The Physics of Particle Detectors

This text provides a comprehensive introduction to the physical principles and design of particle detectors, covering all major detector types in use today. The book begins with a reprise of the size and energy scales involved in different physical processes. It then considers non-destructive methods, including the photoelectric effect, photomultipliers, scintillators, Cerenkov and transition radiation, scattering and ionization and the use of magnetic fields in drift and wire chambers. A complete chapter is devoted to silicon detectors. In the final part of the book, the author discusses destructive measurement techniques including Thomson and Compton scattering, Bremsstrahlung and calorimetry. Throughout the book, emphasis is placed on explaining the physical principles on which detection is based, and showing, by considering appropriate examples, how those principles are best utilized in real detectors. This approach also reveals the limitations that are intrinsic to different devices.

DAN GREEN received his Ph.D. from the University of Rochester in 1969. He was a post-doc at Stony Brook from 1969 to 1972 and worked at the Intersecting Storage Rings (ISR) at CERN. His next appointment was as an Assistant Professor at Carnegie Mellon University from 1972 to 1978 during which time he was also Spokesperson of a BNL Baryonium Experiment. He has been a Staff Scientist at Fermilab from 1979 to the present, and has worked in a wide variety of roles on experiments both at Fermilab and elsewhere. He worked on the D0 Experiment as Muon Group Leader from 1982 to 1990 and as B Physics Group Co-Convener from 1990 to 1994. He led the US Compact Muon Solenoid (CMS) Collaboration as Spokesperson for the US groups working at the Large Hadron Collider (LHC) at CERN. At Fermilab, he was Physics Department Deputy Head from 1984 to 1986 and Head from 1986 to 1990. From 1993 to present he has served as the CMS Department Head in the Particle Physics Division.

CAMBRIDGE MONOGRAPHS ON PARTICLE PHYSICS, NUCLEAR PHYSICS AND COSMOLOGY 12

General Editors: T. Ericson, P. V. Landshoff

- 1. K. Winter (ed.): Neutrino Physics
- 2. J. F. Donoghue, E. Golowich and B. R. Holstein: Dynamics of the Standard Model
- 3. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 1: Electroweak Interactions, the 'New Particles' and the Parton Model
- 4. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 2: CP-Violation, QCD and Hard Processes
- 5. C. Grupen: Particle Detectors
- 6. H. Grosse and A. Martin: Particle Physics and the Schrödinger Equation
- 7. B. Andersson: The Lund Model
- 8. R. K. Ellis, W. J. Stirling and B. R. Webber: QCD and Collider Physics
- 9. I. I. Bigi and A. I. Sanda: CP Violation
- 10. A. V. Manohar and M. B. Wise: Heavy Quark Physics
- 11. R. K. Bock, H. Grote, R. Frühwirth and M. Regler: *Data Analysis Techniques for High-Energy Physics, Second edition*
- 12. D. Green: The Physics of Particle Detectors

THE PHYSICS OF PARTICLE DETECTORS

DAN GREEN Fermilab

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521662260

© Cambridge University Press 2000

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2000 This digitally printed first paperback version 2005

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Green, Dan. The physics of particle detectors / Dan Green. p. cm. – (Cambridge monographs on particle physics, nuclear physics, and cosmology ; 12) Includes bibliographical references and index. ISBN 0 521 66226 5 (hardback) 1. Nuclear counters. I. Title. II. Series. QC787.C6 G67 2000 539.7'7–dc21 99-053251

> ISBN-13 978-0-521-66226-0 hardback ISBN-10 0-521-66226-5 hardback

ISBN-13 978-0-521-67568-0 paperback ISBN-10 0-521-67568-5 paperback

Contents

Acknowledgments		<i>page</i> xiii	
Ι	I Introduction		
1	Size, energy, cross section		5
	1.1	Units	5
	1.2	Planck constant	6
	1.3	Electromagnetic units	6
	1.4	Coupling constants	12
	1.5	Atomic energy scales	12
	1.6	Atomic size	15
	1.7	Atomic spin effects	17
	1.8	Cross section and mean free path	17
	1.9	Partial waves and differential cross section	19
	1.10	Nuclear scales of energy and size	22
	1.11	Nuclear cross section	23
	1.12	Photon cross section	25
		Exercises	27
		References	28
Π	Non-	destructive measurements	29
IIA	Time	and velocity	29
2 The photoelectric effect, photomultipliers, scintillators		31	
	2.1	Interaction Hamiltonian	31
	2.2	Transition amplitude and cross section	32
	2.3	The angular distribution	38
	2.4	The photomultiplier tube	38
	2.5	Time of flight	39
	2.6	Scintillators and light collection	41
	2.7	Gain and time structure	43
	2.8	Wavelength shifting	47

viii		Contents	
	2.9	Coincidence logic and deadtime	50
		Exercises	53
		References	53
3	Cerenk	tov radiation	55
	3.1	Units	55
	3.2	Index of refraction	58
	3.3	Optical theorem	59
	3.4	Conducting medium and skin depth	59
	3.5	Plasma frequency	61
	3.6	Two 'derivations' of the Cerenkov angle	62
	3.7	A 'derivation' of the frequency spectrum	69
	3.8	Examples and numerical values	70
		Exercises	73
		References	74
4	Transit	tion radiation	75
	4.1	Cerenkov radiation for a finite length radiator	75
	4.2	Interference effects	77
	4.3	The vacuum phase shift	79
	4.4	The frequency spectrum	79
	4.5	Dependence on γ and saturation	81
	4.6	TRD foil number and thickness	83
	4.7	TRD data	85
		Exercises	85
		References	87
IIB	Scatter	ing and ionization	89
5	Elastic	electromagnetic scattering	91
	5.1	Single scattering off a nucleus	91
	5.2	The scattering cross section	93
	5.3	Feynman diagrams	94
	5.4	Relativistic considerations	95
	5.5	Multiple scattering	96
	5.6	The radiation length	97
	5.7	Small angle, three dimensional multiple scattering	98
	5.8	Maximum momentum transfer	100
	5.9	Energy transfer	103
	5.10	Delta rays	103
	5.11	Other force laws	104
		Exercises	105
		References	105

		Contents	ix
6	Ioniza	tion	106
	6.1	Energy loss	106
	6.2	Minimum ionizing particle	107
	6.3	Velocity dependence	108
	6.4	Range	111
	6.5	Radioactive sources	115
	6.6	The logarithmic dependence and relativistic rise	117
	6.7	Fluctuations	119
	6.8	The critical energy	121
		Exercises	125
		References	125
IIC	Positic	on and momentum	127
7	Magnetic fields		129
	7.1	Solenoidal fields	129
	7.2	Dipole fields – fringe fields	130
	7.3	Particle motion in a uniform field	133
	7.4	Momentum measurement and error	135
	7.5	Exact solutions - Cartesian and cylindrical coordinates	138
	7.6	Particle beam and quadrupole magnets	140
	7.7	The quadrupole doublet	146
		Exercises	148
		References	150
8	Drift a	and diffusion in materials, wire chambers	151
	8.1	Thermal and drift velocity	151
	8.2	Mobility	153
	8.3	Pulse formation in 'unity gain' detectors	154
	8.4	Diffusion and the diffusion limit	158
	8.5	Motion in E and B fields, with and without collisions	161
	8.6	Wire chamber electrostatics	165
	8.7	Pulse formation in a wire chamber	167
	8.8	Mechanical considerations	169
	8.9	The induced cathode signal	172
		Exercises	175
		References	175
9	Silicor	n detectors	177
	9.1	Impact parameter and secondary vertex	177
	9.2	Band gap, intrinsic semiconductors and ionization	181
	9.3	The silicon diode fields	182
	9.4	The silicon diode: signal formation at depletion	186

х		Contents	
	95	Noise sources – thermal and shot noise	190
	9.6	Filtering and the 'equivalent noise charge'	194
	9.7	Front end transistor noise	196
	9.8	Total noise charge	197
	9.9	Hybrid silicon devices	199
		Exercises	200
		References	201
II	I Dest	tructive measurements	203
IIIA	A Radi	iation	203
10	Radiat	tion and photon scattering	205
	10.1	Non-relativistic radiation	205
	10.2	Thomson scattering	207
	10.3	Thomson scattering off objects with structure	209
	10.4	Relativistic photon scattering	210
	10.5	Compton scattering	211
	10.6	Relativistic acceleration	213
	10.7	Circular and linear acceleration	216
	10.8	Angular distribution	217
	10.9	Synchrotron radiation	219
	10.10	Synchrotron applications	221
	10.11	Photon emission kinematics	224
	10.12	Photon frequency spectrum	224
	10.13	Bremsstrahlung and pair production	225
	10.14	The radiation length	227
	10.15	Pair production by photons	229
	10.16	Pair production by charged particles	230
	10.17	Strong and electromagnetic interaction probabilities	231
		Exercises	231
		References	232
	B Ener	gy measurements	235
11	Electro	omagnetic calorimetry	237
	11.1	Radiation length and critical energy	237
	11.2	The electromagnetic cascade	238
	11.3	Energy – linearity and resolution	241
	11.4	Profiles and single cascades	243
	11.5	Sampling devices	245
	11.0	runy active devices	24/
	11./	Iransverse energy now	251
	11.8	Calibration methods	254
		Exercises Deferences	200
		References	257

		Contents	xi
12	Ha	dronic calorimetry	258
	12.	1 Properties of single hadronic interactions	259
	12.2	2 The hadronic cascade – neutrals	262
	12.	3 Binding energy effects	264
	12.4	4 Energy resolution	266
	12.	5 Profiles and single cascades	268
	12.	6 <i>e</i> / <i>h</i> and the 'constant term'	273
	12.	7 Transverse energy flow	278
	12.	8 Radiation damage	280
	12.	9 Energy leakage	281
	12.	10 Neutron radiation fields	284
	12.	11 Neutron detection	286
		Exercises	288
		References	289
IV	Th	e complete set of measurements	291
13	Sur	nmary	293
	13.	1 Fundamental particles	293
	13.	2 Detection of fundamental particles	294
	13.	3 General purpose detectors	298
	13.4	4 The jumping off point	300
		References	301
	Apj	pendices	303
	А	Kinematics	305
	В	Quantum bound states and scattering cross section	311
	С	The photoelectric effect	317
	D	Connecting cables	320
	Е	The emission of Cerenkov radiation	324
	F	Motion in a constant magnetic field	328
	G	Non-relativistic motion in combined constant E and B fields	331
	Η	Signal generation in a silicon diode for point ionization	333
	Ι	Ideal operational amplifier circuits	336
	J	Statistics introduction	342
	K	Monte Carlo models	348
		Glossary of symbols	353
		Index	357

Acknowledgments

This book represents a distillation of 30 years of experimental experience. The author cannot possibly individually acknowledge all the colleagues who 'taught him the business' of experimental high energy physics. Suffice it to say that he is indebted to a multitude. The input of the students who were subjected to lectures consisting of parts of this text was often incisive and thought provoking. The enthusiasm and dedication of Ms. Terry Grozis in assembling the final document from inaudible tapes, scraps of paper and marginal digressions were also of inestimable value. Dr. John Womersley and Dr. Adam Para are thanked for a critical reading of the text and for valuable suggestions. Finally, the students subjected to a full course of lectures in the summer of 1997 gave very valuable criticism.