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Mountains and high plateau areas account for a quarter of the Earth’s land surface.

They give rise to a wide range ofmeteorological phenomena and distinctive climatic

characteristics of consequence for ecology, forestry, glaciology and hydrology.

Mountain Weather and Climate remains the only comprehensive text describing

and explaining mountain weather and climate processes. It presents the results of a

broad range of studies drawn from across the world.

Following an introductory survey of the historical aspects of mountain meteo-

rology, three chapters deal with the latitudinal, altitudinal and topographic controls

of meteorological elements in mountains, circulation systems related to orography,

and the climatic characteristics of mountains. The author supplies regional case

studies of selected mountain climates from New Guinea to the Yukon, a chapter

on bioclimatology that examines human bioclimatology, weather hazards and air

pollution, and a concluding chapter on the evidence for and the significance of

changes in mountain climates.

Since the first edition of this book appeared over two decades ago several impor-

tant field programs have been conducted in mountain areas. Notable among these

have been the European Alpine Experiment and related investigations of local

winds, studies of air drainage in complex terrain in the western United States and

field laboratory experiments on air flow over low hills. Results from these investi-

gations and other research are incorporated in this new edition and all relevant

new literature is referenced.

ROGER G . BARRY is Distinguished Professor of Geography at the University of

Colorado and Director, World Data Center for Glaciology and the National Snow

and Ice Data Center, Boulder.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68158-2 - Mountain Weather and Climate, Third Edition
Roger G. Barry
Frontmatter
More information

http://www.cambridge.org/9780521681582
http://www.cambridge.org
http://www.cambridge.org


MOUNTAIN
WEATHER AND
CLIMATE

THIRD EDITION

ROGER G. BARRY

University of Colorado, Boulder, USA

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68158-2 - Mountain Weather and Climate, Third Edition
Roger G. Barry
Frontmatter
More information

http://www.cambridge.org/9780521681582
http://www.cambridge.org
http://www.cambridge.org


CAMBRIDGE UNIVERS ITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521862950

# R. Barry 2008

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2008

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-86295-0 hardback
ISBN 978-0-521-68158-2 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external
or third-party internet websites referred to in this publication, and does not guarantee that any
content on such websites is, or will remain, accurate or appropriate.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68158-2 - Mountain Weather and Climate, Third Edition
Roger G. Barry
Frontmatter
More information

http://www.cambridge.org/9780521681582
http://www.cambridge.org
http://www.cambridge.org


CONTENTS

List of figures page vii

List of tables xix

Preface to the Third Edition xxi

Acknowledgments xxii

1 Mountains and their climatological study 1

1.1 Introduction 1

1.2 Characteristics of mountain areas 2

1.3 History of research into mountain weather and climate 5

1.4 The study of mountain weather and climate 11

2 Geographical controls of mountain meteorological elements 24

2.1 Latitude 24

2.2 Continentality 26

2.3 Altitude 31

2.4 Topography 72

2.5 Notes 108

3 Circulation systems related to orography 125

3.1 Dynamic modification 125

3.2 Thermally induced winds 186

3.3 Notes 230

4 Climatic characteristics of mountains 251

4.1 Energy budgets 251

4.2 Temperature 259

4.3 Clouds 266

4.4 Precipitation 273

4.5 Other hydrometeors 316

4.6 Evaporation 328

4.7 Notes 342

5 Regional case studies 363

5.1 Equatorial mountains – New Guinea and East Africa 363

5.2 The Himalaya 368

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68158-2 - Mountain Weather and Climate, Third Edition
Roger G. Barry
Frontmatter
More information

http://www.cambridge.org/9780521681582
http://www.cambridge.org
http://www.cambridge.org


5.3 Sub-tropical desert mountains – the Hoggar and Tibesti 378

5.4 Central Asia 381

5.5 The Alps 386

5.6 The maritime mountains of Great Britain 397

5.7 The Rocky Mountains in Colorado 401

5.8 The sub-polar St. Elias mountains – Alaska/Yukon 407

5.9 High plateaus 411

5.10 The Andes 421

5.11 New Zealand Alps 426

5.12 Note 427

6 Mountain bioclimatology 444

6.1 Human bioclimatology 444

6.2 Weather hazards 456

6.3 Air pollution in mountain regions 460

7 Changes in mountain climates 474

7.1 Evidence 474

7.2 Significance 486

Appendix 495

Index 497

C ON T E N T S vi

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68158-2 - Mountain Weather and Climate, Third Edition
Roger G. Barry
Frontmatter
More information

http://www.cambridge.org/9780521681582
http://www.cambridge.org
http://www.cambridge.org


FIGURES

1.1 Latitudinal cross-section of the highest summits, highest and lowest snow

lines, and highest and lowest upper limits of timberline (from Barry and

Ives, 1974). page 3

1.2 Alpine and highland zones and their climatic characteristics (after

N. Crutzberg, from Ives and Barry, 1974). 5

1.3 The Sonnblick Observatory in April 1985 (R. Boehm). 7

1.4 The mountain atmosphere (after Ekhart, 1948). 12

1.5 Scales of climatic zonation in mountainous terrain (after Yoshino, 1975). 13

1.6 Automatic weather station in the Andes (D. Hardy). 15

2.1 (a) and (b) Daily Sun paths at latitudes 608N and 308N (from Smithsonian

Meteorological Tables, 6th edn). 25

2.2 Thermoisopleth diagrams of mean hourly temperatures (8C) at
(a) Pangrango, Java, 78 S, 3022m (after Troll, 1964) and (b) Zugspitze,

Germany, 478N, 2962m (after Hauer, 1950). 27

2.3 Mean daily temperature range versus latitude for a number of high valley

and summit stations (after Lauscher, 1966). 28

2.4 Examples of the relations with altitude of hygric continentality, winter

snow cover duration and thermal continentality, and tree species in

Austria (after Aulitsky et al., 1982). 31

2.5 Annual averages and range of monthly means of absolute humidity (gm�3)

as a function of altitude in tropical South America (after Prohaska, 1970). 34

2.6 Profiles of zenith-path transmissivity for a clean, dry atmosphere with ozone,

a clean, wet atmosphere and a dirty, wet atmosphere; profiles of the theoretical

transmissivity index (K) of W. P. Lowry are also shown for K¼ 1, 2, and 4

(after Lowry, 1980b). 37

2.7 Direct solar radiation versus altitude in an ideal atmosphere for m ¼ 1

(after Kastrov, in Kondratyev, 1969; p. 262) and as observed at mountain

stations (based on Abetti, 1957; Kimball, 1927; Pope 1977). 39

2.8 Altitudinal variation of seasonal mean values (Wm�2 km�1), of (a) all-sky

shortwave radiation; (b) upward longwave (infrared) radiation; and

(c) downward longwave radiation measured at ASRB stations in the

Swiss Alps (adapted from Marty et al., 2002). 41

2.9 Global solar radiation versus cloud amount at different elevations in the

Austrian Alps in June and December (based on Sauberer and Dirmhirn, 1958). 43

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68158-2 - Mountain Weather and Climate, Third Edition
Roger G. Barry
Frontmatter
More information

http://www.cambridge.org/9780521681582
http://www.cambridge.org
http://www.cambridge.org


2.10 Diffuse (sky) radiation versus cloud amount in winter and summer at different

elevations in the Alps (from Sauberer and Dirmhirn, 1958). 44

2.11 Curvilinear relationships between the cloud modification factor (CMF)

and UV radiation reported by different sources (from Calbo et al., 2005). 47

2.12 Altitudinal variation of seasonal and annual mean values of all-sky net

radiation (Rn, Wm�2 km�1) measured at ASRB stations in the Swiss Alps

(adapted from Marty et al., 2002). 50

2.13 The ratio of net radiation (Rn) to solar radiation (S) versus height in the

Caucasus in summer (after Voloshina, 1966). 51

2.14 Lapse rates of minimum, mean and maximum temperatures in the Alps

(after Rolland, 2003). 54

2.15 Schematic vertical temperature profiles on a clear winter night for three

topographic situations: (a) isolated mountain; (b) limited plateau;

(c) extensive plateau; and a generalized model of the effects of local and

large-scale mountain topography on the depth of the seasonally-modified

atmosphere (after Tabony, 1985). 55

2.16 The annual variation of altitudinal gradients of air temperature and 30 cm

soil temperature between two upland stations in the Pennines and the

lowland station of Newton Rigg (from Green and Harding, 1979). 56

2.17 Differences between altitudinal gradients of soil and air temperature at

pairs of stations in Europe (from Green and Harding, 1980). 58

2.18 Mean daily temperature range versus altitude in different mountain and

highland areas: I, Alps; II, western USA; III, eastern Africa; IV, Himalya;

V, Ethiopian highlands (after Lauscher, 1966). 59

2.19 Mean daily temperatures in the free air and at mountain stations in

the Alps (after Hauer, 1950). 62

2.20 Mean summit–free air temperature differences (K) in the Alps as a function

of time and wind speed (after Richner and Phillips, 1984). 63

2.21 Mean summit–free air temperature differences in the Alps as a function of

cloud cover (eighths) for 00 and 12 UT (after Richner and Phillips, 1984). 63

2.22 Components of the mean daily thermal circulation (cm s�1) above Tibet

(from Flohn, 1974). 66

2.23 Plots of the temperature structure above plateau surfaces at 900, 700 and

500mb, plotted as differences between the temperatures calculated above

elevated and sea-level surfaces for four values of Bowen ratio, � (from

Molnar and Emanuel, 1999). 67

2.24 Schematic illustration of the effects on surface and boundary layer

temperatures of lowland and high plateau surfaces and three different

atmospheric conditions: (a) dry, transparent atmosphere; (b) warm, moist,

semi-opaque atmosphere; (c) hot, moist opaque atmosphere (from Molnar

and Emanuel, 1999). 68

2.25 Schematic isentropes on slopes during surface heating and radiative cooling

(after Cramer and Lynott, 1961). 69

L I S T O F F I G U R E S viii

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68158-2 - Mountain Weather and Climate, Third Edition
Roger G. Barry
Frontmatter
More information

http://www.cambridge.org/9780521681582
http://www.cambridge.org
http://www.cambridge.org


2.26 Wind speeds observed on mountain summits (Vm) in Europe and at the

same level in the free air (Vf) (from Wahl, 1966). 73

2.27 Schematic illustration of streamlines over a hill showing phase tilt upwind

(dashed line) (from Smith, 1990). 76

2.28 Schematic illustration of a ‘‘dividing streamline’’ in stably-stratified airflow

encountering a hill (modified after Etling, 1989). 76

2.29 Generalized flow behavior over a hill for various stability conditions (after

Stull, 1988). 78

2.30 Schematic illustration of the forcing and response of airflow along (above)

and across (below) a heated barrier (from Crook and Turner, 2005). 79

2.31 Schematic illustration of the speed-up of boundary layer winds (DU) over a

low hill and the corresponding pattern of pressure anomalies (modified after

Taylor et al., 1987; Hunt and Simpson, 1982). 82

2.32 Examples of flow separation: (a) separation at a cliff top (S), joining at

J. A ‘‘bolster’’ eddy resulting from flow divergence is shown at the base of

the steep windward slope; (b) separation on a lee slope with a valley eddy.

The upper flow is unaffected; (c) separation with a small lee slope eddy.

A deep valley may cause the air to sink resulting in cloud dissipation above

it (from Scorer, 1978). 85

2.33 Average direct beam solar radiation (Wm�2) incident at the surface under

cloudless skies at Trier, West Germany and Tucson, Arizona, as a function

of slope, aspect, time of day and season of year (from Barry and Chorley,

1987, after Geiger, 1965 and Sellers, 1965). 88

2.34 Relative radiation on north- and south-facing slopes, at latitude 308N for daily

totals of extra-terrestrial direct beam radiation on 21 June (after Lee, 1978). 88

2.35 Annual totals of possible direct solar radiation according to latitude for

108 and 308 north- and south-facing slopes, in percentages relative to

those for a horizontal surface (from Kondratyev and Federova, 1977). 89

2.36 Computed global solar radiation for cloudless skies, assuming a transmission

coefficient of 0.75, between 0600 and 1000h on 23 September for Mt. Wilhelm

(D ¼ summit) area of Papua New Guinea (from Barry, 1978). 93

2.37 Components of solar and infrared radiation incident on slopes. 95

2.38 Relations between monthly soil temperatures (0–1 cm) and air temperature
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PREFACE TO THE THIRD EDITION

Research into mountain weather and climate has gained momentum over the

15 years that have elapsed since the publication of the second edition. Studies of

the meteorology and climatology of mountains regions of Central Asia and South

America, in particular, have provided material for new sections in Chapter 5, with

shorter sections on the equatorial mountains of East Africa and the Southern Alps

of New Zealand. The high ice plateaus of Greenland and Antarctica are also

included. There has also been more attention paid to changes in mountain envir-

onments, as part of the widening concern over global warming and through the

International Panel on Climate Change (IPCC) for its second (1995), third (2001),

and fourth (2007) assessment reports. Accordingly, the scope of the material in

Chapter 7 has expanded. Research in mountain meteorology has benefited from

projects such as the Mesoscale Alpine Program (MAP) and other more local indivi-

dual endeavors in different parts of the world. Improvements in instrumentation,

data recording and transmitting, and new satellite, airborne and ground-based

remote sensing, are all changing the ways in which data can be collected. Data

analysis, combined with higher resolution numerical modeling, is also becoming

increasingly common.

The basic structure of the book remains unchanged, and apart from updating

throughout, and corrections where appropriate, most of the original text has been

retained. I believe firmly in recognizing important early contributions to the sub-

ject, as well as the latest advances. Some recent references incorporated in the

bibliographies are not discussed in the text.
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