
Cambridge University Press & Assessment
978-0-521-67506-2 — Permutation Groups and Cartesian Decompositions
Cheryl E. Praeger, Csaba Schneider 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1

Introduction

1.1 Construction and decomposition

Mathematical thinking has an interesting duality reflected in its funda-

mental techniques: constructing and decomposing. Whereas construc-

tion methods provide a means for producing larger objects from smaller

ones, decomposition theorems enable us to identify the basic or irre-

ducible blocks from which general mathematical structures can be ob-

tained. A combination of these two methods usually leads to an under-

standing of how complicated objects are constructed from their building

blocks. Perhaps the simplest example is in the category of sets. In this

category we can construct a new set from given ones by taking their

co-product, that is, their disjoint union. We can also easily decompose

any given set as a co-product of smaller sets by identifying a partition.

Similarly, in a first course on group theory, we teach the (external) direct

product construction along with the criteria for identifying an (internal)

direct product decomposition.

These algebraic and set theoretic examples are brought together in

the study of group actions. A general construction for permutation

groups takes two groups G and H acting on disjoint sets Γ and Δ and

produces a permutation group isomorphic to G×H acting on the union

Γ ∪ Δ. Using a more complicated method we may construct the wreath

product G ı Sk acting on the disjoint union of k copies of the set Γ (see

Section 5.2.1). Conversely, a first analysis of a permutation group G on a

set Γ identifies the partition of Γ given by the G -orbits, and determines

G as a subgroup of the direct product of the transitive permutation

groups induced on these G -orbits (see Section 2.1). In this way, the

class of permutation groups can be understood by focusing on the smaller

class of transitive groups, and the subgroups of their direct products. In
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Introduction 2

turn, many questions concerning transitive groups can be answered via

a reduction to primitive groups, that is, to groups for which the point

set has no non-trivial invariant co-product decomposition. Thus the co-

product object of sets (that is, partitions of sets) serves as a very useful

tool in the theory of permutation groups.

Equally important in the category of sets is the product object, which

is the cartesian product. As above, there is a permutation group con-

struction that, given groups G and H acting on Γ and Δ, respectively,

returns a group isomorphic to G × H acting on Γ × Δ. Moreover, the

wreath product G ı Sk also acts on Γk in its product action (see Sec-

tion 5.2.2). This product action plays a very important role in the theory

of primitive groups. For example, one interpretation of the O’Nan–Scott

Theorem for finite primitive permutation groups is that there are four

fundamental types of finite primitive groups and all others arise as sub-

groups of wreath products G ı Sk in product action where G is a fun-

damental primitive group. These four fundamental types also occur as

maximal subgroups in finite symmetric and alternating groups; see The-

orem 7.11. The O’Nan–Scott Theorem (see Chapter 7) has provided

the most useful modern method for identifying the possible structures

of finite primitive groups and is now used routinely for their analysis.

Thus a cartesian decomposition concept, complementing the cartesian

product construction, should play an important role in the study of

permutation groups, especially in that of the finite primitive ones. It

is therefore surprising that there is no widely used such cartesian de-

composition concept. Instead, mathematicians usually work their way

around introducing one, and this can lead to imprecise and inadequate

treatment of groups acting in product action.

In our work we show how a properly defined cartesian decomposi-

tion concept leads to a new way of analysing (not necessarily finite)

transitive permutation groups by decomposing them with respect to in-

variant cartesian decompositions of the point set. This leads to a new

theory for the class of permutation groups with a transitive minimal

normal subgroup. This theory is particularly powerful in the case when

the minimal normal subgroup is of the form T
k for a simple group T

and a positive integer k ; in particular, this smaller class contains all

finite primitive groups. The cartesian decomposition concept we use in

this book first appeared in the paper by L. G. Kovács (Kovács 1989b)

and was used to identify wreath decompositions of permutation groups.

Kovács used the name system of product-imprimitivity for this concept,

but we find the name cartesian decomposition more descriptive. Carte-
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3 1.2 Cartesian decompositions

sian decompositions are exploited to deepen the current understanding

of permutation groups contained in wreath products in product action.

We demonstrate, in the finite case, that the study of cartesian decom-

positions combined with certain facts about finite simple groups, which

depend on the finite simple group classification, leads to an unexpect-

edly detailed description of permutation groups that act on cartesian

products. In particular, this description sheds new light on the the-

ory of primitive permutation groups and also on the larger families of

quasiprimitive and innately transitive permutation groups introduced in

Section 1.3. It also applies, for example, to infinite primitive and quasi-

primitive permutation groups with finite stabilisers; see Theorems 3.18

and 7.9.

1.2 Cartesian decompositions

To introduce the intuitive idea behind cartesian decompositions, con-

sider the following example. In the three-dimensional coordinate system,

the set C of points

{(x1, x2, x3) | x1, x2, x3 ∈ {0, 1}}

forms a cube. The cube C lives in a 3-dimensional space and it can

be bisected in three different ways using planes parallel to the three

fundamental planes of the coordinate system. For example, four of the

8 points lie on the plane defined by the equation x1 = 0 and four lie

on the plane with equation x1 = 1, and this gives the first partition.

Similarly, the second partition is determined by the planes with equa-

tions x2 = 0 and x2 = 1, and the third partition is determined by the

equations x3 = 0 and x3 = 1. Let us denote these partitions by Γ1 ,

Γ2 , and Γ3 , respectively. Then

Γ1 = {{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)},

{(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}};

Γ2 = {{(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)},

{(0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1)}};

Γ3 = {{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)},

{(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)}}.
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Introduction 4

In other words, the partition Γi divides the vertices of the cube C into

two blocks according to the i-th coordinate.

We note that the first coordinate of a point is determined by its block

in the first partition, and similarly its second and third coordinates

are determined by its blocks in the second and the third partitions,

respectively. Since each point is determined by its three coordinates

we see that the intersection of three blocks, one from each of the three

different Γi , has size one. In other words,

|γ1 ∩ γ2 ∩ γ3| = 1 whenever γ1 ∈ Γ1, γ2 ∈ Γ2, γ3 ∈ Γ3.

This motivates the definition of a cartesian decomposition.

Definition 1.1 A cartesian decomposition, E , of a set Ω is a finite set

of partitions, E = {Γ1, . . . , Γℓ} , of Ω such that |Γi| � 2 for each i and

|γ1 ∩ · · · ∩ γℓ| = 1 for each γ1 ∈ Γ1, . . . , γℓ ∈ Γℓ.

A cartesian decomposition is said to be trivial if it contains only one par-

tition, namely the partition into singletons. A cartesian decomposition

is said to be homogeneous if all the Γi have the same cardinality.

If {Γ1, . . . , Γℓ} is a cartesian decomposition of a set Ω, then the defin-

ing property yields a well defined bijection between Ω and Γ1 ×· · ·×Γℓ ,

given by

ω �→ (γ1, . . . , γℓ) (1.1)

where, for i = 1, . . . , ℓ , the block γi ∈ Γi is the unique block of Γi

which contains ω . Thus the set Ω can be naturally identified with the

cartesian product Γ1 × · · · × Γℓ .

Let us now turn back to the example given before Definition 1.1, and

view the cube C as a graph in which two vertices are joined if and only

if they only differ in one position. Let W denote the wreath product

of the cyclic group of order 2 and the symmetric group of degree 3.

That is, W = C2 ı S3 = (C2 × C2 × C2) ⋊ S3 and W is a group of

order 48. The group W acts on C as follows. Set B = C2 × C2 × C2

and let x = (x1, x2, x3) ∈ C . The first copy of C2 in B flips the

first coordinate of x (that is, interchanges 0 and 1), the second copy

of C2 flips the second coordinate, while the third copy flips the third

coordinate. The group S3 permutes the coordinates of x naturally. Easy

consideration shows that each element of W is an automorphism of this

‘cube graph’, and simple graph theoretic consideration shows that W is
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5 1.3 Cartesian factorisations

the full automorphism group of C . This example illustrates the strong

relationship between wreath products and cartesian decompositions. In

fact, the observations we made in this simple example are generalised

in Section 12.2 where we will study the general relationship between

cartesian products of graphs and cartesian decompositions.

1.3 Cartesian factorisations

As mentioned in Section 1.1, modern studies of finite primitive permu-

tation groups identified groups preserving cartesian decompositions as

having fundamental significance for a theory of primitive groups, espe-

cially in the O’Nan–Scott Theorem. They are of similar importance

in studying larger families of permutation groups such as quasiprimitive

groups and innately transitive groups. A permutation group is said to be

quasiprimitive if all its non-trivial normal subgroups are transitive and

it is called innately transitive if it has a transitive minimal normal sub-

group. Hence every primitive group is quasiprimitive (Corollary 2.21),

and every finite quasiprimitive group is innately transitive. Moreover, for

a finite group, a minimal normal subgroup is a direct product of finitely

many copies of a simple group (see Lemma 3.14). We consider finite

and infinite innately transitive groups with a minimal normal subgroup

of this kind. The purpose of this book is to present a theory of carte-

sian decompositions that are invariant under the action of such a group,

and to use it to present characterisations of the primitive, quasiprimit-

ive, and innately transitive groups having a minimal normal subgroup

of this form. We will also apply this theory in various group theoretic

and combinatorial contexts.

A central problem we wish to solve is the following.

For a given innately transitive group, decide if the group

action can be realised on a non-trivial cartesian product of

smaller sets; that is, decide if the group leaves invariant a

non-trivial cartesian decomposition.

Our approach involves a mixture of combinatorial and group theoretic

methods. The example of the cube in the previous section shows that

cartesian decompositions sometimes arise naturally. However, they are

not always so easy to recognise, and the following example shows that

the structure of the acting group may help in finding invariant cartesian

decompositions of the underlying set. We use the primitive subgroup

G = Aut(A6) ∼= PΓL2(9) of S36 for illustration. The socle T of this
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Introduction 6

group is isomorphic to A6 . The reason why G acts on a cartesian

product Γ × Γ, with |Γ| = 6, is that T has two subgroups A and B ,

both isomorphic to A5 , such that A ∩ B is a point stabiliser Tω , the

subgroup Gω swaps A and B , and T can be factorised as T = AB .

Since invariant partitions of the point set correspond to overgroups of

the point stabiliser (Lemma 2.14), the socle T preserves two partitions

Γ1, Γ2 of the point set that are orthogonal in the sense that γ1 ∩ γ2 is

a singleton for all γ1 ∈ Γ1 and γ2 ∈ Γ2 . In other words, the underlying

set of G can be naturally identified with the cartesian product Γ1 × Γ2 .

Further, as Gω swaps A and B , Gω also swaps these partitions. Hence

the group G = TGω can also be viewed as a permutation group acting

on the cartesian product Γ1 × Γ2 .

This example suggests that we may be able to solve our original prob-

lem by studying certain partitions of the point set invariant under a

suitable minimal normal subgroup, and, in turn, such partitions may be

pinpointed by understanding the factorisations of this minimal normal

subgroup.

In this book, after giving a thorough treatment of the fundamental

theory of permutation groups (of arbitrary cardinality), we focus on per-

mutation groups G with a minimal normal subgroup M that is transi-

tive on the underlying point set Ω. In other words, we focus on innately

transitive permutation groups. Such a subgroup M is called a plinth of

G , and is characteristically simple. One of our more fundamental results

shows that each partition in a G -invariant cartesian decomposition of Ω

is M -invariant (Theorem 8.3). In order to find M -invariant partitions

of the point set Ω that form a G -invariant cartesian decomposition, we

study the overgroups of a fixed point stabiliser in M . We show in The-

orem 8.2 that if {Γ1, . . . , Γℓ} is a G -invariant cartesian decomposition

of Ω, γ1 ∈ Γ1, . . . , γℓ ∈ Γℓ , and {ω} = γ1 ∩ · · · ∩ γℓ , then

ℓ
⋂

i=1

Mγi
= Mω and Mγi

⎛

⎝

⋂

j �=i

Mγj

⎞

⎠ = M for all i ∈ {1, . . . , ℓ}. (1.2)

The collection of subgroups Mγj
satisfying (1.2) is called a cartesian

factorisation † of M , and is studied in Chapter 8. The set {A, B} of

subgroups of T = A6 identified in the example presented above is a

† Cartesian factorisations were referred to as cartesian systems of subgroups in
our earlier papers (Baddeley, Praeger & Schneider 2004a, Baddeley, Praeger
& Schneider 2004b, Baddeley, Praeger & Schneider 2006, Baddeley, Praeger &
Schneider 2007, Praeger & Schneider 2007, Baddeley, Praeger & Schneider 2008,
Praeger & Schneider 2012).
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7 1.3 O’Nan–Scott Theories

cartesian factorisation for A6 . Looking at the last displayed equation,

it is clear that in order to find G -invariant cartesian decompositions of

Ω, we need to study factorisations of the characteristically simple group

M . This study is carried out under the stronger condition that M is

a direct product M = T1 × · · · × Tk where the Ti are simple groups.

Hence we introduce the following definition.

Definition 1.2 A group M is said to be FCR (finitely completely re-

ducible) if M can be written as a direct product M = T1×· · ·×Tk where

the Ti are simple groups. We sometimes say that M is an FCR-group.

Note that a finite characteristically simple group is FCR (Lemma 3.14)

and so is a minimal normal subgroup of an infinite quasiprimitive per-

mutation group with finite stabilisers (Theorem 3.18). In a finite FCR-

group, the factors Ti are finite simple groups, and the machinery pro-

vided by the finite simple group classification is available for our use. In

particular, using the available knowledge on factorisations of finite sim-

ple groups (Liebeck, Praeger & Saxl 1990, Baddeley & Praeger 1998),

the factorisations occurring in relation to cartesian decompositions of

finite sets can be characterised. Moreover, using this characterisation,

in the most interesting cases, the G -invariant cartesian decompositions

can be described (see Theorems 8.17, 9.7, 10.13).

1.4 Primitive, quasiprimitive and innately transitive groups:

‘O’Nan–Scott theories’

One of the most important outcomes of studying invariant cartesian de-

compositions is a better understanding of the O’Nan–Scott theory of

primitive, quasiprimitive and innately transitive groups. The primitive

permutation groups on a set Ω are those which leave invariant only the

trivial partitions of Ω: the partition in which each part consists of a sin-

gle point, and the partition with just one part. Since the early 1980s the

study of finite primitive permutation groups has been transformed by

the O’Nan–Scott Theorem which identifies several types of finite prim-

itive groups, and asserts that each finite primitive group is of one of

these types. Proofs of the O’Nan–Scott theorem for finite primitive per-

mutation groups can be found in (Scott 1980, Aschbacher & Scott 1985,

Kovács 1986, Buekenhout 1988, Liebeck, Praeger & Saxl 1988) and more

detailed treatments of it in (Dixon & Mortimer 1996, Cameron 1999).

Cameron’s approach (Cameron 1999) strongly influenced the exposi-
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tion in this book. He divides the finite primitive groups into two families:

the groups in the first family are called the basic groups, and the other

family is formed by the non-basic primitive groups. In Cameron’s ter-

minology, a basic group is one that cannot be embedded into a wreath

product. This definition of basic groups led to a slight inaccuracy in his

treatment of primitive groups. Namely, Cameron treats almost simple

groups as basic, even though PΓL2(9), for instance, acting primitively

on 36 points, as considered in Section 1.3, preserves a non-trivial homo-

geneous cartesian decomposition, and hence it can be embedded into a

wreath product in product action. Nevertheless, it is true, and a useful

fact, that each finite primitive permutation group is either basic, or a

subgroup of a wreath product H ı Sk in product action on Γk , where

H is a basic primitive group on Γ. The latter situation is equivalent

to the existence of a non-trivial homogeneous cartesian decomposition

preserved by the group. In this book we focus on this situation, but we

extend our scope to the class of (possibly infinite) groups that have a

transitive minimal normal subgroup.

Much recent work on finite primitive permutation groups concen-

trated on understanding the basic groups, especially those related to

non-abelian simple groups and to irreducible representations of finite

groups. This information together with the wreath product construc-

tion leads to the solution of many problems in algebra, number theory

and combinatorics. However, for some applications, detailed information

is needed on precisely which subgroups of a wreath product H ı Sk with

H primitive on Γ, are themselves primitive on Γk . The seminal paper

of Kovács (Kovács 1989a) introduced the concept of a ‘blow-up’ of a

primitive group and provided criteria for identifying such subgroups for

almost all types of primitive groups H . Moreover, this led, in 1990, to a

classification (Praeger 1990) of all embeddings of finite primitive groups

into wreath products in product action; that is, a classification of all ho-

mogeneous cartesian decompositions invariant under primitive groups.

In his study of the finite lattice representation problem (see (Pálfy &

Pudlák 1980)), Aschbacher (Aschbacher 2009a, Aschbacher 2009b) ad-

dressed the same questions and obtained a similar solution.

We extend Kovács’s blow-up concept to a larger class of permutation

groups in Section 11.1.

The product action of a wreath product was also a pivotal concept in

describing finite quasiprimitive groups, a strictly larger class of groups

than that of the primitive groups, and one which arises naturally in

many combinatorial applications. The term was coined in the 1970s by
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9 1.4 O’Nan–Scott Theories

Wielandt (private communication from W. Knapp to the first author

in January 1994) and first appeared in print in works of Knapp (for

example in (Knapp 1973)). In fact Peter Neumann’s critical analysis

of the 2eme Mémoire of Évariste Galois, in (Neumann 2006), suggests

that the ‘primitive’ permutation groups Galois studied in the early 19th

century were in fact the quasiprimitive groups.

To date a great many applications of group theory in combinatorics

and other subjects have depended upon a reduction to a case involv-

ing a primitive permutation group. However such a reduction is not

always possible. The first author consequently initiated an investiga-

tion into the suitability of quasiprimitivity, rather than primitivity, as

a reduction tool in applications of group theory. This investigation was

two-pronged; it involved, on the one hand, an attempt to understand

quasiprimitive permutation groups in a purely group-theoretic setting,

and on the other, it also involved several applications of quasiprimitivity

to classification problems for combinatorial structures, such as incidence

geometries (Cara, Devillers, Giudici & Praeger 2012), line-transitive lin-

ear spaces (Camina & Praeger 2001), k -arc transitive graphs (Ivanov &

Praeger 1993, Baddeley 1993b, Fang 1995, Li 2001, Hassani, Nochefranca

& Praeger 1999, Praeger 1993), k -arc-transitive Cayley graphs (Li 2005),

locally primitive graphs (Praeger, Pyber, Spiga & Szabó 2012), lo-

cally quasiprimitive graphs (Li, Praeger, Venkatesh & Zhou 2002), and

strongly regular edge-transitive graphs (Morris, Praeger & Spiga 2009).

Understanding finite quasiprimitive groups in sufficient detail for these

applications (for example, to identify the full automorphism groups of

these combinatorial structures) requires thorough knowledge of the set

of primitive and quasiprimitive overgroups of a given quasiprimitive sub-

group of the full symmetric group, a problem addressed in work of the

first author and R. W. Baddeley (Baddeley & Praeger 2003). If such a

subgroup preserves a non-trivial cartesian decomposition, then the full

stabiliser of this decomposition, which is a wreath product in product

action, is a natural overgroup. It turns out that the best way to find

such overgroups is to locate the corresponding invariant cartesian de-

compositions.

Quasiprimitivity may be equivalently defined for finite groups as the

requirement that all minimal normal subgroups are transitive. Weaken-

ing this to the requirement that at least one minimal normal subgroup

is transitive gives the larger family of innately transitive groups. An

‘O’Nan–Scott theory’ of finite innately transitive permutation groups

was developed by Bamberg and the first author (Bamberg 2003, Bam-
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berg & Praeger 2004). Applications of this theory also require detailed

knowledge of homogeneous cartesian decompositions left invariant by

these groups.

Our current knowledge of finite primitive permutation groups is very

strong, because not only do we have the O’Nan–Scott Theorem, which

divides the primitive permutation groups into families according to the

action and the structure of the socle, but we also have available a de-

scription which divides the primitive permutation groups into families

according to the nature of their primitive overgroups, and most signif-

icantly we know that these two descriptions are essentially the same

(Praeger 1990). Information concerning both the socle and all over-

groups is central to our understanding of primitive permutation groups.

This book attempts to advance our understanding of innately transitive

and quasiprimitive permutation groups in a similar fashion by analysing

such groups from both viewpoints and we do this for the family of (pos-

sibly infinite) groups with an FCR-plinth. Indeed, the quasiprimitive

version of the O’Nan–Scott Theorem (Praeger 1993) reaches its weakest

conclusions when considering finite quasiprimitive permutation groups

G whose socle M is a minimal normal subgroup of G and is such

that a point stabiliser Mα in M is neither trivial nor projects onto

each minimal normal subgroup of M (see Section 7.5). (This is case

III(b)(i) in the terminology of (Praeger 1993), and case Pa in (Baddeley

& Praeger 2003).) For primitive groups the analogous case corresponds

essentially to those primitive permutation groups that arise as subgroups

of wreath products in product action. It is to be hoped that the over-

group viewpoint can shed more light on this problematic case.

The theory of invariant cartesian decompositions is also useful for

studying certain problems in geometry and combinatorics. For exam-

ple, Baumeister (Baumeister 1997) determined the class of finite two-

dimensional grids in which the stabiliser of one of the parallel classes

of lines acts primitively on this class. Applying the theory of cartesian

decompositions can give a new proof of Baumeister’s results, and can

extend them to results on flag-transitive multi-dimensional grids with

an automorphism group innately transitive on the vertices.

Wreath products and cartesian decompositions also play a role in

the reduction theorem for finite primitive distance transitive graphs

in (Praeger, Saxl & Yokoyama 1987). The automorphism group of such

a graph is either almost simple, or affine, or a wreath product in product

action preserving a cartesian decomposition (as, for instance, with the
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