This book is a definitive reference source for the growing, increasingly important, and interdisciplinary field of computational cognitive modeling, that is, computational psychology. It combines breadth of coverage with definitive statements by leading scientists in this field. Research in computational cognitive modeling (or, simply, computational psychology) explores the essence of cognition and various cognitive functionalities through developing detailed, process-based understanding by specifying computational mechanisms, structures, and processes. Given the complexity of the human mind and its manifestation in behavioral flexibility, process-based computational models may be necessary to explicate and elucidate the intricate details of the mind. The key to understanding cognitive processes is often in fine details. Computational models provide algorithmic specificity: detailed, exactly specified, and carefully thought-out steps, arranged in precise yet flexible sequences. These models provide both conceptual clarity and precision at the same time. This book substantiates this approach through overviews and many examples.

Ron Sun is professor of cognitive science at Rensselaer Polytechnic Institute. A well-known researcher in the field of cognitive science, Sun explores the fundamental structure of the human mind and aims for the synthesis of many interesting intellectual ideas into one coherent model of cognition. The goal is to form a generic cognitive architecture that captures a variety of cognitive processes in a unified way and, thus, to provide unified explanations for a wide range of cognitive data. To do so, for the last two decades, he has been advocating the use of hybrid connectionist-symbolic systems in developing cognitive models, and he has been developing theories of human skill learning and human everyday reasoning as the centerpieces of the cognitive architecture.
The Cambridge Handbook of Computational Psychology

Edited by

RON SUN

Rensselaer Polytechnic Institute
Contents

Preface
List of Contributors

PART I: INTRODUCTION

1 Introduction to Computational Cognitive Modeling
 Ron Sun

PART II: COGNITIVE MODELING PARADIGMS

2 Connectionist Models of Cognition
 Michael S. C. Thomas and James L. McClelland

3 Bayesian Models of Cognition
 Thomas L. Griffiths, Charles Kemp, and Joshua B. Tenenbaum

4 Dynamical Systems Approaches to Cognition
 Gregor Schöner

5 Declarative/Logic-Based Cognitive Modeling
 Selmer Bringsjord

6 Constraints in Cognitive Architectures
 Niels A. Taatgen and John R. Anderson

PART III: COMPUTATIONAL MODELING OF VARIOUS COGNITIVE
FUNCTIONALITIES AND DOMAINS

7 Computational Models of Episodic Memory
 Kenneth A. Norman, Greg Detre, and Sean M. Polyn
vi CONTENTS

8 Computational Models of Semantic Memory
Timothy T. Rogers 226

9 Models of Categorization
John K. Kruschke 267

10 Micro-Process Models of Decision Making
Jerome R. Busemeyer and Joseph G. Johnson 302

11 Models of Inductive Reasoning
Evan Heit 322

12 Mental Logic, Mental Models, and Simulations of Human Deductive Reasoning
Philip N. Johnson-Laird and Yingrui Yang 339

13 Computational Models of Skill Acquisition
Stellan Ohlsson 359

14 Computational Models of Implicit Learning
Axel Cleeremans and Zoltán Dienes 396

15 Computational Models of Attention and Cognitive Control
Nicola De Pisapia, Grega Repovš, and Todd S. Braver 422

16 Computational Models of Developmental Psychology
Thomas R. Shultz and Sylvain Sirois 451

17 Computational Models of Psycholinguistics
Nick Chater and Morten H. Christiansen 477

18 Computational Models in Personality and Social Psychology
Stephen J. Read and Brian M. Monroe 505

19 Cognitive Social Simulation
Ron Sun 530

20 Models of Scientific Explanation
Paul Thagard and Abninder Litt 549

21 Cognitive Modeling for Cognitive Engineering
Wayne D. Gray 565

22 Models of Animal Learning and Their Relations to Human Learning
Francisco J. López and David R. Shanks 589

23 Computational Modeling of Visual Information Processing
Pawan Sinha and Benjamin J. Balas 612

24 Models of Motor Control
Ferdinando A. Mussa-Ivaldi and Sara A. Solla 635

PART IV: CONCLUDING REMARKS

25 An Evaluation of Computational Modeling in Cognitive Science
Margaret A. Boden 667

26 Putting the Pieces Together Again
Aaron Sloman 684

Index 711
Preface

The goal of the *Cambridge Handbook of Computational Psychology* is to provide a definitive reference source for the rapidly growing, increasingly important, and strongly interdisciplinary field of computational cognitive modeling – that is, computational (and theoretical) psychology. It is part of the *Cambridge Handbook in Psychology* series.

This volume combines the breadth of coverage of the field with the authoritative statements by leading scientists in this discipline. It should thus appeal to researchers and advanced students working in this research field, as well as to researchers and advanced students working in cognitive science (in general), philosophy, experimental psychology, linguistics, anthropology, neuroscience, and artificial intelligence. For example, it could serve as a textbook for a course in a cognitive science program or, more generally, in social and behavioral sciences programs. This book could also be used by social science researchers, education researchers, intelligent systems engineers, and psychology and education software developers.

Models in cognitive science are often roughly divided into computational, mathematical, or verbal-conceptual models. Although each of these types of models has its role to play, in this volume, we are mainly concerned with computational modeling. The reason for this emphasis is that, at least at present, computational modeling appears to be the most promising approach in many ways and offers the flexibility and the expressive power that no other approaches can match. (Mathematical models may be viewed somehow as a subset of computational models, as they may lead readily to computational implementations.) A computational model may often be viewed as a theory of the phenomena it aims to capture and may be highly intellectually enlightening in this way.

Each chapter in this volume introduces and explains basic concepts, techniques, and findings for a major topic area within the realm of computational cognitive modeling (e.g., computational models and theories of a particular cognitive domain or functionality); sketches its history; assesses its
successes and failures; and evaluates the directions of current and future research. This handbook thus provides quick overviews for experts in each topic area and also for researchers in allied topic areas. However, equally important, the book provides an introduction to the field of computational cognitive modeling (computational psychology). It discusses the methodologies of computational cognitive modeling and justifies its use in cognitive science. It introduces influential approaches, describing in detail these approaches and providing ample examples. Thus, this volume provides an entry point into the field for the next generation of researchers by supplying a text for courses for graduate students and upper-level undergraduate students and for self-study.

I would like to thank all the contributing authors. Many of them not only contributed chapters, but also participated in mutual reviews of draft chapters, thus helping to ensure the quality of this book.

I would like to thank all the reviewers of the chapters. The external reviewers include: Edward Wasserman, Gert Westermann, Frank Ritter, Robert Wray, Robert French, Roger Levy, Jeff Schrager, Michael J. Frank, Sam Gilbert, Kostas Arkoudas, Brad Love, Emo Todorov, Russ Burnett, Chris Schunn, Ernest Davis, Robert West, Paul Bello, Michael Schoelles, Robert Port, Mike Byrne, John Spencer, David Peebles, Robert Jacobs, and Maximilian Riesenhuber. The internal reviewers include: Thomas Shultz, David Shank, Paul Thagard, Aaron Sloman, Stellan Ohlsson, Tim Rogers, Stephen Read, Evan Heit, Nick Chater, and Ken Norman.

I would also like to thank the members of the advisory board, who contributed suggestions that made the volume more comprehensive and more interesting. The members of the advisory board include: Thomas Shultz, Wayne Gray, and Jay McClelland.

Finally, I would like to thank Phil Laughlin for inviting me to put together this volume. It has been a pleasure working with Eric Schwartz, Phil Laughlin, Armi Macaballug, Peggy Rote, and others at Cambridge University Press in the process of developing this book.

Ron Sun
Troy, New York
List of Contributors

JOHN R. ANDERSON
Department of Psychology
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213, USA
ja+@cmu.edu
http://act-r.psy.cmu.edu/people/ja/

BENJAMIN J. BALAS
Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
bjbalas@mit.edu
http://web.mit.edu/bcs/bjbalas/www/

MARGARET A. BODEN
Centre for Cognitive Science, School of Science and Technology
University of Sussex
Brighton BN1 9QH, UK
m.a.boden@sussex.ac.uk
http://www.informatics.sussex.ac.uk/users/maggieb

TODD S. BRAVER
Department of Psychology
Washington University
St. Louis, MO 63139, USA
tbraver@wustl.edu
http://ccpweb.wustl.edu/braver.html

SÉLÈNE BRINGSJORD
Department of Cognitive Science and Department of Computer Science
Rensselaer Polytechnic Institute
Troy, NY 12180, USA
brings@rpi.edu
http://www.rpi.edu/~brings

JEROME R. BUSEMEYER
Department of Psychological and Brain Sciences
Indiana University
Bloomington, IN 47405, USA
jbusemey@indiana.edu
http://mypage.iu.edu/~jbusemey/home.html

NICK CHATER
Department of Psychology
University College London
Gower Street
London, WC1E 6BT, UK
LIST OF CONTRIBUTORS

n.chater@ucl.ac.uk
http://www.psychol.ucl.ac.uk/people/profiles/chater_nick.htm

MORTEN H. CHRISTIANSEN
Department of Psychology
Cornell University
Ithaca, NY 14853, USA
mhc27@cornell.edu
http://cnl.psych.cornell.edu/people/morten.html

AXEL CLEEREMANS
Department of Psychology
Université Libre de Bruxelles
50 avenue F. D. Roosevelt CP191, B1050
Bruxelles, Belgium
axcleer@ulb.ac.be
http://srs.culb.ac.be/xcWWW/axc.html

GREG DETRE
Department of Psychology
Princeton University
Green Hall, Washington Road
Princeton, NJ 08540, USA
gdetr@princeton.edu
http://compmem.princeton.edu

ZOLTÁN DIENES
Department of Psychology
University of Sussex
Brighton, East Sussex BN1 9RH, UK
dienes@sussex.ac.uk
http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/

WAYNE D. GRAY
Cognitive Science Department
Rensselaer Polytechnic Institute
Troy, NY 12180, USA
ggray@rpi.edu
http://www.rpi.edu/~grayw

THOMAS L. GRIFFITHS
Department of Psychology
University of California, Berkeley
Berkeley, CA 94720, USA
tom_griffiths@berkeley.edu
http://cocosci.berkeley.edu/tom/

EVAN HEIT
Department of Psychology
University of California, Merced
Merced, CA 95344, USA
eheit@ucmerced.edu
http://faculty.ucmerced.edu/cheit/index.html

JOSEPH G. JOHNSON
Department of Psychology
Miami University
Oxford, OH 45056, USA
johnjojg@muohio.edu
http://www.users.muohio.edu/johnjojg/

PHILIP N. JOHNSON-LAIRD
Psychology Department
Princeton University
Princeton, NJ 08540, USA
phil@princeton.edu
https://weblamp.princeton.edu/~psych/psychology/research/johnson Laird

CHARLES KEMP
Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
ckemp@mit.edu
http://www.mit.edu/~ckemp/

JOHN K. KRUSCHKE
Department of Psychological and Brain Sciences
Indiana University
1101 East 10th Street
Bloomington, IN 47405, USA
kruschke@indiana.edu
http://www.indiana.edu/~kruschke/

ABNINDER LITT
Cheriton School of Computer Science
University of Waterloo
Waterloo, ON N2L3G1, Canada
alitt@uwaterloo.ca
http://www.student.cs.uwaterloo.ca/~alitt/

FRANCISCO J. LÓPEZ
Departamento de Psicologia Básica
Universidad de Malaga
Campus de Teatinos
LIST OF CONTRIBUTORS

McGill University
1205 Penfield Avenue
Montreal, Quebec H3A 1B1, Canada
thomas.shultz@mcgill.ca

Pawan Sinha
Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
psinha@mit.edu
http://web.mit.edu/bcs/sinha/home.html

Sylvain Sirois
School of Psychological Sciences
University of Manchester
Oxford Road
Manchester, M13 9PL, UK
sylvain.sirois@manchester.ac.uk
http://www.psych-sci.manchester.ac.uk/staff/SylvainSirois

Aaron Sloman
School of Computer Science
University of Birmingham
Birmingham B15 2TT, UK
a.sloman@cs.bham.ac.uk
http://www.cs.bham.ac.uk/~axs/

Sara A. Solla
Department of Physiology
Northwestern University
Chicago, IL 60611, USA
solla@northwestern.edu
http://dept-www.physio.northwestern.edu/Secondlevel/Solla.html

Ron Sun
Cognitive Science Department
Rensselaer Polytechnic Institute
Troy, NY 12180, USA
rsun@rpi.edu
http://www.cogsci.rpi.edu/~rsun

Niels A. Taatgen
Department of Psychology
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213, USA
taatgen@cmu.edu
http://www.ai.rug.nl/~niels

Joshua B. Tenenbaum
Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
jbt@mit.edu
http://web.mit.edu/cocosci/josh.html

Paul Thagard
Philosophy Department
University of Waterloo
Waterloo, ON N2L3G1, Canada
pthagard@uwaterloo.ca
http://cogsci.uwaterloo.ca

Michael S. C. Thomas
Developmental Neurocognition Laboratory, School of Psychology
Birkbeck College, University of London
Malet Street
London WC1E 7HX, UK
m.thomas@bbk.ac.uk
http://www.bbk.ac.uk/psyc/staff/academic/mthomas

Yingrui Yang
Cognitive Science Department
Rensselaer Polytechnic Institute
Troy, NY 12180, USA
yangyri@rpi.edu
http://www.cogsci.rpi.edu/