
Cambridge University Press
978-0-521-67595-6 — Writing Scientific Software
Suely Oliveira , David E. Stewart
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

W R I T I N G S C I E N T I F I C S O F T W A R E : A G U I D E

T O G O O D S T Y L E

The core of scientific computing is designing, writing, testing, debugging and mod-

ifying numerical software for application to a vast range of areas: from graphics,

weather forecasting, and chemistry to engineering, biology, and finance. Scientists,

engineers, and computer scientists need to write good, clear code, for speed, clarity,

flexibility, and ease of re-use.

Oliveira and Stewart provide here a guide to writing numerical software,

pointing out good practices to follow, and pitfalls to avoid. By following their

advice, the reader will learn how to write efficient software, and how to test it

for bugs, accuracy, and performance. Techniques are explained with a variety of

programming languages, and illustrated with two extensive design examples, one

in Fortran 90 and one in C++, along with other examples in C, C++, Fortran 90

and Java scattered throughout the book.

Common issues in numerical computing are dealt with: for example, whether to

allocate or pass “scratch” memory for temporary use, how to pass parameters to a

function that is itself passed to a routine, how to allocate multidimensional arrays

in C/C++/Java, and how to create suitable interfaces for routines and libraries.

Advanced topics, such as recursive data structures, template programming and

type binders for numerical computing, blocking and unrolling loops for efficiency,

how to design software for deep memory hierarchies, and amortized doubling for

efficient memory use, are also included.

This manual of scientific computing style will prove to be an essential addition

to the bookshelf and lab of everyone who writes numerical software.

www.cambridge.org/9780521675956
www.cambridge.org

Cambridge University Press
978-0-521-67595-6 — Writing Scientific Software
Suely Oliveira , David E. Stewart
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

WRITING SCIENTIFIC SOFTWARE:

A GUIDE FOR GOOD STYLE

SUELY OLIVEIRA AND DAVID E. STEWART
University of Iowa

www.cambridge.org/9780521675956
www.cambridge.org

Cambridge University Press
978-0-521-67595-6 — Writing Scientific Software
Suely Oliveira , David E. Stewart
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of

education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9780521675956

© Cambridge University Press 2006

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2006

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-85896-0 Hardback

ISBN 978-0-521-67595-6 Paperback

Cambridge University Press has no responsibility for the persistence or

accuracy of URLs for external or third-party internet websites referred to in

this publication, and does not guarantee that any content on such websites is,

or will remain, accurate or appropriate.

www.cambridge.org/9780521675956
www.cambridge.org

Cambridge University Press
978-0-521-67595-6 — Writing Scientific Software
Suely Oliveira , David E. Stewart
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents

Preface page ix

Part I Numerical Software 1

1 Why numerical software? 3

1.1 Efficient kernels 4

1.2 Rapid change 5

1.3 Large-scale problems 6

2 Scientific computation and numerical analysis 8

2.1 The trouble with real numbers 8

2.2 Fixed-point arithmetic 18

2.3 Algorithm stability vs. problem stability 19

2.4 Numerical accuracy and reliability 23

3 Priorities 30

3.1 Correctness 30

3.2 Numerical stability 32

3.3 Accurate discretization 32

3.4 Flexibility 33

3.5 Efficiency: time and memory 35

4 Famous disasters 36

4.1 Patriot missiles 36

4.2 Ariane 5 37

4.3 Sleipner A oil rig collapse 38

5 Exercises 39

Part II Developing Software 43

6 Basics of computer organization 45

6.1 Under the hood: what a CPU does 45

6.2 Calling routines: stacks and registers 47

6.3 Allocating variables 51

6.4 Compilers, linkers, and loaders 53

v

www.cambridge.org/9780521675956
www.cambridge.org

Cambridge University Press
978-0-521-67595-6 — Writing Scientific Software
Suely Oliveira , David E. Stewart
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

vi Contents

7 Software design 57

7.1 Software engineering 57

7.2 Software life-cycle 57

7.3 Programming in the large 59

7.4 Programming in the small 61

7.5 Programming in the middle 67

7.6 Interface design 70

7.7 Top-down and bottom-up development 75

7.8 Don’t hard-wire it unnecessarily! 77

7.9 Comments 78

7.10 Documentation 80

7.11 Cross-language development 82

7.12 Modularity and all that 87

8 Data structures 90

8.1 Package your data! 90

8.2 Avoid global variables! 91

8.3 Multidimensional arrays 92

8.4 Functional representation vs. data structures 96

8.5 Functions and the “environment problem” 97

8.6 Some comments on object-oriented scientific software 106

9 Design for testing and debugging 118

9.1 Incremental testing 118

9.2 Localizing bugs 120

9.3 The mighty “print” statement 120

9.4 Get the computer to help 122

9.5 Using debuggers 129

9.6 Debugging functional representations 130

9.7 Error and exception handling 132

9.8 Compare and contrast 135

9.9 Tracking bugs 136

9.10 Stress testing and performance testing 137

9.11 Random test data 141

10 Exercises 143

Part III Efficiency in Time, Efficiency in Memory 147

11 Be algorithm aware 149

11.1 Numerical algorithms 149

11.2 Discrete algorithms 151

11.3 Numerical algorithm design techniques 153

12 Computer architecture and efficiency 156

12.1 Caches and memory hierarchies 156

www.cambridge.org/9780521675956
www.cambridge.org

Cambridge University Press
978-0-521-67595-6 — Writing Scientific Software
Suely Oliveira , David E. Stewart
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents vii

12.2 A tour of the Pentium 4T M architecture 158

12.3 Virtual memory and paging 164

12.4 Thrashing 164

12.5 Designing for memory hierarchies 165

12.6 Dynamic data structures and memory hierarchies 168

12.7 Pipelining and loop unrolling 168

12.8 Basic Linear Algebra Software (BLAS) 170

12.9 LAPACK 178

12.10 Cache-oblivious algorithms and data structures 184

12.11 Indexing vs. pointers for dynamic data structures 185

13 Global vs. local optimization 187

13.1 Picking algorithms vs. keyhole optimization 187

13.2 What optimizing compilers do 188

13.3 Helping the compiler along 191

13.4 Practicalities and asymptotic complexity 192

14 Grabbing memory when you need it 195

14.1 Dynamic memory allocation 195

14.2 Giving it back 197

14.3 Garbage collection 198

14.4 Life with garbage collection 199

14.5 Conservative garbage collection 202

14.6 Doing it yourself 203

14.7 Memory tips 205

15 Memory bugs and leaks 208

15.1 Beware: unallocated memory! 208

15.2 Beware: overwriting memory! 208

15.3 Beware: dangling pointers! 210

15.4 Beware: memory leaks! 214

15.5 Debugging tools 215

Part IV Tools 217

16 Sources of scientific software 219

16.1 Netlib 220

16.2 BLAS 220

16.3 LAPACK 221

16.4 GAMS 221

16.5 Other sources 221

17 Unix tools 223

17.1 Automated builds: make 223

17.2 Revision control: RCS, CVS, Subversion and Bitkeeper 226

www.cambridge.org/9780521675956
www.cambridge.org

Cambridge University Press
978-0-521-67595-6 — Writing Scientific Software
Suely Oliveira , David E. Stewart
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

viii Contents

17.3 Profiling: prof and gprof 228

17.4 Text manipulation: grep, sed, awk, etc. 230

17.5 Other tools 232

17.6 What about Microsoft Windows? 233

Part V Design Examples 237

18 Cubic spline function library 239

18.1 Creation and destruction 242

18.2 Output 244

18.3 Evaluation 244

18.4 Spline construction 247

18.5 Periodic splines 257

18.6 Performance testing 260

19 Multigrid algorithms 262

19.1 Discretizing partial differential equations 262

19.2 Outline of multigrid methods 264

19.3 Implementation of framework 265

19.4 Common choices for the framework 272

19.5 A first test 273

19.6 The operator interface and its uses 276

19.7 Dealing with sparse matrices 279

19.8 A second test 282

Appendix A Review of vectors and matrices 287

A.1 Identities and inverses 288

A.2 Norms and errors 289

A.3 Errors in solving linear systems 291

Appendix B Trademarks 292

References 293

Index 299

www.cambridge.org/9780521675956
www.cambridge.org

Cambridge University Press
978-0-521-67595-6 — Writing Scientific Software
Suely Oliveira , David E. Stewart
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface

Mathematical algorithms, though usually invisible, are all around us. The micro-

computer in your car controlling the fuel ignition uses a control algorithm embody-

ing mathematical theories of dynamical systems; a Web search engine might use

large-scale matrix computations; a “smart map” using a Global Positioning System

to tell where you are and the best way to get home embodies numerous numerical

and non-numerical algorithms; the design of modern aircraft involves simulating

the aerodynamic and structural characteristics on powerful computers including

supercomputers.

Behind these applications is software that does numerical computations. Often

it is called scientific software, or engineering software; this software uses finite-

precision floating-point (and occasionally fixed-point) numbers to represent con-

tinuous quantities.

If you are involved in writing software that does numerical computations, this

book is for you. In it we try to provide tools for writing effective and efficient

numerical software. If you are a numerical analyst, this book may open your eyes

to software issues and techniques that are new to you. If you are a programmer,

this book will explain pitfalls to avoid with floating-point arithmetic and how to get

good performance without losing modern design techniques (or programming in

Fortran 66). People in other areas with computing projects that involve significant

numerical computation can find a bounty of useful information and techniques in

this book.

But this is not a book of numerical recipes, or even a textbook for numerical

analysis (numerical analysis being the study of mathematical algorithms and their

behavior with finite precision floating-point arithmetic or other sources of com-

putational errors). Nor is it a handbook on software development. It is about the

development of a particular kind of software: numerical software. Several things

make this kind of software a little different from other kinds of software:

ix

www.cambridge.org/9780521675956
www.cambridge.org

Cambridge University Press
978-0-521-67595-6 — Writing Scientific Software
Suely Oliveira , David E. Stewart
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

x Preface

� It involves computations with floating-point numbers. All computations with floating point

arithmetic are necessarily approximate. How good are the approximations? That is the

subject matter of numerical analysis. Proofs of correctness of algorithms can be irrelevant

because either: (a) they completely ignore the effects of roundoff error, and so cannot

identify numerical difficulties; or (b) they assume only exact properties of floating point

arithmetic (floating point arithmetic is commutative x + y = y + x , but not associative

(x + y) + z �= x + (y + z)). In the latter case, they cannot prove anything useful about

algorithms which are numerically accurate, but not exact (which is almost all of them).
� It involves large-scale computations. Large-scale computations can involve computing

millions of quantities. Here efficiency is of critical importance, both in time and memory.

While correctness is vital, efficiency has a special place in scientific computing. Program-

mers who wish to get the most out of their machine had better understand just how the

hardware (and software) behind their compilers and operating systems work.
� Requirements change rapidly. Frequent changes in requirements and methods are a fact of

life for scientific software, whether in a commercial or research environment. This means

that the code had better be flexible or it will be scrapped and we will be programming

from scratch again.

In every decade since the 1950s, the complexity of scientific software has increased

a great deal. Object-oriented software has come to the fore in scientific and engi-

neering software with the development of a plethora of object-oriented matrix li-

braries and finite element packages. Fortran used to be the clear language of choice

for scientific software. That has changed. Much scientific software is now writ-

ten in C, C++, Java, Matlab, Ada, and languages other than Fortran. Fortran has

also changed. The Fortran 90 standard and the standards that have followed have

pushed Fortran forward with many modern programming structures. But, many

people who were educated on Fortran 77 or earlier versions of Fortran are unaware

of these powerful new features, and of how they can be used to facilitate large-scale

scientific software development. In this book when we refer to “Fortran” we will

mean Fortran 90 unless another version is explicitly mentioned.

We have focused on C, C++ and Fortran 90 as the languages we know best,

and are in greatest use for scientific and engineering computing. But we will also

have things to say about using other languages for scientific computing, especially

Java. This is not to say that other languages are not appropriate. One of the points

we want to make is that many of the lessons learnt in one language can carry over

to other languages, and help us to better understand the trade-offs involved in the

choice of programming language and software design.

Occasionally we make historical notes about how certain systems and program-

ming languages developed. Often important insights into the character of operating

systems and programming languages, and how they are used, can be gleaned from

the history of their development. It is also a useful reminder that the world of

www.cambridge.org/9780521675956
www.cambridge.org

Cambridge University Press
978-0-521-67595-6 — Writing Scientific Software
Suely Oliveira , David E. Stewart
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface xi

software (including scientific software) is not static – it is changing and changing

rapidly. And often our best guide to the future is a look at the past – it is certainly a

good antidote to the impression often given that programming languages are eternal.

This book has been divided into five parts. The first is about what scientific and

engineering software is all about, and what makes it different from conventional

software design: the approximations inherent in floating-point arithmetic and other

aspects of scientific software make some approaches to software development of

limited applicability or irrelevant. Instead, we need to understand numerical issues

much better than with other kinds of software. Also, scientific software often has

much more of an emphasis on performance – there is a real need for speed. But

this must be tempered by the need to keep the structure of the code from becoming

“fossilized”, trying to maximize performance for some particular system. Instead

we advocate a balance between flexibility and performance.

The second part is about software design. After a look at how things happen

(how CPUs work, stacks and registers, variable allocation, compilers, linkers and

interpreters), we emphasize practical software design and development techniques.

These include incremental testing alongside some of the more practical of the “proof

of correctness” ideas.

The third part is on efficiency – in both time and memory. To do this well requires

a good understanding of both algorithms and computer architecture. The importance

of locality is particularly emphasized. There is also a considerable amount on how

to use dynamic memory allocation. This may be particularly useful for Fortran

programmers who have so far avoided dynamic memory allocation.

Part IV is on tools for software development including online sources of scientific

software, debuggers, and tools that have originated from the Unix operating system

and have spread to many other environments.

Part V emphasizes the practicalities involved in programming scientific software.

We have developed two medium-sized examples of numerical software develop-

ment. One is a cubic spline library for constructing and evaluating various kinds of

splines. The other is a multigrid system for the efficient iterative solution of large,

sparse linear systems of equations. In these examples, the reader will see the issues

discussed earlier in the context of some real examples.

As Isaac Newton said, “If I have seen far, it is because I have stood on the

shoulders of giants.” We do not claim to see as far as Isaac Newton, but we have

stood on the shoulders of giants. We would like to thank Barry Smith, Michael

Overton, Nicholas Higham, Kendall Atkinson, and the copy-editor for their com-

ments on our manuscript. We would especially like to thank Cambridge University

Press’ technical reviewer, who was most assiduous in going through the manuscript,

and whose many comments have resulted in a greatly improved manuscript. We

would also like to thank the many sources of the software that we have used in the

www.cambridge.org/9780521675956
www.cambridge.org

Cambridge University Press
978-0-521-67595-6 — Writing Scientific Software
Suely Oliveira , David E. Stewart
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xii Preface

production of this book: Microsoft (MS) Windows XP, Red-Hat Linux, the GNU

compiler collection (gcc,g++, and most recentlyg95), Delorie’s port ofgcc/g++

to MS Windows (djgpp), Minimal GNU for Windows (MinGW) and their port of

gcc/g++ to MS Windows, Intel’s Fortran 90/95 compiler, the GNU tools gmake,

grep, sed, gdb, etc. (many thanks to the Free Software Foundation for making

these tools widely available), the LYX word processing software, the MikTEX and

TeTEX implementations of LATEX and the DVI viewers xdvi and yap, Component

Software’s implementation of RCS for MS Windows, Xfig, zip and unzip, WinZip,

Valgrind, Octave and MATLAB.

www.cambridge.org/9780521675956
www.cambridge.org

