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Abstract

These pages summarize some results on the efficiency of polynomial equa-
tion solving. We focus on semantic algorithms, i.e., algorithms whose run-
ning time depends on some intrinsic/semantic invariant associated with
the input data. Both computer algebra and numerical analysis algorithms
are discussed. We show a probabilistic and positive answer to Smale’s 17th
problem. Estimates of the probability distribution of the condition number
of singular complex matrices are also exhibited.

1.1 Introduction

These pages summarize some results on upper and lower complexity bounds
in Elimination Theory. They are a revision of the program stated in Pardo
(1995).

We focus on Efficient Polynomial Equation Solving. This is one of the
challenges in the recent history of Computational Mathematics. Two main
frameworks in scientific computing deal with this problem. Following dif-
ferent approaches, symbolic/algebraic computing and numerical analysis
developed their own techniques for solving polynomial equations. We sur-
vey statements of both approaches. New results are contained in Sections
1.4 and 1.5.

Multivariate Polynomial Equation Solving is a central topic both in
Computational Mathematics and Computational Algebraic Geometry
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2 C. Beltrán and L. M. Pardo

(Elimination Theory in nineteenth century terminology). Its origin goes
back to work of Sturm, Hermite, Cayley, and Sylvester, among others.
Elimination Theory consists of the preparation of input data (polynomial
equations and inequalities) to answer questions involving quantifiers. This
approach also underlies Kronecker (1882), Hilbert (1890) and further devel-
opments in Algebraic Geometry. A central problem in Elimination Theory
is the following:

Problem 1 (Hilbert’s Nullstellensatz) Design an efficient algorithm
that performs the following task:
Given a system of multivariate polynomial equations

f1, . . . , fs ∈ C[X1, . . . , Xn],

decide whether the following algebraic variety is empty or not:

V (f1, . . . , fs) := {x ∈ Cn : fi(x) = 0, 1 ≤ i ≤ s}.

Here the term efficient refers to computational complexity. In the words
of Traub & Werschultz (1998): “computational complexity is a measure
of the intrinsic computational resources required to solve a mathematical
problem”. Computational resources are measured in terms of a compu-
tational model or computational device that performs the corresponding
algorithm that solves the problem. Intrinsic here means that we measure
resources required by the problem and not the concrete algorithm. Hence,
computational complexity is the design and analysis of an optimal algo-
rithm (in terms of computational resources) that solves a mathematical
problem.

The notion of computational resource requirements has been present in
the mathematical literature for many years, although not always in an
explicit form. For instance, we cite Galois who explicitly described com-
putational requirements in his Mémoire sur la Résolubilité des Équations
par Radicaux. Galois wrote: “En un mot, les calculs sont impracticables”.
Galois had developed an algorithm that decided whether a univariate poly-
nomial equation was solvable by radicals, but he realized that the computa-
tional complexity required by his procedure was excessive. The phrase thus
means that he declined to perform calculations. In fact, he had discovered
a central subject in computational complexity: Intractability.

In Galois’ time, neither the notion of algorithm nor that of a complexity
measure had been established. This relevant step in the history of math-
ematics was made around 1933. The works of Gödel, Church and Turing
established the notion of algorithm which in later years lead to the exis-
tence of computers. We note that Turing’s work and his machine concept
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Non Universal Polynomial Equation Solving 3

of algorithm also became the standard pattern for computational complex-
ity. In these pages, we shall measure computational resources in terms of
Turing machines as much as is possible.

Computational resources are measured as functions of the input length.
The input length is the time we need to write down the data. The (running)
time function is the function that relates input length and running time
under a concrete computational model.

Intractability is one of the frustrating aspects of computational complex-
ity studies. A mathematical problem is intractable if the computational re-
sources required to solve it are so excessive that there is no hope of solving
the problem in practice. Observe that intractability is independent of the
algorithm we design. For example, mathematical problems whose running
time are at least exponential in the input length are naturally intractable.
These are called exponential problems and there is no hope of solving them
in any real or future computer. The reason is that this exponential time
requirement is intrinsic to the problem and not to the concrete algorithm
or computer.

Tractable problems are those mathematical problems whose time func-
tion is bounded by a polynomial of the input length. Between tractable
and intractable problems there lies a large number of problems for which it
is not known as yet whether they are tractable. We call them the Boundary
of Intractability (cf. Garey & Johnson (1979)). Hilbert’s Nullstellensatz
lies in this boundary. This simply means that no-one has yet designed a
tractable algorithm that solves Hilbert’s Nullstellensatz, and it also means
that no-one has yet proved that this problem is intractable. That is, it is
not known whether there is an algorithm that solves HN in running time
which depends polynomially on the number of variables.

There are several strategies for studying the computational complexity
of Hilbert’s Nullstellensatz. We classify them in two main groups: syn-
tactical and semantical. Although these pages are mainly concerned with
semantical strategies, we shall sketch some of the syntactical achievements
in the study of HN.

Syntactical strategies are characterized by the fact that polynomials are
considered as lists of coefficients (dense encoding) in certain vector spaces.
They are then treated as vectors and linear algebra methods are applied to
answer questions (mainly those involving quantifiers).

Historically, the first syntactical algorithm for HN goes back to Hilbert
and his student Hermann (cf. Hermann (1926)). Hilbert and Hermann
reduced HN to the consistency of a system of linear equations.

Hilbert’s Nullstellensatz (Hilbert (1890)) states that given a list of
polynomials f1, . . . , fs ∈ C[X1, . . . , Xn] of degree at most d, the complex
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4 C. Beltrán and L. M. Pardo

algebraic variety they define V (f1, . . . , fs) ⊆ Cn is empty if an only if there
are polynomials g1, . . . , gs ∈ C[X1, . . . , Xn] such that the following equality
holds:

1 = g1f1 + · · ·+ gsfs. (1.1)

Identities such as (1.1) are called Bézout Identities.
From Hermann’s work, we know that there is a function D(d, n) which

depends only on the number of variables and the maximum of the degrees,
such that the following equivalence holds:

The variety V (f1, . . . , fs) ⊆ Cn is empty if and only if there exist poly-
nomials g1, . . . , gs in C[X1, . . . , Xn] of degree at most D(d, n) satisfying
identity (1.1).

Let us observe that Hermann’s bound D(d, n) reduces HN to the con-
sistency question of a system of linear equations. The unknowns are the
coefficients of the (possibly existing) polynomials g1, . . . , gs occurring in
(1.1). The linear equations are determined by linear functions in the co-
efficients of the input polynomials f1, . . . , fs. This approach reduces HN
to the problem of deciding consistency of the linear system given by (1.1)
involving

s

(
D(d, n) + n

n

)
variables and equations. Its running time is obviously polynomial in this
quantity. Hence, sharp upper bounds for the function D(d, n) also imply
sharp upper complexity bounds for this approach to solving HN. Studies
on sharp upper bounds for D(d, n) are called Effective Nullstellensätze.
We cite Brownawell (1987), Caniglia, Galligo & J. Heintz (1988), Kollár
(1988), Berenstein & Yger (1991, 1991a), Krick & Pardo (1996), Hägele,
Morais, Pardo & M. Sombra (2000), Krick, Pardo & Sombra (2001) and
their references. The known bounds for D(d, n) can be summarized by the
following inequalities:

dn−1 ≤ D(d, n) ≤ dn.

Thus, this approach is neither efficient nor applicable since the time com-
plexity is of order (

dn + n

n

)
≈ dn2

.

For example, deciding consistency of a system of cubic polynomial equa-
tions in 20 variables by this method requires deciding consistency of a
system of more than 3400 linear equations in a similar number of variables.
This is intractable in any actual or future computer.
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Non Universal Polynomial Equation Solving 5

In Hägele, Morais, Pardo & Sombra (2000) a simply exponential time
algorithm (time of order dn) to compute Bézout identities was shown, al-
though the technique used in that paper is not syntactical but semantical.

A second syntactical strategy to deal with HN is due to rewriting tech-
niques. The most frequently used rewriting method is that of the stan-
dard/Gröbner basis algorithms. Since the works Hironaka (1964) and
Buchberger (1965), a huge list of references has been produced (cf. for in-
stance Becker & Weispfenning (1993), Cox, Little & O’Shea (1997), Mora
(2003), Vasconcelos (1998) and references therein). Most of these refer-
ences discuss algorithms that compute Gröbner bases of an ideal. This
strategy has also been fruitful in terms of implementations. Gröbner basis
algorithmics is a standard primitive implemented in most computer alge-
bra packages (Maple, Magma or Mathematica, for example). Most efficient
implementations are due to Faugère (the FGb series). This approach has
a serious drawback in terms of computational complexity. Since Mayr &
Meyer (1982), we know that computing with Gröbner bases is exponential
space complete and this is even worse than the running time of methods
based on Effective Nullstellensätze. Computing with Gröbner bases involv-
ing more than 15 variables is not yet available. Thus, purely syntactical
Gröbner bases techniques do not seem to be the best methods of dealing
with HN.

A third syntactical strategy uses the underlying concepts of Structural
Complexity. Namely, problems are classified into complexity classes and the
study of the complexity of a problem consists in locating the appropriate
class where this problem is complete. In Blum, Shub & Smale (1989), the
authors proved that HN is complete in the class NPC of nondeterministic
polynomial time under the abstract model of complex Turing machines
(cf. also Blum, Cucker, Shub & Smale (1998)). Other authors studied the
complexity of HN within the more realistic Turing machine framework. In
Koiran (1996) (see also Rojas (2001, 2003)) the author proved that HN
belongs to the complexity class PH (polynomial hierarchy).

Nevertheless, all these syntactical strategies seem to forget that we are
dealing with geometric objects (algebraic varieties) and regular mappings
(polynomials viewed as functions and not as mere lists of coefficients). Alge-
braic varieties and regular mappings are mathematical objects rich in terms
of semantic invariants. They have been studied for years in an attempt to
describe their topological, geometrical and arithmetical properties. These
studies have generated a large number of semantic invariants that must
be related to computational complexity. This idea of relating semantical
invariants to complexity is not completely new. In fact, semantical in-
variants of geometrical objects have been used to show lower complexity
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6 C. Beltrán and L. M. Pardo

bounds for computational problems (see, for example, Montaña, Morais &
Pardo (1996) and references therein). The converse problem was to de-
sign an algorithm that solves HN in time which depends polynomially on
some semantical invariants of the input list of multivariate polynomials.
This was achieved by the TERA experience. In fact, the TERA expe-
rience was more a current of thought than a research project, that was
active during the nineties. Some of its achievements will be described in
Section 1.2.

Somewhere between syntactical and semantical strategies, we may
find “sparse” elimination techniques as in Sturmfels (1996) and references
therein. However, we do not discuss sparse elimination here.

The rest of the chapter is structured as follows. In Section 1.2 we present
an overview of some of the achievements of the TERA experience. In Sec-
tion 1.3 we discuss an exponential lower time bound for universal algorithms
in Elimination Theory. In Section 1.4 we show a positive answer to Smale’s
17th Problem. Finally, in Section 1.5 we show sharp upper bounds for the
probability distribution of the condition number of singular matrices.

1.2 Semantic Algorithms

In the middle nineties, the notion of semantic algorithms in Elimination
Theory was introduced. Two works initiated this new generation of algo-
rithms : Pardo (1995) and Giusti, Heintz, Morais & Pardo (1995). The
first paper established a program, whereas the second one exhibited the first
example of a semantical algorithm for Elimination Theory. This program
was achieved in the series of papers Giusti, Heintz, Morais, Morgenstern
& Pardo (1998), Giusti, Hägele, Heintz, Montaña, Morais & Pardo (1997),
Giusti, Heintz, Morais & Pardo (1997). These works became the basis of
the research experience called TERA. This section is devoted to a brief
sketch of some of these achievements.

First of all, we reformulate Hilbert’s Nullstellensatz in the following form.

Problem 2 Design an efficient algorithm that performs the following task:
Given a list of polynomials f1, . . . , fs, g ∈ C[X1, . . . , Xn] of degree at most
d, decide whether the polynomial g vanishes at some point of the algebraic
variety V (f1, . . . , fs) ⊆ Cn.

This is the usual formulation of elimination polynomials (like resultants
and discriminants) in classical Elimination Theory. This is also the usual
formulation of NP–complete problems (cf. Heintz & Morgenstern (1993) or
Pardo (1995) and references therein). Note that all NP–complete problems
are particular instances of Problem 2 above.
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Non Universal Polynomial Equation Solving 7

In this formulation, the role played by g and the list of f1, . . . , fs seems
to be different.

From a list of polynomials like f1, . . . , fs we want to compute some infor-
mation concerning the variety V := V (f1, . . . , fs) of its common zeros. The
information we compute is expected to be used to answer further questions
involving the variety V . This information is commonly called a solution
of the input list of polynomials f1, . . . , fs. For instance, in Problem 2, a
solution of f1, . . . , fs should be used to decide whether a new polynomial
g vanishes at some point in V . The way we choose to represent this infor-
mation in a computer may be called the encoding of the solution variety
V .

Obviously, different questions will condition the way we represent the
information on the variety V in a computer. Hence, different notions of
solution lead to different kinds of algorithms and different encodings of al-
gebraic varieties. In Section 1.4 we recall the Shub–Smale notion of solution
(approximate zeros) whose potentiality is still unexplored.

The proposal of TERA consisted in the design and analysis of a semantic
algorithm that performs the following task:

From an input list f1, . . . , fs, the algorithm outputs a description of the
solution variety V (f1, . . . , fs).

This algorithm must satisfy two main properties:

• Its running time should be bounded by some intrinsic/semantic quantity
that depends on the input list.
• Its output must contain sufficient information to answer any kind of

elimination question like the one described in Problem 2.

These two properties lead to a notion of solution that we briefly sketch
here. It is called Kronecker’s encoding of an affine algebraic variety (cf.
Kronecker (1882)).

Let f1, . . . , fi ∈ C[X1, . . . , Xn] be a sequence of polynomials defining a
radical ideal (f1, . . . , fi) of codimension i. Let V := V (f1, . . . , fi) ⊆ Cn be
the complex algebraic variety of dimension n−i given by its common zeros.
A Kronecker encoding of V is a birational isomorphism of V with some
complex algebraic hypersurface in some affine complex space of dimension
n− i + 1.

Technically, this is expressed as follows. Firstly, let us assume that the
variables X1, . . . , Xn are in Noether position with respect to the variety V .
Namely, we assume that the following is an integral ring extension:

C[X1, . . . , Xn−i] ↪→ C[X1, . . . , Xn]/(f1, . . . , fi).

Let u := λn−i+1Xn−i+1 + · · · + λnXn ∈ Q[X1, . . . , Xn] be a linear form
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8 C. Beltrán and L. M. Pardo

in the dependent variables {Xn−i+1, . . . , Xn}. A Noether’s normalization
and the linear mapping u define a linear projection:

U : Cn −→ Cn−i+1 : (x1, . . . , xn) �−→ (x1, . . . , xn−i, u(x1, . . . , xn)) .

Let U |V : V −→ Cn−i+1 be the restriction of the projection U to the
variety V . The image set of the projection U |V is a complex hypersurface
Hu in Cn−i+1. Let us denote by χu ∈ C[X1, . . . , Xn−i, T ] the minimal
equation of Hu. The polynomial χu is called the elimination polynomial of
u with respect to V .

The linear form u is called a primitive element if and only if the projection
U |V defines a birational isomorphism of V with Hu.

A Kronecker solution of the system of polynomial equations f1 = 0, . . . ,

fi = 0 consists of a description of the Noether normalization, the primitive
element u, the hypersurface Hu and a description of the inverse of the
birational isomorphism, i.e., a description of (U |V )−1. Formally, this list
of items can be given as follows:

• The list of variables in Noether position X1, . . . , Xn (which includes a
description of the dimension of V ). It is just a regular matrix that defines
a linear change of coordinates that puts the variables in Noether position.
• The primitive element u := λn−i+1Xn−i+1 + · · · + λnXn given by its

coefficients in Z (or any other computable subfield of C).
• The minimal equation χu of the hypersurface Hu.
• A description of (U |V )−1. This description can be given by the following

list of polynomials:

– A nonzero polynomial ρ ∈ C[X1, . . . , Xn−i].
– A list of polynomials vj ∈ C[X1, . . . , Xn−i, T ], n− i + 1 ≤ j ≤ n.

These polynomials must satisfy the equality:

(U |V )−1(x, t) =
(
x1, . . . , xn−i, ρ

−1(x)vn−i+1(x, t), . . . , ρ−1(x)vn(x, t)
)
,

for all x := (x1, . . . , xn−i) ∈ Cn−i, t ∈ C, such that (x, t) ∈ Hu, ρ(x) �= 0.

In 1882, Kronecker conceived an iterative procedure for solving multi-
variate systems of equations F := [f1, . . . , fn] defining zero–dimensional
complex varieties. Kronecker’s idea can be sketched in the following terms:

First, the procedure starts with system [f1] and it “solves” the equidi-
mensional variety of codimension one V (f1) ⊆ Cn. Then the procedure
runs iteratively: From a Kronecker encoding of V (f1, . . . , fi), the proce-
dure “eliminates” the polynomial fi+1 to obtain a Kronecker encoding of
the “next” variety V (f1, . . . , fi+1). Proceed until i = n is reached.

This iterative procedure has two main drawbacks, which can be explained
in the following terms:
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Non Universal Polynomial Equation Solving 9

• First of all, the storage problem arising with the encoding of the inter-
mediate polynomials. The polynomials χu, ρ and vj are polynomials of
high degree (eventually of degree di) involving n− i + 1 variables. Thus,
to compute with them, the procedure has to handle all their coefficients,
which amounts to (

di + n− i + 1
n− i + 1

)
in number, For example, for i := n/2 the procedure must save more
than dn2/4 coefficients. Handling such polynomials also requires a time
complexity of similar order. This does not seem to be more efficient
than the original treatment based on the Effective Nullstellensätze (cf.
Section 1.1).
• Secondly, Kronecker’s iterative procedure introduces a nesting of inter-

polation procedures. This nesting is demanded by the iterative process.
Every time the procedure computes a new set of variables in Noether
position, the procedure makes a recursive call of previously computed
objects. This increases the time complexity function to dO(n2).

The procedure was therefore forgotten by contemporary mathematicians
and is hardly mentioned in the literature of Algebraic Geometry. Macaulay
quotes Kronecker’s procedure in Macaulay (1916) and so does König (1903).
But both of them thought that this procedure would require excessive run-
ning time to be efficient, and so references to it have progressively vanished
from the literature. Traces of this procedure can be found spread over the
Algebraic Geometry literature without giving the required reference to it.
For example, Kronecker’s notion of solution was used in Zariski (1995) to
define a notion of dimension for algebraic varieties, claiming that it was
also used in the same form by Severi and others.

In Giusti, Heintz, Morais & Pardo (1995) and Pardo (1995), Kronecker’s
approach for solving was rediscovered without previous knowledge of this
ancestor. These two works were able to overcome the first drawback (space
problem of representation) of the previous methods. The technical trick
was the use of a data structure coming from semi–numerical modeling:
straight–line programs. This idea of representing polynomials by programs
evaluating them goes back to previous work of the same research group
(such as Giusti, Heintz (1991, 1993) or Krick & Pardo (1996), see also the
references given in Pardo (1995)).

To overcome the second drawback (nesting), the authors introduced a
method based on nonarchimedean Newton’s operator. The approximate
zeros in the corresponding nonarchimedean basin of attraction were called
Lifting Fibers in Giusti, Hägele, Heintz, Morais, Montaña & Pardo (1997)
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10 C. Beltrán and L. M. Pardo

solving the problem of nesting of interpolation procedures by Hensel’s
Lemma (also called the Implicit Mapping Theorem).

Unfortunately, Giusti, Hägele, Heintz, Morais, Montaña & Pardo (1997)
introduced (for the Lifting Fibers) running time requirements which depend
on the heights of the intermediate varieties in the sense of Bost, Gillet &
Soulé (1994) or Philippon (1991, 1994, 1995). This drawback was finally
overcome in Giusti, Heintz, Morais & Pardo (1997), where integer numbers
were represented by straight–line programs and the following result was
finally established:

Theorem 1.1 (Giusti, Heintz, Morais & Pardo (1997)) There exists a
bounded error probability Turing machine M which performs the following
task: Given a systemof multivariate polynomial equations F := (f1, . . . , fn),
satisfying the following properties

• deg(fi) ≤ d and ht(fi) ≤ h for 1 ≤ i ≤ n (h is the bit length of the
coefficients),
• the ideals (f1, . . . , fi) are radical ideals of codimension i in the ring

Q[X1, . . . , Xn] for 1 ≤ i ≤ n− 1,
• the variety V (f1, . . . , fn) ⊆ Cn is a zero–dimensional complex alge-

braic variety,
then the machine M outputs a Kronecker solution of the variety

V (f1, . . . , fn).

The running time of the machine M is polynomial in the quantities

δ(F ), n, h, d, L,

where δ(F ) is the maximum of the degrees of the intermediate varieties (in
the sense of Heintz (1983)), namely

δ(F ) := max{deg(V (f1, . . . , fi)) : 1 ≤ i ≤ n− 1},

and L is the input length in any natural encoding of multivariate polyno-
mials.

It must be said that the coefficients of the polynomials involved in a
Kronecker solution of the variety V (f1, . . . , fn) are given by straight–line
programs. However, the complexity estimates for the Turing machine M

are independent of the height.
The quantity δ(F ) becomes a kind of condition number for symbolic

methods to solve systems of multivariate polynomial equations by Kro-
necker’s deformation technique.

After Giusti, Heintz, Morais, & Pardo (1997), several new authors got
involved in the TERA experience, with several technical improvements,
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