td>
</tr>
<tr>
<td>assessment and</td>
<td>76</td>
</tr>
<tr>
<td>attribute hierarchy in</td>
<td>250–252</td>
</tr>
<tr>
<td>coefficients for</td>
<td>134</td>
</tr>
<tr>
<td>diagnostic fit statistics for</td>
<td>300</td>
</tr>
<tr>
<td>educational measurement and</td>
<td>243, 246–248</td>
</tr>
<tr>
<td>future research</td>
<td>341–343</td>
</tr>
<tr>
<td>IRT modeling vs.</td>
<td>281</td>
</tr>
<tr>
<td>item development in</td>
<td>255–257</td>
</tr>
<tr>
<td>item response and</td>
<td>247</td>
</tr>
<tr>
<td>item scoring, design in</td>
<td>257–264</td>
</tr>
<tr>
<td>normative models and</td>
<td>80, 82</td>
</tr>
<tr>
<td>of performance</td>
<td>79, 119</td>
</tr>
<tr>
<td>in psychometric literature</td>
<td>194</td>
</tr>
<tr>
<td>psychometric procedures and</td>
<td>249–265</td>
</tr>
<tr>
<td>of reasoning steps, strategies,</td>
<td>80</td>
</tr>
<tr>
<td>of task performance</td>
<td>149, 158, 243, 244, 253</td>
</tr>
<tr>
<td>for test development</td>
<td>150</td>
</tr>
<tr>
<td>understanding and</td>
<td>75–81</td>
</tr>
<tr>
<td>weakness of</td>
<td>248</td>
</tr>
<tr>
<td>cognitive model development</td>
<td></td>
</tr>
<tr>
<td>eye-tracking and</td>
<td>195–198</td>
</tr>
<tr>
<td>verbal protocols and</td>
<td>195</td>
</tr>
<tr>
<td>cognitive model variables, item difficulty regression on, 133–134</td>
<td></td>
</tr>
<tr>
<td>cognitive perspective, of educational assessment, 207</td>
<td></td>
</tr>
<tr>
<td>cognitive processes</td>
<td>147</td>
</tr>
<tr>
<td>categorization of</td>
<td>128–129</td>
</tr>
<tr>
<td>context and</td>
<td>79</td>
</tr>
<tr>
<td>dependencies of</td>
<td>247</td>
</tr>
<tr>
<td>hierarchy of</td>
<td>247</td>
</tr>
<tr>
<td>indicators of</td>
<td>265–266</td>
</tr>
<tr>
<td>in item solution</td>
<td>128</td>
</tr>
<tr>
<td>psychometric models for</td>
<td>100</td>
</tr>
<tr>
<td>cognitive psychologists. See also</td>
<td></td>
</tr>
<tr>
<td>psychologists</td>
<td></td>
</tr>
<tr>
<td>psychometricians and</td>
<td>20</td>
</tr>
<tr>
<td>cognitive psychology</td>
<td></td>
</tr>
<tr>
<td>discipline structure of</td>
<td>207, 208–213</td>
</tr>
<tr>
<td>educational measurement and</td>
<td>4, 8, 14</td>
</tr>
<tr>
<td>information, test validity and</td>
<td>4–5</td>
</tr>
<tr>
<td>methodological characteristics of</td>
<td>211–213</td>
</tr>
<tr>
<td>psychometrics and</td>
<td>4</td>
</tr>
<tr>
<td>substantive approach with</td>
<td>8–9</td>
</tr>
<tr>
<td>test validity and</td>
<td>4–5</td>
</tr>
<tr>
<td>theoretical premises in</td>
<td>209–211</td>
</tr>
<tr>
<td>usefulness of</td>
<td>8</td>
</tr>
<tr>
<td>cognitive skills</td>
<td></td>
</tr>
<tr>
<td>explicit targeting of</td>
<td>23</td>
</tr>
<tr>
<td>inferences about</td>
<td>248</td>
</tr>
<tr>
<td>reporting, 264–265</td>
<td></td>
</tr>
<tr>
<td>schematic representation of</td>
<td>191–192</td>
</tr>
<tr>
<td>state test specifications application of</td>
<td>23</td>
</tr>
<tr>
<td>cognitive structures, universality of</td>
<td>209–210</td>
</tr>
<tr>
<td>cognitive task analysis (CTA)</td>
<td>212</td>
</tr>
</tbody>
</table>
cognitive task demands, 229

cognitive theory
assessment and, 10
diagnostic item evaluation using, 194–198
latent trait theory vs., 266–267
measurement and, 246–247
in test design, 120

cognitive variable structure, 232–234
cognitive-diagnostic models (CDM), 178–179
CDS vs., 178–179
ECD vs., 178–179
Cognitively Diagnostic Assessment (Nichols, Brennan, Chipman), 3
college admission assessments, 25, 31
College Board, 50
commercial assessments
state-mandated vs., 36–41
use of, 29, 38
commercial large-scale assessments, 25
Common European Framework of Reference for Languages (CEF), 224, 228
communicative action
cooperation in, 72
Habermas’s theory of, 72
validity claims of, 72
competency models, theoretical, 227–228
competency scaling, 229–234
Competency Space Theory, 281
complex item-responses, task processing, student cognition and, 189
component latent variables, 225–226
computer models, of cognitive functioning, 8
computer networking, technology for CDA, 350
diagnostic items and, 175–176
test assembly, 191–194
computer-based assessment systems, 53
complex scoring models of, 53
in K-12 education, 53
computerized adaptive testing (CAT) systems, 193
concurrent interview, 151–153
construct definition
item development and, 198
of multiple-choice reading
comprehension test questions, 185
reporting of, 185–186
construct irrelevant variance, 123
construct map, 185–186
OMC items and, 185–186
construct representation, 21, 122
for cognitive diagnosis, 135–140
completeness of, 126
construct validity and, 126–127, 134
granularity of, 126
simplification in, 127
construct theory, 13
CDA and, 7
data and analysis relevant to, 7
substantive approach in, 6
validation, 7
construct underrepresentation, 122–123
construct validity, 111, 141, 177, 182, 300.
See also validation, validity
CDA and, 15
CDA issues, 123–140
cognitive diagnosis and, 119–120
construct representation and, 126–127, 134
diagnosis meaning and, 123–124
general framework, 121–123
issues of, 126–130
Messick’s six aspects of, 121–123
test design, administration for diagnosis and, 126–127
verbal reports informing, 151
content analysis, test validation and, 100
content representation studies, for trait measurement, 130–140
content validity, 110, 111, 121. See also validation, validity
consequential aspect of, 122
external aspect of, 122
generalizability aspect of, 122
structural aspect of, 122
substantive aspect of, 121–122
test, cognitive process and, 79
contributing skills, inference about, 174
cognitive competencies and, 251
correct-answer-key (CAK), 323
nSAT and, 332
subscores and, 332
contingency table, 101–102
correlational analysis, 101–102
covering law model. See deductive-nomological model
criterion validity, 110–111
criterion-referenced testing, 106
Subject Index

critical thinking, standards, criteria of, 71
Cronbach, Lee, 4
CTA. See cognitive task analysis
curriculum, instruction and assessment, integrated system of, 22
data augmentation, 321, 323
diagnostic score computation and, 325–327
empirical study of, 327–332
response data, scoring evaluators and, 322–325
decision concepts, 105–107, 110
declarative knowledge, diagnostic assessment and, 124
deductive-nomological model (D-N), 65
alternatives to, 67–68
critiques of, 66
explanation relation asymmetry and, 67
nominalist relative of, 68
deductivism, critique of, 66–67
deterministic-input, noisy-and-gate model (DINA), 222
diagnosis
aspects of, 124
meaning of, 123–124
diagnostic assessment
additional formats of, 190
cognitive basis of, 119
declarative knowledge and, 124
higher-order thinking skills and, 128
implementation steps, 279
item design and, 120
verbal analysis and, 165–167
diagnostic inference, characteristics of, 243–248
diagnostic information, 29
from classroom assessment practices, 29
classroom practice integration of, 47–49, 51–52
educator demand for, 47
instructional relevance of, 51–52
interpretation difficulty with, 41
item-level results as, 32
from large-scale assessments, 32, 38, 42–47
legislation and, 31
obstacles to use of, 38–41
presentation of, 41, 54–55
required, 31
from SAT®, 50
teacher use of, 36–38
teacher views on, 31–32
timeliness of, 38, 53–54
utility of, 36
diagnostic items, 174–177
computer networking and, 175–176
evaluation of, 194–198
key components of, 188
scientific assessment and, 176–177
diagnostic modeling system, 124–125
diagnostic process, reporting system for, 244
diagnostic skill subscores, CAK, PIK, SNC-based, 329–330, 334
diagnostic tests
educational reform and, 174
frameworks for, 177–184
history, 173
item type selection, 188–190
measurement models for, 119
penetration of, 174–175, 177
test design construct definition, 185–194
differential item functioning (DIF) analysis, 297
DINA. See deterministic-input, noisy-and-gate model
disattenuated correlations, CAK, PIK, SNC-based, 331–332
divergent hierarchy, cognitive competencies and, 251
D-N model. See deductive-nomological model
ECD. See Evidence Centered Design
educational accountability, 5
educational assessment(s)
achievement measured by, 10
cognitive perspective, 207
cognitive psychology, examples, 226–234
component latent variables, 225–226
cultural specificity premise for, 211
developmental perspective on, 224
grain size, feedback purpose, 213–215
psychological perspectives, SIRT models for, 215–226
psychology and, 207
under trait/differential perspective, 218
universality premise for, 209

© Cambridge University Press
www.cambridge.org
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>educational measurement</td>
<td>364</td>
</tr>
<tr>
<td>cognitive models and, 243, 246–248</td>
<td></td>
</tr>
<tr>
<td>cognitive psychology and, 4, 8, 14</td>
<td></td>
</tr>
<tr>
<td>latent trait theories in, 266</td>
<td></td>
</tr>
<tr>
<td>Educational Measurement (Linn), 3, 20</td>
<td></td>
</tr>
<tr>
<td>educational measurement specialists. See psychometricians</td>
<td></td>
</tr>
<tr>
<td>educational psychometric measurement models (EPM)</td>
<td></td>
</tr>
<tr>
<td>item response theory and, 9</td>
<td></td>
</tr>
<tr>
<td>limitations of, 9</td>
<td></td>
</tr>
<tr>
<td>psychological theory and, 9–14</td>
<td></td>
</tr>
<tr>
<td>educational reform</td>
<td></td>
</tr>
<tr>
<td>diagnostic testing and, 174</td>
<td></td>
</tr>
<tr>
<td>German context of, 227</td>
<td></td>
</tr>
<tr>
<td>educational testing, nominalism impact on, 62</td>
<td></td>
</tr>
<tr>
<td>Educational Testing Service (ETS), 276</td>
<td></td>
</tr>
<tr>
<td>educational testing theories, epistemology and, 69–70</td>
<td></td>
</tr>
<tr>
<td>educators. See also teachers</td>
<td></td>
</tr>
<tr>
<td>assessment developers and, 47</td>
<td></td>
</tr>
<tr>
<td>current efforts addressing, 47–51</td>
<td></td>
</tr>
<tr>
<td>ELL. See English Language Learning</td>
<td></td>
</tr>
<tr>
<td>EM. See Expectation-Maximization</td>
<td></td>
</tr>
<tr>
<td>EMstats. See examinee mastery statistics</td>
<td></td>
</tr>
<tr>
<td>English, national standards for, 228</td>
<td></td>
</tr>
<tr>
<td>English Language Learning (ELL), 278</td>
<td></td>
</tr>
<tr>
<td>epistemology, educational testing theories and, 69–70</td>
<td></td>
</tr>
<tr>
<td>EPM. See educational psychometric measurement models</td>
<td></td>
</tr>
<tr>
<td>ethical considerations, 82</td>
<td></td>
</tr>
<tr>
<td>ETS. See Educational Testing Service</td>
<td></td>
</tr>
<tr>
<td>Evidence Centered Design (ECD), 22, 179–181</td>
<td></td>
</tr>
<tr>
<td>CDM vs., 178–179</td>
<td></td>
</tr>
<tr>
<td>evidence model, 179–181</td>
<td></td>
</tr>
<tr>
<td>student model, 179–181</td>
<td></td>
</tr>
<tr>
<td>task model, 179–181</td>
<td></td>
</tr>
<tr>
<td>examinee mastery statistics (EMstats), 301–303</td>
<td></td>
</tr>
<tr>
<td>Expectation-Maximization (EM), 289</td>
<td></td>
</tr>
<tr>
<td>experimental manipulation, 100–101</td>
<td></td>
</tr>
<tr>
<td>explanation, causation and, 62–70</td>
<td></td>
</tr>
<tr>
<td>extended essay responses, 150</td>
<td></td>
</tr>
<tr>
<td>eye fixations, eye tracking, 150, 195–198</td>
<td></td>
</tr>
<tr>
<td>Fast Classier, 306</td>
<td></td>
</tr>
<tr>
<td>feedback, granularity, purpose of, 213</td>
<td></td>
</tr>
<tr>
<td>formal education, aims of, 221</td>
<td></td>
</tr>
<tr>
<td>Four Decades of Scientific Explanation (Salmon), 66</td>
<td></td>
</tr>
<tr>
<td>A Framework for Developing Cognitively Diagnostic Assessment (Nichols), 3</td>
<td></td>
</tr>
<tr>
<td>French, national standards for, 228</td>
<td></td>
</tr>
<tr>
<td>Fusion Model, 178, 223, 280–285</td>
<td></td>
</tr>
<tr>
<td>ability parameters, 293–294</td>
<td></td>
</tr>
<tr>
<td>Arpeggio in, 276, 280, 287</td>
<td></td>
</tr>
<tr>
<td>checking procedures, 289–305</td>
<td></td>
</tr>
<tr>
<td>convergence checking, 289–293</td>
<td></td>
</tr>
<tr>
<td>convergence in, 290–293</td>
<td></td>
</tr>
<tr>
<td>development status of, 314–315</td>
<td></td>
</tr>
<tr>
<td>four components of, 276–277</td>
<td></td>
</tr>
<tr>
<td>internal validity checks, 300–303</td>
<td></td>
</tr>
<tr>
<td>item parameters, 294–296, 298</td>
<td></td>
</tr>
<tr>
<td>MCMC in, 276</td>
<td></td>
</tr>
<tr>
<td>model fit statistics, 298–300</td>
<td></td>
</tr>
<tr>
<td>non-influential parameters in, 296</td>
<td></td>
</tr>
<tr>
<td>parameter estimation method, 280–285</td>
<td></td>
</tr>
<tr>
<td>proficiency scaling, 307–308</td>
<td></td>
</tr>
<tr>
<td>Q matrix, 298, 309</td>
<td></td>
</tr>
<tr>
<td>reliability estimation, 304–305</td>
<td></td>
</tr>
<tr>
<td>reparameterization, 284</td>
<td></td>
</tr>
<tr>
<td>score reporting statistics, 289–305</td>
<td></td>
</tr>
<tr>
<td>skill mastery and, 282, 306</td>
<td></td>
</tr>
<tr>
<td>statistics calculated in, 299</td>
<td></td>
</tr>
<tr>
<td>subscore use, 308–312</td>
<td></td>
</tr>
<tr>
<td>weighted subscore in, 311–312</td>
<td></td>
</tr>
<tr>
<td>cognitive diagnostic inferences, 345–347</td>
<td></td>
</tr>
<tr>
<td>cognitive models in CDA, 341–343</td>
<td></td>
</tr>
<tr>
<td>granularity, 343–345</td>
<td></td>
</tr>
<tr>
<td>integrated theories, 348–351</td>
<td></td>
</tr>
<tr>
<td>principled test design, 343–345</td>
<td></td>
</tr>
<tr>
<td>reporting CDA results, 347–348</td>
<td></td>
</tr>
<tr>
<td>Galton, Sir Francis, 4</td>
<td></td>
</tr>
<tr>
<td>general component trait model (GLTM), 223</td>
<td></td>
</tr>
<tr>
<td>general intelligence, 91–92</td>
<td></td>
</tr>
<tr>
<td>IQ-test for, 92</td>
<td></td>
</tr>
<tr>
<td>Germany, educational reform in, 227</td>
<td></td>
</tr>
<tr>
<td>GLTM. See general component trait model</td>
<td></td>
</tr>
<tr>
<td>group comparisons, 101</td>
<td></td>
</tr>
<tr>
<td>guessing, 65</td>
<td></td>
</tr>
<tr>
<td>acceptable risk of, 66</td>
<td></td>
</tr>
<tr>
<td>nominalist view of, 63</td>
<td></td>
</tr>
<tr>
<td>Habermas, J., 72</td>
<td></td>
</tr>
<tr>
<td>Harré, R., 68–69</td>
<td></td>
</tr>
</tbody>
</table>
Subject Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchy Consistency Index (HCIi),</td>
<td>262–264</td>
</tr>
<tr>
<td>higher-order thinking skills</td>
<td>21</td>
</tr>
<tr>
<td>CDA and</td>
<td>125</td>
</tr>
<tr>
<td>measurement of</td>
<td>21</td>
</tr>
<tr>
<td>How People Learn: Brain, Mind Experience, and School</td>
<td>24</td>
</tr>
<tr>
<td>Human Information Processing (Newell, Simon)</td>
<td>208</td>
</tr>
<tr>
<td>ideal response patterns, examinee’s falling in</td>
<td>136–137</td>
</tr>
<tr>
<td>impact concepts</td>
<td>107–109, 110</td>
</tr>
<tr>
<td>IMstats. See item mastery statistics</td>
<td></td>
</tr>
<tr>
<td>inferences, inference model</td>
<td></td>
</tr>
<tr>
<td>about achievement tests</td>
<td>74</td>
</tr>
<tr>
<td>about cognitive skills</td>
<td>248</td>
</tr>
<tr>
<td>about contributing skills</td>
<td>174</td>
</tr>
<tr>
<td>measurement model and, 85</td>
<td></td>
</tr>
<tr>
<td>scientific theory and, 85</td>
<td></td>
</tr>
<tr>
<td>statistical generalization model and, 64</td>
<td></td>
</tr>
<tr>
<td>theoretical difficulties of, 62</td>
<td></td>
</tr>
<tr>
<td>information processing</td>
<td></td>
</tr>
<tr>
<td>computational model of, 158</td>
<td></td>
</tr>
<tr>
<td>cultural specificity of, 210–211</td>
<td></td>
</tr>
<tr>
<td>mental operations and, 219</td>
<td></td>
</tr>
<tr>
<td>problem solving and, 208–209</td>
<td></td>
</tr>
<tr>
<td>psychonomic research on, 94</td>
<td></td>
</tr>
<tr>
<td>SIRT models and, 219–225</td>
<td></td>
</tr>
<tr>
<td>Institute for Educational Progress (IQB),</td>
<td>227</td>
</tr>
<tr>
<td>instructional barriers, 74</td>
<td></td>
</tr>
<tr>
<td>instruction, cognition theories and, 245</td>
<td></td>
</tr>
<tr>
<td>instructional design, search strategy and, 176</td>
<td></td>
</tr>
<tr>
<td>instructional intervention, understanding and, 82</td>
<td></td>
</tr>
<tr>
<td>integrated theories, future research, 348–351</td>
<td></td>
</tr>
<tr>
<td>intelligence</td>
<td></td>
</tr>
<tr>
<td>general, 91–92</td>
<td></td>
</tr>
<tr>
<td>individual differences in, 91</td>
<td></td>
</tr>
<tr>
<td>IQ-test for, 92</td>
<td></td>
</tr>
<tr>
<td>theoretical attribute of, 91</td>
<td></td>
</tr>
<tr>
<td>WAIS, 91</td>
<td></td>
</tr>
<tr>
<td>intelligent tutoring systems, 190</td>
<td></td>
</tr>
<tr>
<td>internal validity checks, in Fusion Model, 300–303</td>
<td></td>
</tr>
<tr>
<td>interviews, concurrent vs. retrospective, 151–155</td>
<td></td>
</tr>
<tr>
<td>Iowa Test of Basic Skills (ITBS),</td>
<td>25</td>
</tr>
<tr>
<td>IQB. See Institute for Educational Progress</td>
<td></td>
</tr>
<tr>
<td>IQ-test, validity of, 92</td>
<td></td>
</tr>
<tr>
<td>IRF. See item response function</td>
<td></td>
</tr>
<tr>
<td>IRT. See item response theory</td>
<td></td>
</tr>
<tr>
<td>IRT modeling, cognitive diagnosis models vs., 281</td>
<td></td>
</tr>
<tr>
<td>ITBS. See Iowa Test of Basic Skills</td>
<td></td>
</tr>
<tr>
<td>item counts, by cognitive category, 328</td>
<td></td>
</tr>
<tr>
<td>item design, scoring</td>
<td></td>
</tr>
<tr>
<td>assembling objects, 182</td>
<td></td>
</tr>
<tr>
<td>CDA impact by, 128</td>
<td></td>
</tr>
<tr>
<td>cognitive, 120, 182, 257–264</td>
<td></td>
</tr>
<tr>
<td>cognitive research methodology, findings and, 128</td>
<td></td>
</tr>
<tr>
<td>construct definition and, 198</td>
<td></td>
</tr>
<tr>
<td>development of, 21</td>
<td></td>
</tr>
<tr>
<td>diagnostic assessment and, 120</td>
<td></td>
</tr>
<tr>
<td>performance and, 120</td>
<td></td>
</tr>
<tr>
<td>systematic, defensible approach to, 120</td>
<td></td>
</tr>
<tr>
<td>theoretical attribute in, 99</td>
<td></td>
</tr>
<tr>
<td>item difficulty</td>
<td></td>
</tr>
<tr>
<td>modeling research on, 21</td>
<td></td>
</tr>
<tr>
<td>response slip and, 267–268</td>
<td></td>
</tr>
<tr>
<td>item forms, 216</td>
<td></td>
</tr>
<tr>
<td>item mastery statistics (IMstats), 301–303</td>
<td></td>
</tr>
<tr>
<td>item parameters</td>
<td></td>
</tr>
<tr>
<td>Bayesian framework for, 287</td>
<td></td>
</tr>
<tr>
<td>chain length impact on, 290–292</td>
<td></td>
</tr>
<tr>
<td>in Fusion Model, 294–296, 298</td>
<td></td>
</tr>
<tr>
<td>item response, 88</td>
<td></td>
</tr>
<tr>
<td>attribute and, 89, 97–98</td>
<td></td>
</tr>
<tr>
<td>cognitive models and, 247</td>
<td></td>
</tr>
<tr>
<td>systematic variation in, 94</td>
<td></td>
</tr>
<tr>
<td>task performance and, 247</td>
<td></td>
</tr>
<tr>
<td>item response function (IRF), 280</td>
<td></td>
</tr>
<tr>
<td>for Unified Model, 282</td>
<td></td>
</tr>
<tr>
<td>item response theory (IRT), 8, 210, 278</td>
<td></td>
</tr>
<tr>
<td>assessment analysis through, 280</td>
<td></td>
</tr>
<tr>
<td>EPM models based on, 9</td>
<td></td>
</tr>
<tr>
<td>trait/differential vs. behavioral perspective, 8</td>
<td></td>
</tr>
<tr>
<td>item solution, cognitive processes involved in, 128</td>
<td></td>
</tr>
<tr>
<td>item-level results, as diagnostic information, 32</td>
<td></td>
</tr>
<tr>
<td>Johnson-Laird theory, 158–167</td>
<td></td>
</tr>
<tr>
<td>attribute hierarchy in, 159–161</td>
<td></td>
</tr>
</tbody>
</table>
Subject Index

K-12 education
CDA in, 19
computer-based assessments in, 53
KMK. See Standing Conference of the
Ministers of Education and
Culture
Knowing What Students Know: The Science
and Design of Education Assessment, 24
knowledge space theory, 119
knowledge structure, 147
knowledge-based work environments,
preparation for, 5

LanguEdge, 278
large-scale assessments
CDA and, 49–51
classroom, instructional planning and,
47
commercial, 25
diagnostic information and, 32, 38,
42–47
instruction and, 26–29
state vs. commercial, 36–41
of student strength and weaknesses, 5,
41–42
suitability of, 41
teacher’s views of, 41
test specifications for, 23
use of, 26–27
large-scale state assessments
instructional program evaluation and,
5
stakeholders need from, 15
teachers and, 26
latent trait theories, cognitive theories vs.,
266–267
latent variables, situated vs. generic,
225–226
learning
connectionist view of, 209
task-based, 232
Learning and Understanding: Improving
Advanced Study of Mathematics and
Science, 24
learning environment, CDA integration
with, 244
linear hierarchy, cognitive competencies
and, 250
linear logistic test model (LLTM), 217–218
Linn, Robert, 3
LLTM. See linear logistic test model
Markov Chain Monte Carlo (MCMC)
algorithm, 276, 280
description of, 287–289
mastery and understanding, indicators of,
8, 282, 301–303, 306
mathematics
AHM application in, 252–253
national standards for, 227–228
matrix completion item, 131
MCMC. See Markov Chain Monte Carlo
algorithm
MCQ. See multiple-choice questions
measurement invariance, 103–104
prediction invariance vs., 106
measurement, measurement models,
87–88, 103–105, 110. See also
educational measurement;
educational psychometric
measurement models; psychological
measurement; trait measurement,
performance
attribute structure and, 89
bias in, 106
cognitive principles with, 246–247
cognitive process modeling approach
to, 129
decisions, impact of testing and, 103–112
for diagnostic testing, 119
experimental design and, 101
of higher-order thinking skills, 21
inference/inference model, 85
invariance, 103–104, 106
multidimensional, 319–320
precision, 104
sampling theory and, 129
structural theory of, 129
test validity, 104–105
theoretical attribute structure in, 91
uncertainty and, 85
unidimensionality, 103–105
without structure, 96
mental models, processes. See also student
cognition, mental processes
information-processing perspective, 219
Johnson-Laird theory of, 158–167
of problem solving, 129
during test-taking behaviors, 7
mental processes, CDA and, 120
Messick, S., 121–123
metacognitive processes, 153–154
Subject Index

metrics, psychology vs., 5
Metropolis-Hastings procedure, 288
Ministry of Education, British Columbia (BC), 54
mixed response process
nested, 95
not nested, 95–96
MLTM. See multicomponent latent trait model
model parameter estimates, interpretation of, 293–300
MRCMLM. See multidimensional random coefficients multinominal logic model multicomponent latent trait model (MLTM), 223
multidimensional random coefficients multinominal logic model (MRCMLM), 222
multidimensionality, in measurement information, 319–320
multiple classification models, 222
multiple-choice questions (MCQ), 321, 322
diagnostic assessment limitations of, 189
distractor-based scoring evaluators, 324, 337
PIK and, 324
SNC and, 324–325
test design and, 189–190
multiple-choice reading comprehension test questions, construct definitions of, 185
mutual understanding, 73
NAEP. See National Assessment of Educational Progress
NAEP Science Assessment Framework, 189
National Assessment of Educational Progress (NAEP), 189, 313
CDA vs., 148
national standards, 214, 227
for English, French, 228
for mathematics, 227–228
NCLB. See No Child Left Behind Act
Networking Performance Skill System (NetPASS), 175–177
claim-evidence chain for, 180
new SAT (nSAT), 327–328
CAK and, 332
Newell, A., 208
Nichols, Paul, 3
No Child Left Behind (NCLB) Act, standardized achievement tests and, 5, 173
nominalism
causation, explanation and, 65
educational testing impact of, 62
guessing and, 63
psychological constructs and, 63–64
normative models, cognitive models and, 80, 82
nSAT. See new SAT
Ohio Department of Education, 48
OLEA-on-line assessment, 190
OMC. See ordered multiple choice questions
optimality, 107
ordered multiple choice (OMC) questions, 176, 185–186
Paiget, J., 89
penetration, 177
of diagnostic tests, 174–175
performance
cognitive models of, 79, 119
information-processing perspective on, 219
item design and, 120
understanding and, 82
PIK. See popular incorrect key
PISA. See Program for International Student Assessment
popular incorrect key (PIK), 329–330, 331–332, 334
MCQ and, 324
SNC and, 324–325
prediction invariance, measurement invariance vs., 106
predictive accuracy, 105–106
Preliminary SAT/National Merit Scholarship Qualifying Test (PSAT/NMSQT®), 25, 276
principled assessment design, 22
problem-solving
CDAs and, 146
cognitive antecedents of, 6
information-processing perspective on, 208–209
mental processes of, 129
strategies, 128
weaknesses, 146
Subject Index

processing skills, ordering of, 161
production rule, 220
proficiency scaling, in Fusion Model, 307–308
proficiency tests, unidimensional, 320–321
Program for International Student Assessment (PISA), 148
CDA vs., 148
propositional network, 155
protocol analysis, 147, 151–155
CDA and, 147–150
limitations of, 169–170
verbal analysis vs., 155–158, 168–170
PSAT/NMSQT. See Preliminary SAT/National Merit Scholarship Qualifying Test
psycholinguistics, cognitive grammars in, 211
Psychological Bulletin, 20
psychological measurement, aim of, 87
psychological processes, inferences about, 6–7
Psychological Review, 64
psychologists, specializing in psychometrics, 5
psychology
educational assessment and, 207
EPM models and, 9–14
metrics vs., 5
psychology-driven test development
design revision, 12
design selection, 11
response scoring, 12
substantive theory construction, 11
test administration, 11
psychometric decision theory, 107
psychometric literature, cognitive model in, 194
psychometric models
with behavioral perspective, 216–217
choosing among, 215
for cognitive processes, 100
psychometric procedures, cognitive models and, 249–265
psychometricians
cognitive psychologists and, 20
testing history and, 4–5
psychometrics

cognitive information about students and, 16
cognitive psychology and, 4
models, 16
procedures and applications, 15–16
psychology and, 5
technical advances in, 15
test validity in, 86
Q matrix
in AHM, 255
in Fusion Model, 298, 309
randomized experiment
in laboratory setting, 211
for test validation, 101
Rasch-scaling, 229
reasoning steps, strategies, cognitive models of, 80
Reparameterized Unified Model (RUM), 223, 280
reporting
cognitive skills, 264–265
construct definitions, 185–186
diagnostic process, 244
future research, 347–348
goals for, 264–265
test scores, 264–265
response patterns, 150, 257–259, 260–261
response process
attribute differences and, 96
validity and, 93–99, 100
response slip, item difficulty and, 267–268
restricted latent class models, 222
retrospective interview, 151, 153–155
Rule Space Methodology (RSM), 119, 178, 221
RUM. See Reparameterized Unified Model
SAIP. See School Achievement Indicators Program
Salmon, W. C., 66
sampling, 129
sampling theory, measurement and, 129
SAT. See Scholastic Assessment Test
SAT 10. See Stanford Achievement Tests
Scholastic Assessment Test (SAT®), 25, 31
CDA vs., 148
diagnostic information from, 50
School Achievement Indicators Program (SAIP), CDA vs., 148
science, scientific theory
assumptions in, 86
entities, attributes and, 85
inference and, 85
uncertainty in, 86
validity in, 86
scientific assessment, diagnostic items and, 176–177
scores, scoring. See also subscores
augmented, 332–337
diagnostically useful, 319
dichotomous vs. polytomous, 322
empirical study of, 327–332
observed vs. model estimated, 299–300
Scriven, Michael, 243–244
search strategy, instructional design and, 176
Simon, H., 208
simulation-based assessment, 188–189
SIRT. See structured item response theory
SIRT models, 215–226
behavioral, trait differential perspectives, 215–218
extensions to, 223
under information-processing perspective, 219–225
latent variables in, 213
mixture, 223
multivariate, 222
utilization of, 225
skills diagnosis, 275–276, 277–278, 279
SNC. See strongest negative correlation
Spearman, Charles, 4
standardized achievement tests, NCLB Act and, 173
Standards for Educational and Psychological Testing, 121, 173
Standing Conference of the Ministers of Education and Culture (KMK), 227
Stanford Achievement Tests (SAT 10), 25, 31, 48
Stanford-Binet, 91
state-mandated assessments, 25
commercial rs, 36–41
diagnostic information presentation and, 41
instruction at individual level and, 32–36
teachers and, 31
use of, 26–27, 36
statistical models, 66
inferences and, 64
strongest negative correlation (SNC)
MCQ and, 324–325
PIK, 324–325
structured item response theory (SIRT), 16, 207. See also SIRT models
precursor developments for, 215–218
universality premise and, 210
student background, 78
relevance of, 74–75
student cognition, mental processes complex item-responses and, 189
test-based inferences about, 6
student strengths and weaknesses classroom-based assessments of, 52
dimensionality of, 321–322
explanatory information about, 13
interpretation of, 23
large-scale assessments of, 5, 41–42
students
eye fixations of, 150, 195–198
knowledge, skill categories of, 16
response latencies of, 150
teachers and, 74
subscores
CAK and, 332
in Fusion Model, 308–312
syllogistic reasoning, 161, 162–165
task decomposition, 21
task design, cultural symbolism and, 211
task performance
attribute hierarchy and, 159
cognitive models of, 149, 158, 243, 244, 253
item response and, 247
specifying cognitive model of, 250–255
task processing, complex item-responses and, 189
task-based learning, 232
Tatsuoka rule space model, 16, 254
teachers
assessment options available to, 29–31
assessments produced by, 29
commercial large-scale assessments and, 31
diagnostic information and, 31–32, 36–38
large-scale assessments and, 41
large-scale state assessments and, 26
state-mandated assessments and, 31
students and, 74
technology. See also computer-based assessment systems
assessment practices and, 52–53
test assembly, 191–194
computerized adaptive testing, 191–194
discrimination, 193–194
test development, analysis, 15. See also psychology-driven test development for CDA, 11–12
cognitive theory in, 120, 150
construct definition for, 185–194
construct validity and, 126–127
deductive, facet design methods for, 99
multiple-choice questions, 189–190
test validation and, 99–100
transparency in, 23
verbal reports informing, 151
test items
in CDAs vs. traditional large-scale tests, 149
development of, 248
empirical relationships of, 120
Test of English as a Foreign Language (TOEFL), 278
test scores, performance attributes and, 93, 109
cognitive information processing approach to, 242
comparisons of, 105–106
explanations of, 61
interpretation of, 7
normative models of, 61
predictive accuracy of, 110
reporting, 264–265
test validation, validity, 4, 99–102, 104–105. See also validation, validity
cognitive psychology and, 4–5
content analysis and, 100
correlational analysis and, 101–102
in correlational studies, 102
experimental manipulation and, 100–101
group comparisons and, 101
in psychometrics, 86
randomized experimentation for, 101
response process analysis and, 100
test construction and, 99–100
testing procedures, 88
consequences of, 112
fairness of, 108
ideological system impact on, 108
impact concepts, 107–109
social consequence of, 108
systematic, 88
validity of, 90
tests, testing
criterion-referenced, 64
goals of, 8
impact of, 103–112
psychometricians in history of, 4–5
standardized vs. diagnostic, 141
underlying constructs of, 8
validity of, 93
test-taking behaviors, mental processes during, 7
thought
CDA and, 167
features of, 79
TIMSS. See Trends in International Mathematics and Science Study
TOEFL. See Test of English as a Foreign Language
traditional large-scale tests
CDA vs., 147–148
test items in, 149
trait measurement, performance
cognitive information processing
theories and, 242
content representation studies vs. CDA for, 130–140
trait/differential psychology, educational assessment under, 218
Trends in International Mathematics and Science Study (TIMMS), 178
two-parameter (2PL) logistic IRT model, 259
uncertainty, measurement model and, 85
understanding
achievement tests and, 61
action and, 77
causation and, 61, 70–75
cognitive models and, 75–81
degrees of, 81
empirically modeling, 79
fundamental normative of, 73
instructional intervention and, 82
mutual, 73
normative implications and, 80
performance and, 82
validation of, 75
unidimensional tests, 319
unidimensionality, 103–105
Unified Model
IRF for, 282
Q matrix in, 281
universality premise, 209
SIRT and, 210
unstructured hierarchy, cognitive competencies and, 250
validation, validity, 86, 102, 109. See also construct validity; content validity; criterion validity of CDA, 141
composite attributes and, 98
criterion, 87–93, 103, 110
concept of, 87–93, 103, 110
correlational basis of, 108
criterion defined, 99
evidence for, 97
internal vs. external, 300–301
methodological problem of, 86
response process and, 93–99, 100
of test, 93
of testing procedure, 90
of understanding, 75
verbal analysis, 147, 150–158
CDA and, 147–150
diagnostic assessment and, 165–167
8 steps of, 165–167
limitations of, 169–170
protocol analysis vs., 155–158, 168–170
verbal protocols, 195
verbal reports, 247
CDA development and, 147
construct validation and, 151
test construction and, 151
WAIS. See Wechsler Adult Intelligence Scale
Wechsler Adult Intelligence Scale (WAIS), 91
weighted complex Skill k sum-score, 310