
CHAPTER 1

Finite Groups of Lie Type

We begin with a brief review of the standard ways in which finite groups of Lie
type are classified, constructed, and described. One complication is the multiplicity
of approaches to describing this family of groups, which leads in turn to differing
notational conventions in the literature. Our viewpoint will be mainly that of alge-
braic groups over finite fields (1.1), reformulated in terms of Frobenius maps (1.3).
But occasional use will be made of the convenient axiomatic approach afforded by
BN -pairs: see 1.7 and Chapter 7 below.

Even within the framework of algebraic groups, there is more than one way
to organize the finite groups. Steinberg’s unified description of the groups as fixed
points of endomorphisms of algebraic groups is undoubtedly the most elegant and
useful. However, in our treatment of modular representations it will be convenient
to keep the groups of Ree and Suzuki (defined only in characteristic 2 or 3) largely
separate from the other groups: see Chapter 20. These groups arise less directly
from the ambient algebraic groups and of course do not exhibit any “generic”
behavior for large primes p as other groups of Lie type do.

To conclude this introductory chapter we establish in 1.8 some standard nota-
tion.

1.1. Algebraic Groups over Finite Fields

The finite groups of Lie type are close relatives of the groups G(k) of rational
points of algebraic groups defined over a finite field k. Here G is an affine variety
with group operations given by regular functions, identified with its points over
an algebraically closed field K. When the subfield k is perfect, G is defined over
k precisely when it is the common set of zeros of a family of polynomials with
coefficients in k. A standard example is the special linear group SL(n, K), which is
defined over the prime field in K.

Here we recall some essential facts, referring to several textbooks for details:
Borel [55, §16], Humphreys [220, §34–35], Springer [385]. Using a basic theorem
of Lang (see 1.4 below), one shows without too much difficulty:

Theorem. Let k be a finite field having q = pr elements and let G be any
connected algebraic group defined over k. Then:

(a) G is quasisplit, meaning it has a Borel subgroup defined over k. More-
over, all such Borel subgroups are conjugate under G(k).

(b) G has a maximal torus T defined over k, which lies in a Borel subgroup
B defined over k. Here B = T � U, with U the unipotent radical of B.

(c) Given an isogeny ϕ (an epimorphism with finite kernel) from G onto
another connected algebraic group H over k, the finite groups G(k) and
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2 1. FINITE GROUPS OF LIE TYPE

H(k) have the same order even though the map G(k) → H(k) induced by
ϕ need not be surjective.

While the proof of part (c) involves some algebraic geometry, the coincidence
of orders can be verified directly in special cases. Consider for example the isogeny
SL(n, K) → PGL(n, K) obtained by restricting the natural map GL(n, K) →
GL(n, K)/K× = PGL(n, K) (where K× is identified with scalar matrices). Taking
G = GL(n, k), note that det : G → k× is surjective and has kernel SL(n, k), while
the surjective map G → G/k× = PGL(n, k) has kernel k×. Thus |SL(n, k)| =
|PGL(n, k)|.

Our main concern is with connected groups, though some nonconnected ones
(such as normalizers of maximal tori or centralizers of arbitrary elements in reduc-
tive groups) also occur naturally. While any finite linear group over a finite field
may be regarded as an algebraic group, the Borel–Tits structure theory essentially
relies on connectedness assumptions.

We take as background the standard theory exposed in the texts mentioned
above (and used heavily by Jantzen in [RAGS]). This focuses on a connected re-
ductive group G such as GL(n, K), whose derived group is connected and semisim-
ple. In turn, such a semisimple group decomposes as the almost-direct product of
simple algebraic groups (having no proper connected normal algebraic subgroups).
Chevalley’s classification of these simple groups shows that they fall into essentially
the same families over K as over C.

Each simple algebraic group has a Lie type A–G (indexed by the rank � =
dimT) and corresponding root system Φ. But within each type there may be
several distinct groups. There is always a simply connected group G and an
adjoint group isomorphic to G modulo its finite center. There may also be inter-
mediate groups: quotients of G by central subgroups. The simply connected group
is equal to its derived group, while its center is naturally isomorphic to the quotient
of the weight lattice X by the root lattice ZΦ.

1.2. Classification Over Finite Fields

The classification of the groups G(k) when G is a simple algebraic group defined
over a finite field k begins with the fact (based on Lang’s Theorem) that G is

k. If moreover G has a k-split maximal torus (isomorphic over k to
a product of copies of the multiplicative group), then G is called split over k,
otherwise nonsplit. Split groups exist for all Lie types, but nonsplit groups only
for types A� (with � > 1), D� (with � ≥ 4), and E6. This classification was worked
out independently by Hertzig, Steinberg, and Tits, mainly in the framework of
Galois cohomology.

While there are strikingly close parallels in the structure and representations
of split and nonsplit groups of the same type over Fq, the split groups are usually
much easier to work with. For example, the important subgroups of G defined over
Fq play a similar role in the structure of G(k): maximal tori, Borel subgroups,
root groups, etc. But for a nonsplit group there are added complications in the
description of tori and root groups. It is common in the literature to find separate
treatments of split and nonsplit cases.

A further complication is that within most Lie types there are several distinct fi-
nite groups, as in the algebraic group classification: for example, SL(n, q), PGL(n, q),
and PSL(n, q) are all of type An−1. When G is simply connected as in the case

quasisiplit over
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1.3. FROBENIUS MAPS 3

of SL(n, K), one usually calls the finite group G(k) universal. (We remark that
Schmid [358] proposes a broader concept of “universal” group for arbitrary root
systems.)

To show that finite groups of all possible Lie types actually exist, it is efficient
to follow Chevalley’s uniform method (recalled in 1.5 below). For classical types A–
D, one can instead make identifications with known classical matrix groups over k.
A careful review of the concrete descriptions of classical groups over finite fields can
be found in the Atlas [117, Chap. 2].

The reader should be cautioned that varying notational schemes are found in
the literature. For example, the notation SU(n, q) is used here for the subgroup of
GL(n, q2) which is often denoted more literally as SU(n, q2). Our choice emphasizes
the close parallel between SL(n, q) and SU(n, q), seen in their order formulas and
representation theories. More functorial notation such as SLn(Fq) or SLn(q) is also
widely used.

In dealing with modular representations in the defining characteristic, it is
convenient to work in the setting of simply connected simple algebraic groups. Here
the main unsolved problems about characters and dimensions can be formulated
efficiently in the language of weights. To make the transition to closely related
groups such as quotients by central subgroups and their derived groups, one has to
use standard representation-theoretic techniques unrelated to Lie theory. Usually
this is routine for the problems we study here. But in some situations the transition
can be delicate, as seen for example in the work of Lusztig and others on ordinary
characters. (It is instructive to study the organization of character tables for families
of related groups in the Atlas [117].)

Sometimes it is more natural to study arbitrary semisimple groups, or reductive
groups such as GL(n, K) which are not semisimple. Though we typically formu-
late results only for simple algebraic groups, the reader should be aware of a few
complications. For example, the algebraic group PGL(n, K) = GL(n, K)/K× is
isomorphic to the simple adjoint group of type An−1, which over an algebraically
closed field is the same as PSL(n, K). However, over a finite subfield there is usually
a difference between the group PGL(n, k) and its subgroup PSL(n, k), the latter
typically being the derived group of the former and having index equal to the order
of the group of nth roots of 1 in k×.

1.3. Frobenius Maps

The algebraic group approach does not directly yield the groups of Suzuki and
Ree. To unify the description of all finite groups of Lie type, Steinberg [395] studied
an arbitrary algebraic group endomorphism σ : G → G whose group of fixed points
Gσ is finite. Here G is defined and split over Fq. The most basic example is the
standard Frobenius map relative to q = pr: if G is given explicitly as a matrix
group, this map just raises each matrix entry to the qth power. (The map can
be described intrinsically in terms of the algebra of regular functions on G.) The
resulting finite group of fixed points coincides with the group of rational points
G(Fq).

More complicated endomorphisms are obtained by composing the standard
Frobenius map relative to q with a nontrivial graph automorphism π arising from a
symmetry of the Dynkin diagram of G. (These maps commute.) The only simple
groups with a nontrivial graph automorphism are those of types A� (with � > 1),
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4 1. FINITE GROUPS OF LIE TYPE

D� (for � ≥ 4), and E6. Type D4 is unusual in having such automorphisms of
both order 2 and order 3. The group of fixed points is isomorphic to the group
of rational points over Fq of a quasisplit but nonsplit group of the same type as
G. For example, one gets SU(3, q) rather than SL(3, q) from the ambient algebraic
group SL(3,K). Note that the square or cube of the endomorphism is the standard
Frobenius map relative to q.

In each of these cases the endomorphism G → G characterizes the Fq-structure
of G. Following current usage, we denote the map by F and call it a Frobenius
map relative to pr (and π if a nontrivial graph automorphism is involved). Write
G := GF for the finite group of fixed points of F .

For groups with root systems of types B2, F4, G2, more exotic endomorphisms
of G can be constructed, yielding the groups of Suzuki in type B2 and Ree in types
F4 and G2. (See 5.3 and Chapter 20 for further details.) One combines selective
qth powers with graph symmetries interchanging long and short root subgroups.
More precisely, let q = p2r+1 be an odd power of p = 2 for types B2 and F4 (resp.
p = 3 for type G2), and assume G is defined over Fq (hence split). Then let α �→ α
interchange short and long roots as a graph automorphism would do with lengths
ignored. Map an element xα(c) of a root subgroup Uα to xα(c′), where c′ := cpr

if α

is long and c′ := cpr+1
if α is short. For the chosen p this defines an endomorphism

of G whose square is just the standard Frobenius map corresponding to q. (Some
authors call this type of endomorphism a “Frobenius map”, but we do not.)

The upshot of Steinberg’s analysis is that these are the only possible endomor-
phisms of G having a finite fixed point subgroup. The language of Frobenius maps
is used systematically (but with some variation in the definition) in most current
work. See for example Cabanes–Enguehard [78], Carter [86, 14.1], Digne–Michel
[134, Chap. 3], Geck [184], Gorenstein–Lyons–Solomon [190, 2.1].

1.4. Lang Maps

The basic theorem of Lang mentioned earlier can be reformulated for a con-
nected algebraic group G defined over Fq in the more general form suggested by
Steinberg [395, §10]. Starting with a Frobenius map F : G → G relative to q,
the associated Lang map L : G → G is defined by L(g) = F (g)g−1. Then the
theorem states that L is surjective. Here F may be standard or may (in case G is
reductive) involve also a graph automorphism.

In the literature there are several variants of the definition of L using different
left–right conventions, for example, g �→ g−1F (g) or g �→ gF (g−1). This has no
effect on the surjectivity or its applications.

The proof of Lang’s Theorem uses the fact that the fibers of L are the orbits of
G = GF acting by right translation, together with an easy calculation showing that
the differential at each point is bijective. See for example Springer [385, 4.4.17].
The argument translates also into the language of quotients: The quotient of the
affine variety G by the right translation action of G is isomorphic to G itself, with
L as the quotient map. In particular, the G-invariant regular functions on G are
of the form L∗f = f ◦L for f ∈ K[G]. (These statements apply equally well to the
restricted Lang map on a closed connected subgroup H of G.)
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1.6. EXAMPLE: SL(3, q) AND SU(3, q) 5

1.5. Chevalley Groups and Twisted Groups

To construct all possible finite groups of Lie type in a uniform way, one follows
the lead of Chevalley’s 1955 Tôhoku paper. He showed how to obtain the simple
groups of split type by a process of reduction modulo p. This starts with the choice
of a good Z-basis for any simple Lie algebra over C, whose adjoint operators raised
to powers and divided by corresponding factorials still leave the basis invariant. The
operators corresponding to root vectors act nilpotently, so the usual exponential
power series is just a polynomial operator leaving the Chevalley basis invariant. It
makes sense to reduce modulo a prime p (no division by p being required), leading
to a matrix group over Fp generated by “exponentials”. Extension of scalars gives
the desired groups over arbitrary finite fields.

With a few very small exceptions, these groups are simple and are the de-
rived groups of the various G(Fq) obtained from split adjoint groups (for example
PSL(n, q) ≤ PGL(n, q)). The exceptions are the solvable groups A1(2) and A1(3);
the group B2(2) of order 720, which is isomorphic to the symmetric group S6; and
the group G2(2) of order 12096, which has a simple subgroup of index 2 isomorphic
to 2A2(3).

In his 1967–68 Yale lectures [394], Steinberg replaced the adjoint representation
by an arbitrary irreducible representation over C and generalized Chevalley’s pro-
cedure to obtain groups of all isogeny types as well as the various kinds of twisted
groups. (See also Carter’s book [86].)

Unless other specified, we always work with a simply connected group G, de-
fined and split over Fp. The finite group G = GF of fixed points under the standard
Frobenius map relative to q is called a (universal) Chevalley group, while the
term twisted group refers to the fixed points under a Frobenius map involving a
nontrivial graph automorphism. But note that some authors include all of these
groups under the rubric “Chevalley group”. And it is common to regard the groups
of Suzuki and Ree as types of twisted groups, but we find it more convenient to
keep these separate.

Table 1 summarizes our labelling by Lie type, together with the order of the
corresponding universal group. Chevalley groups are listed first, followed by twisted
groups and the groups of Suzuki and Ree.

As in the case of classical groups, notational conventions for Lie types vary in
the literature: see for example Gorenstein–Lyons–Solomon [188, pp. 8–9] and the
Atlas of Finite Groups [117]. In the case of the twisted groups of types A, D, E6,
some sources use q2 rather than q in the labels. And in the case of the groups of
Suzuki and Ree, q2 may be replaced by q in the labels as well as the order formulas.
This issue is discussed carefully in the Atlas [117, 3.2], where alternate notations
(such as Sz(q) for 2B2(q2)) are also described. We prefer notation which shows the
analogy between orders of the twisted and nontwisted groups.

1.6. Example: SL(3, q) and SU(3, q)

The similarities and differences between split and nonsplit groups of the same
type show up clearly in the simplest situation, groups of types A2(q) and 2A2(q).
With our notational conventions, the orders of the two groups are given by similar
polynomials of degree 8 = dim SL(3,K):

|SL(3, q)| = q3(q2 − 1)(q3 − 1) and |SU(3, q)| = q3(q2 + 1)(q3 − 1).
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6 1. FINITE GROUPS OF LIE TYPE

Lie type Order of universal group

A�(q), � ≥ 1 q(
�+1
2 ) ∏�+1

i=2(qi − 1)

B�(q), � ≥ 2 q�2
∏�

i=1(q
2i − 1)

C�(q), � ≥ 2 q�2
∏�

i=1(q
2i − 1)

D�(q), � ≥ 4 q�(�−1)(q� − 1)
∏�−1

i=1(q2i − 1)

E6(q) q36(q2 − 1)(q5 − 1)(q6 − 1)(q8 − 1)(q9 − 1)(q12 − 1)

E7(q) q63(q2 − 1)(q6 − 1)(q8 − 1)(q10 − 1)(q12 − 1)(q14 − 1)(q18 − 1)

E8(q) q120(q2 − 1)(q8 − 1)(q12 − 1)(q14 − 1)(q18 − 1)(q20 − 1)(q24 − 1)(q30 − 1)

F4(q) q24(q2 − 1)(q6 − 1)(q8 − 1)(q12 − 1)

G2(q) q6(q2 − 1)(q6 − 1)

2A�(q), � ≥ 2 q(
�+1
2 ) ∏�+1

i=2(qi − (−1)i)

2D�(q), � ≥ 4 q�(�−1)(q� + 1)
∏�−1

i=1(q2i − 1)

3D4(q) q12(q2 − 1)(q6 − 1)(q8 + q4 + 1)

2E6(q) q36(q2 − 1)(q5 + 1)(q6 − 1)(q8 − 1)(q9 + 1)(q12 − 1)

2B2(q2), q2 = 22r+1 q4(q2 − 1)(q4 + 1)

2F4(q2), q2 = 22r+1 q24(q2 − 1)(q6 + 1)(q8 − 1)(q12 + 1)

2G2(q2), q2 = 32r+1 q6(q2 − 1)(q6 + 1)

Table 1. Universal groups of Lie type

Consider how the finite torus TF looks in each case. In SL(3, q) we just get a
direct product of two copies of F

×
q , one for each simple root α, β. But in SU(3, q) ⊂

SL(3, q2) the situation is quite different. Here the graph automorphism interchanges
α and β, so a typical diagonal matrix fixed by F has eigenvalues c, cq, 1/cq+1 as c
runs over the cyclic group F

×
q2 of order q2 − 1. Thus TF is cyclic.

There is also a sharp contrast in the structure of the upper triangular unipotent
subgroup UF in the two cases. This subgroup of SL(3, q) (a Sylow p-subgroup) has
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1.7. GROUPS WITH A BN-PAIR 7

order q3, with structure like that of U as a product of three root groups. In SU(3, q)
the order of UF is the same, but the group structure changes: a unipotent matrix⎛

⎝
1 a c
0 1 b
0 0 1

⎞
⎠

with entries in Fq2 is fixed by F precisely when b = aq and c + cq + aq+1 = 0. Here
there is a single positive “root group”.

Differences like these propagate through all pairs of split and nonsplit groups
based on the same root system. See Carter [86, Chap. 13] or Steinberg [394, §11]
for full details about the structure of twisted groups (along with those of Suzuki
and Ree).

1.7. Groups With a BN-Pair

In work leading to the classification of finite simple groups, it has often been
useful to describe groups of Lie type in a uniform axiomatic setting independent of
algebraic groups: see Gorenstein–Lyons–Solomon [189, §30]. For this purpose the
most efficient formalism is that of BN-pairs (called Tits systems by Bourbaki in
[56, Chap. IV]), as introduced by Tits in the aftermath of Chevalley’s 1955 Tôhoku
paper. This captures the essence of the Bruhat decomposition as it appears in
various settings, without explicit introduction of the root system.

Given a group G with subgroups B and N , the data defining a BN -pair consists
formally of a quadruple (G, B, N, S) subject to the following requirements:

• G is generated by its subgroups B and N .
• T := B ∩ N is a normal subgroup of N .
• W := N/T is generated by a set S of involutions.
• For s ∈ S and w ∈ W , sBw ⊆ BwB ∪ BswB.
• For s ∈ S, sBs �= B.

Here we adopt the usual convention of writing expressions like sBw and BwB
when the choice of a representative in N of an element of W makes no difference.
(Note that the letter H is often used in the literature for the group we call T .)

The axioms lead quickly to the Bruhat decomposition: G is the disjoint
union (indexed by W ) of the double cosets BwB. As a further consequence of the
axioms, W is seen to be a Coxeter group with distinguished set of generators S.
The cardinality of S is then called the rank of the BN -pair.

A minor adjustment can be made without significant loss of generality, to insure
that the BN -pair is “saturated”: T =

⋂
w∈W wBw−1. By the axioms, T is always

included in the right side. If the inclusion were proper, we could simply replace T
by the right side and enlarge N accordingly. (We always assume saturation.)

With our previous notational conventions, the group G = GF has a natural
BN -pair structure: When G is a Chevalley group, take B = BF for a Borel sub-
group B of G corresponding to Φ+ and N = NF for N = NG(T), the normalizer
of an Fq-split maximal torus T lying in B. But when G is a twisted group, the
BN -pair structure encodes the “relative” structure of a nonsplit algebraic group
over Fq: the Weyl group of the BN -pair is the subgroup of the usual Weyl group
fixed by the induced action of F , while the rank of the BN -pair is the “relative”
rank of the algebraic group measuring the dimension of a maximal Fq-split torus.
For example, one views SU(3, q) as having a BN -pair of rank 1.
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8 1. FINITE GROUPS OF LIE TYPE

Which finite groups—especially simple groups—have a BN -pair? A group with
a BN -pair of rank 1 is the same thing as a doubly transitive permutation group:
B can be interpreted as the isotropy group of a point, while N stabilizes a set
consisting of this point and one other (and T is the subgroup fixing both). Thus it
is unrealistic to expect a complete list of finite groups with such a BN -pair. But
surprisingly enough, Tits [420] was able to show (by geometric methods) that all
finite simple groups with a BN -pair of rank ≥ 3 are of Lie type.

A more serious restriction is needed in rank 2 to reflect the special internal
structure of a group of Lie type: one needs a (saturated) split BN-pair of char-
acteristic p. For this, add to the axioms the assumption that B has a normal p-
subgroup U complementary to T , while T is abelian and has order relatively prime
to p. Using an impressive array of group-theoretic methods, it has been shown
that all simple groups with a split BN -pair of characteristic p are of Lie type (or
degenerate versions thereof): see Hering–Kantor–Seitz [204], Kantor–Seitz [266],
Fong–Seitz [175].

In order to bypass this rather sophisticated literature, one can impose the
further condition that the BN -pair is strongly split as defined by Cabanes–
Enguehard [78, §2] and Genet [185] (see 8.7 below). This yields Levi decompo-
sitions for parabolic subgroups as well as a version of the Chevalley commutation
formulas. (See also Tinberg [418].)

There are numerous treatments in the literature of groups with a BN -pair,
directed toward different applications. See for example Bourbaki [56, Chap. IV],
Cabanes–Enguehard [78, Part I], Carter [86, 8.2–8.3] and [89, Chap. 2], Curtis
[121, 123] and [122, §3], Curtis–Reiner [127, §65, §69], Gorenstein–Lyons–Solomon
[189, §30], Humphreys [220, §29].

1.8. Notational Conventions

Unless otherwise specified, G will denote a simple, simply connected algebraic
group defined and split over Fp, identified with its group G(K) of rational points
over an algebraically closed field K of characteristic p > 0. Its root system is Φ,
with a simple system ∆. Usually we fix a Borel subgroup B (corresponding to a
set of positive roots Φ+) and a maximal torus T ⊂ B, both split over Fp. The rank
of G is � = dimT = |∆|.

Thus G ∼= SL(� + 1,K), Spin(2� + 1,K), Sp(2�,K), Spin(2�,K), or one of the
five exceptional groups of types E6, E7, E8, F4, G2.

If F : G → G is a Frobenius map relative to q (and possibly a nontrivial graph
automorphism π), its fixed point subgroup G := GF is a universal Chevalley group
or a twisted group of type A� (� > 1), D�, or E6 over Fq. (Suzuki and Ree groups
are discussed separately in Chapter 20.)

Additional notation will be introduced as we go along. (See the list of frequently
used notation at the end of the book.)
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CHAPTER 2

Simple Modules

To study the representations over K of an arbitrary finite group G, one usually
concentrates first on those which are realized within the group algebra KG. The
main examples are simple modules and projective modules.

When G is a finite group of Lie type, there are two natural approaches to the
study of simple KG-modules:

• Describe them intrinsically in the setting of groups with split BN -pairs.
• Describe them as restrictions of simple modules for the ambient algebraic

group G.

While the second approach is less direct, it has yielded (so far) much more detailed
information than the first approach and will therefore be our main focus here.
We defer until Chapter 7 the more self-contained development due to Curtis and
Richen, based on BN -pairs.

Even though it is possible to classify the simple KG-modules in a coherent
way from the algebraic group viewpoint, we still do not know in most cases their
dimensions or (Brauer) characters. Modulo knowledge of the formal characters
of simple G-modules (still incomplete in most cases), which we call standard
character data for G, it is often possible to derive further results about the
category of finite dimensional KG-modules: projectives, extensions, etc. This is
usually the approach we follow, motivated by Lusztig’s Conjecture for G (see 3.11
below).

After a detailed review of simple modules for the algebraic groups, following
[RAGS], we turn to the finite groups. Besides the cited papers, we can point to
useful surveys in the Atlas [117, Chap. 2] and Gorenstein–Lyons–Solomon [190,
2.8]. For unexplained notation see 1.8.

2.1. Representations and Formal Characters

For the study of finite groups of Lie type we normally find it most convenient
to work with a simple algebraic group. But the treatment of representations in
[RAGS] allows G to be semisimple—or even reductive, which is needed for induc-
tive purposes when passing to Levi subgroups.

In this and the following section, G can be any connected semisimple group
over K, with a fixed Borel subgroup B = TU corresponding to a choice of simple
system ∆ and positive roots Φ+. For brevity we always denote by X the character
group X(T) (with the convention that the group law is written additively) and by
X+ the subset of dominant weights relative to Φ+. Then X is partially ordered by
µ ≤ λ iff λ − µ is a sum (possibly 0) of positive roots. We call this the natural
ordering of X.

9
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10 2. SIMPLE MODULES

Denote by W the Weyl group NG(T)/T of G relative to the maximal torus
T. So W is generated by “simple” reflections (relative to roots in ∆) and has a
corresponding length function �(w). There is a unique longest element w◦ in W ,
which sends Φ+ to −Φ+; its length is m := |Φ+|.

The dual root system is denoted by Φ∨. When Φ is irreducible, Φ∨ has the
same type as Φ except that types B� and C� are dual to each other. The natural
pairing 〈x, α∨〉 is defined for all x ∈ R ⊗Z X.

Representations of G are always assumed to be rational and finite dimensional,
unless otherwise specified. Typically we use the equivalent language of G-modules.
It is a basic fact that Jordan decomposition in G is preserved under homomorphisms
of algebraic groups. This implies that any G-module M is a direct sum of its weight
spaces Mλ (λ ∈ X) relative to T:

Mλ := {x ∈ M | t · x = λ(t)x for all t ∈ T}.
In turn, M has a formal character ch M in the group ring Z[X] of X. To view
X as a multiplicative group in this context, we introduce canonical basis elements
e(λ) of the free abelian group Z[X] indexed by λ ∈ X. These are multiplied by the
rule e(λ)e(µ) = e(λ + µ). Now the formal character is defined by

ch M :=
∑
λ∈X

dimMλ e(λ).

Finite dimensionality of M implies that dimMλ = dimMwλ for all w ∈ W , so
ch M lies in the subring of W -invariants X := Z[X]W . We call this the formal
character ring of G relative to T. As a result, ch M can be rewritten as a Z

+-
linear combination of various orbit sums s(µ) :=

∑
w∈W µ e(wµ), with µ ∈ X+ and

Wµ a set of coset representatives of W modulo the isotropy group Wµ of µ.
For the study of representations it is usually most convenient to assume that G

is simply connected. This translates into the assumption that X is the full weight
lattice of the abstract root system Φ. Other semisimple groups with the same root
system are obtained by factoring out subgroups of the finite group Z(G). Then it
is not difficult to sort out which representations of G induce representations of the
quotient group: it is just a question of which weights lie in the character group of
the corresponding quotient of T (a sublattice of X).

2.2. Simple Modules for Algebraic Groups

As shown by Chevalley in the late 1950s, the highest weight classification of
irreducible representations for a semisimple algebraic group over an algebraically
closed field is essentially characteristic-free. (See [RAGS, II.2], [220, §31].)

Theorem. Let G be a semisimple algebraic group over K. Fix notation as
in 2.1, and let B− = TU− be the Borel subgroup of G opposite to B. Then:

(a) Every simple (rational) G-module M has a unique highest weight λ ∈ X+

in the natural partial ordering of X. Whenever Mµ �= 0, we have µ ≤ λ.
(b) The weight space Mλ is one-dimensional, spanned by a U-invariant vec-

tor v+, called a maximal vector or highest weight vector.
(c) M is spanned by the vectors u · v+, for u ∈ U−.
(d) Two simple modules with the same highest weight λ are isomorphic, so M

may be denoted unambiguously by L(λ).
(e) For every λ ∈ X+ there exists a simple G-module of highest weight λ.

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521674549 - Modular Representations of Finite Groups of Lie Type
James E. Humphreys
Excerpt
More information

http://www.cambridge.org/0521674549
http://www.cambridge.org
http://www.cambridge.org

