
Part I

INTRODUCTION

�

This part provides a general introduction to the field of computational psychology and
an overview of the book. It discusses the general methodology of computational cognitive
modeling, and justifies its use in cognitive science and beyond.
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CHAPTER 1

Introduction to Computational

Cognitive Modeling

Ron Sun

Instead going straight into dealing with spe-
cific approaches, issues, and domains of
computational cognitive modeling, it is ap-
propriate to first take some time to ex-
plore a few general questions that lie at the
very core of cognitive science and computa-
tional cognitive modeling. What is computa-
tional cognitive modeling? What exactly can
it contribute to cognitive science? What has
it contributed thus far? Where is it going?
Answering such questions may sound overly
defensive to the insiders of computational
cognitive modeling and may even seem so
to some other cognitive scientists, but they
are very much needed in a volume like this
because they lie at the very foundation of
this field. Many insiders and outsiders alike
would like to take a balanced and rational
look at these questions without indulging in
excessive cheerleading, which, as one would
expect, happens sometimes among compu-
tational modeling enthusiasts.

However, given the large number of is-
sues involved and the complexity of these
issues, only a cursory discussion is possible
in this introductory chapter.One may thus
view this chapter as a set of pointers to the

existing literature rather than a full-scale dis-
cussion.

1. What Is Computational Cognitive
Modeling?

Research in computational cognitive mod-
eling, or simply computational psychol-
ogy, explores the essence of cognition (in-
cluding motivation, emotion, perception,
etc.) and various cognitive functionalities
through developing detailed, process-based
understanding by specifying corresponding
computational models (in a broad sense)
of representations, mechanisms, and pro-
cesses. It embodies descriptions of cognition
in computer algorithms and programs, based
on computer science (Turing, 1950); that
is, it imputes computational processes (in
a broad sense) onto cognitive functions, and
thereby it produces runnable computational
models. Detailed simulations are then con-
ducted based on the computational models
(see, e.g., Newell, 1990; Rumelhart et al.,
1986; Sun, 2002). Right from the begin-
ning of the formal establishment of cognitive
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4 sun

science around the late 1970s, computa-
tional modeling has been a mainstay of cog-
nitive science.1

In general, models in cognitive science
may be roughly categorized into computa-
tional, mathematical, or verbal-conceptual
models (see, e.g., Bechtel & Graham,
1998). Computational models present pro-
cess details using algorithmic descriptions.
Mathematical models present relationships
between variables using mathematical equa-
tions. Verbal-conceptual models describe
entities, relations, and processes in rather
informal natural languages. Each model, re-
gardless of its genre, might as well be viewed
as a theory of whatever phenomena it pur-
ports to capture (as argued before by, e.g.,
Newell, 1990; Sun, 2005).

Although each of these types of models
has its role to play, the discussion in this
volume is mainly concerned with computa-
tional modeling, including models based on
computational cognitive architectures. The
reason for this emphasis is that, at least
at present, computational modeling (in a
broad sense) appears to be the most promis-
ing approach in many respects, and it offers
the flexibility and expressive power that no
other approach can match, as it provides a
variety of modeling techniques and method-
ologies, and supports practical applications
of cognitive theories (Pew & Mavor, 1998).
In this regard, note that mathematical mod-
els may be viewed as a subset of computa-
tional models, as normally they can readily
lead to computational implementations (al-
though some of them may be sketchy and
lack process details).

Computational models are mostly
process-based theories, that is, they are
mostly directed at answering the question of
how human performance comes about; by
what psychological mechanisms, processes,

1 The roots of cognitive science can, of course, be
traced back to much earlier times. For example,
Newell and Simon’s early work in the 1960s and
1970s has been seminal (see, e.g., Newell & Simon,
1976). The work of Miller, Galanter, and Pribram
(1960) has also been highly influential. See Chap-
ter 25 in this volume for a more complete historical
perspective (see also Boden, 2006).

and knowledge structures; and in what
ways exactly. In this regard, note that it
is also possible to formulate theories of
the same phenomena through so-called
product theories, which provide an accurate
functional account of the phenomena but
do not commit to a particular psychological
mechanism or process (Vicente & Wang,
1998). Product theories may also be called
blackbox theories or input-output theories.
Product theories do not make predictions
about processes (even though they may
constrain processes). Thus, product theo-
ries can be evaluated mainly by product
measures. Process theories, in contrast, can
be evaluated by using process measures
when they are available and relevant (which
are, relatively speaking, rare), such as eye
movement and duration of pause in serial
recall, or by using product measures, such
as recall accuracy, recall speed, and so
on. Evaluation of process theories using
the latter type of measures can only be
indirect, because process theories have to
generate an output given an input based
on the processes postulated by the theories
(Vicente & Wang, 1998). Depending on
the amount of process details specified, a
computational model may lie somewhere
along the continuum from pure product
theories to pure process theories.

There can be several different senses of
“modeling” in this regard, as discussed in
Sun and Ling (1998). The match of a model
with human cognition may be, for exam-
ple, qualitative (i.e., nonnumerical and rela-
tive) or quantitative (i.e., numerical and ex-
act). There may even be looser “matches”
based on abstracting general ideas from ob-
servations of human behaviors and then de-
veloping them into computational models.
Although different senses of modeling or
matching human behaviors have been used,
the overall goal remains the same, which
is to understand cognition (human cogni-
tion in particular) in a detailed (process-
oriented) way.

This approach of utilizing computational
cognitive models for understanding human
cognition is relatively new. Although earlier
precursors might be identified, the major
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introduction to computational cognitive modeling 5

developments of computational cognitive
modeling have occurred since the 1960s.
Computational cognitive modeling has since
been nurtured by the Annual Conferences of
the Cognitive Science Society (which began
in the late 1970s), by the International Con-
ferences on Cognitive Modeling (which be-
gan in the 1990s), as well as by the journals
Cognitive Science (which began in the late
1970s), Cognitive Systems Research (which
began in the 1990s), and so on.

From Schank and Abelson (1977) to
Minsky (1981), a variety of influential sym-
bolic “cognitive” models were proposed in
artificial intelligence. They were usually
broad and capable of a significant amount of
information processing. However, they were
usually not rigorously matched against hu-
man data. Therefore, it was hard to establish
the cognitive validity of many of these mod-
els. Psychologists have also been proposing
computational cognitive models, which are
usually narrower and more specific. They
were usually more rigorously evaluated in
relation to human data. (An early example is
Anderson’s HAM (Anderson 1983)). Many
such models were inspired by symbolic AI
work at that time (Newell & Simon, 1976).

The resurgence of neural network models
in the 1980s brought another type of model
into prominence in this field (see, e.g.,
Rumelhart et al., 1986; Grossberg, 1982).
Instead of symbolic models that rely on a
variety of complex data structures that store
highly structured pieces of knowledge (such
as Schank’s scripts or Minsky’s frames), sim-
ple, uniform, and often massively parallel
numerical computation was used in these
neural network models (Rumelhart et al.,
1986). Many of these models were meant
to be rigorous models of human cognitive
processes, and they were often evaluated in
relation to human data in a quantitative way
(but see Massaro, 1988).

Hybrid models that combine the
strengths of neural networks and symbolic
models emerged in the early 1990s (see,
e.g., Sun & Bookman, 1994). Such models
could be used to model a wider variety
of cognitive phenomena because of their
more diverse and thus more expressive

representations (but see Regier, 2003,
regarding constraints on models). They
have been used to tackle a broad range of
cognitive data, often (though not always)
in a rigorous and quantitative way (see,
e.g., Sun & Bookman, 1994; Sun, 1994;
Anderson & Lebiere, 1998; Sun, 2002).

For overviews of some currently exist-
ing software, tools, models, and systems for
computational cognitive modeling, see the
following Web sites:

http://www.cogsci.rpi.edu/∼rsun/arch.
html

http://books.nap.edu/openbook.php?
isbn= 0309060966

http://www.isle.org/symposia/cogarch/
archabs.html.

The following Web sites for specific soft-
ware, cognitive models, or cognitive archi-
tectures (e.g., Soar, ACT-R, and CLAR-
ION) may also be useful:

http://psych.colorado.edu/∼oreilly/
PDP++ /PDP++.html

http://www.cogsci.rpi.edu/∼rsun/clarion.
html

http://act-r.psy.cmu.edu/
http://sitemaker.umich.edu/soar/home
http://www.eecs.umich.edu/∼kieras/epic.

html.

2. What Is Computational Cognitive
Modeling Good For?

There are reasons to believe that the goal
of understanding the human mind strictly
from observations of human behavior is ulti-
mately untenable, except for small and lim-
ited task domains. The rise and fall of behav-
iorism is a case in point. This point may also
be argued on the basis of analogy with phys-
ical sciences (see Sun, Coward & Zenzen,
2005). The key point is that the processes
and mechanisms of the mind cannot be
understood purely on the basis of behav-
ioral experiments, with tests that inevitably
amount to probing only relatively superfi-
cial features of human behavior, which are
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6 sun

further obscured by individual/group differ-
ences and contextual factors. It would be
extremely hard to understand the human
mind in this way, just like it would be ex-
tremely hard to understand a complex com-
puter system purely on the basis of testing its
behavior, if we do not have any a priori ideas
about the nature, inner working, and theo-
retical underpinnings of that system (Sun,
2005). For a simple example, in any exper-
iment involving the human mind, there is a
very large number of parameters that could
influence the results, and these parameters
are either measured or left to chance. Given
the large number of parameters, many have
to be left to chance. The selection of which
parameters to control and which to leave
to chance is a decision made by the experi-
menter. This decision is made on the basis of
which parameters the experimenter thinks
are important. Therefore, clearly, theoreti-
cal development needs to go hand in hand
with experimental tests of human behavior.

Given the complexity of the human mind
and its manifestation in behavioral flexibil-
ity, complex process-based theories, that is,
computational models (in the broad sense
of the term) are necessary to explicate the
intricate details of the human mind. With-
out such complex process-based theories,
experimentation may be blind – leading to
the accumulation of a vast amount of data
without any apparent purpose or any appar-
ent hope of arriving at a succinct, precise,
and meaningful understanding. It is true
that even pure experimentalists may often
be guided by their intuitive theories in de-
signing experiments and in generating their
hypotheses. It is reasonable to say, there-
fore, that they are in practice not completely
blind. However, without detailed theories,
most of the details of an intuitive (or verbal-
conceptual) theory are left out of consider-
ation, and the intuitive theory may thus be
somehow vacuous or internally inconsistent,
or otherwise invalid. These problems of an
intuitive theory may not be discovered until
a detailed model is developed (Sun, Coward,
& Zenzen, 2005; Sun, 2005).

There are many reasons to believe that
the key to understanding cognitive processes

is often in the fine details, which only com-
putational modeling can bring out (Newell,
1990; Sun, 2005). Computational models
provide algorithmic specificity: detailed, ex-
actly specified, and carefully thought-out
steps, arranged in precise and yet flexible se-
quences. Therefore, they provide both con-
ceptual clarity and precision. As related by
Hintzman (1990), “The common strategy
of trying to reason backward from behav-
ior to underlying processes (analysis) has
drawbacks that become painfully apparent
to those who work with simulation mod-
els (synthesis). To have one’s hunches about
how a simple combination of processes will
behave repeatedly dashed by one’s own
computer program is a humbling experience
that no experimental psychologist should
miss” (p. 111).

One viewpoint concerning the theoret-
ical status of computational modeling and
simulation is that they, including those
based on cognitive architectures, should not
be taken as theories. A simulation/model is
a generator of phenomena and data. Thus, it
is a theory-building tool. Hintzman (1990)
gave a positive assessment of the role of sim-
ulation/model in theory building: “a simple
working system that displays some proper-
ties of human memory may suggest other
properties that no one ever thought of test-
ing for, may offer novel explanations for
known phenomena, and may provide insight
into which modifications that next gener-
ation of models should include” (p. 111).
That is, computational models are useful
media for thought experiments and hypoth-
esis generation. In particular, one may use
simulations for exploring various possibili-
ties regarding details of a cognitive process.
Thus, a simulation/model may serve as a
theory-building tool for developing future
theories. A related view is that computa-
tional modeling and simulation are suitable
for facilitating the precise instantiation of a
preexisting verbal-conceptual theory (e.g.,
through exploring various possible details
in instantiating the theory) and conse-
quently the careful evaluation of the the-
ory against data. A radically different posi-
tion (e.g., Newell, 1990; Sun, 2005) is that a
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introduction to computational cognitive modeling 7

simulation/model may provide a theory. It
is not the case that a simulation/model is
limited to being built on top of an existing
theory, being applied for the sake of gener-
ating data, being applied for the sake of val-
idating an existing theory, or being applied
for the sake of building a future theory. To
the contrary, according to this view, a sim-
ulation/model may be a theory by itself. In
philosophy of science, constructive empiri-
cism (van Fraasen, 1980) may make a sen-
sible philosophical foundation for compu-
tational cognitive modeling, consistent with
the view of models as theories (Sun, 2005).

Computational models may be necessary
for understanding a system as complex and
as internally diverse as the human mind.
Pure mathematics, developed to describe
the physical universe, may not be sufficient
for understanding a system as different and
as complex as the human mind (cf. Luce,
1995; Coombs et al., 1970). Compared with
scientific theories developed in other disci-
plines (e.g., in physics), computational cog-
nitive modeling may be mathematically less
elegant – but the point is that the human
mind itself is likely to be less mathematically
elegant compared with the physical universe
(see, e.g., Minsky, 1985) and therefore an al-
ternative form of theorizing is called for, a
form that is more complex, more diverse,
and more algorithmic in nature. Compu-
tational cognitive models provide a viable
way of specifying complex and detailed the-
ories of cognition. Consequently, they may
provide detailed interpretations and insights
that no other experimental or theoretical ap-
proach can provide.

In particular, a cognitive architecture
denotes a comprehensive, domain-generic
computational cognitive model, capturing
the essential structures, mechanisms, and
processes of cognition. It is used for broad,
multiple-level, multiple-domain analysis of
cognition (Sun, 2004; Sun, Coward, &
Zenzen, 2005, Sun, 2005, 2007). It deals
with componential processes of cognition
in a structurally and mechanistically well
defined way (Sun, 2004). Its function is
to provide an essential framework to facil-
itate more detailed modeling and under-

standing of various components and pro-
cesses of the mind. A cognitive architecture
is useful because it provides a comprehen-
sive initial framework for further explo-
ration of many different cognitive domains
and functionalities. The initial assumptions
may be based on either available scientific
data (e.g., psychological or biological data),
philosophical thoughts and arguments, or ad
hoc working hypotheses (including compu-
tationally inspired such hypotheses). A cog-
nitive architecture helps to narrow down
possibilities, provides scaffolding structures,
and embodies fundamental theoretical pos-
tulates. The value of cognitive architectures
has been argued many times before; see,
for example, Newell (1990), Anderson and
Lebiere (1998), Sun (2002), Anderson and
Lebiere (2003), Sun (2004), Sun, Coward,
and Zenzen (2005), and Sun (2005, 2007).2

As we all know, science in general often
progresses from understanding to prediction
and then to prescription (or control). Com-
putational cognitive modeling potentially
may contribute to all of these three phases of
science. For instance, through process-based
simulation, computational modeling may
reveal dynamic aspects of cognition, which
may not be revealed otherwise, and al-
lows a detailed look at constituting elements
and their interactions on the fly during
performance. In turn, such understanding
may lead to hypotheses concerning hitherto
undiscovered or unknown aspects of cog-
nition and may lead to predictions regard-
ing cognition. The ability to make reason-
ably accurate predictions about cognition
can further allow prescriptions or control,
for example, by choosing appropriate envi-
ronmental conditions for certain tasks or by
choosing appropriate mental types for cer-
tain tasks or environmental conditions.

In summary, the utility and the
value of computational cognitive modeling
(including cognitive architectures) can be

2 For information about different existing cogni-
tive architectures, see, for example, http://www.
cogsci.rpi.edu/∼rsun/arch.html. See also Sun
(2006) for information on three major cognitive ar-
chitectures.
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Table 1.1: A traditional
hierarchy of levels (Marr, 1982)

Level Object of analysis

1 Computation
2 Algorithms
3 Implementations

argued in many different ways (see Newell,
1990; Sun, 2002; Anderson & Lebiere,
2003). These models in their totality are
clearly more than just simulation tools or
programming languages of some sorts. They
are theoretically pertinent because they rep-
resent theories in a unique and indispensable
way. Cognitive architectures, for example,
are broad theories of cognition in fact.

3. Multiple Levels of Computational
Cognitive Modeling

A strategic decision that one has to make
with respect to cognitive science is the level
of analysis (i.e., level of abstraction) at which
one models cognitive agents. Computational
cognitive modeling can vary in terms of level
of process details and granularity of input
and output, and may be carried out at mul-
tiple levels. Let us look into this issue of mul-
tiple levels of computational cognitive mod-
eling, drawing on the work of Sun, Coward,
and Zenzen (2005).

Traditional theories of multilevel analy-
sis hold that there are various levels each
of which involves a different amount of
computational details (e.g., Marr, 1982). In
Marr’s theory, first, there is the computa-
tional theory level, in which one is supposed
to determine proper computation to be per-
formed, its goals, and the logic of the strate-
gies by which the computation is to be car-
ried out. Second, there is the representation
and algorithm level, in which one is sup-
posed to be concerned with carrying out
the computational theory determined at the
first level and, in particular, the representa-
tion for the input and the output, and the
algorithm for the transformation from the

input to the output. The third level is the
hardware implementation level, in which one
is supposed to physically realize the rep-
resentation and algorithms determined at
the second level. According to Marr, these
three levels are only loosely coupled; that
is, they are relatively independent. Thus,
there are usually a wide array of choices at
each level, independent of the other two.
Some phenomena may be explained at only
one or two levels. Marr (1982) emphasized
the “critical” importance of formulation at
the level of computational theory, that
is, the level at which the goals and pur-
poses of a cognitive process are specified
and internal and external constraints that
make the process possible are worked out
and related to each other and to the goals
of computation. His reason was that the na-
ture of computation depended more on the
computational problems to be solved than
on the way the solutions were to be imple-
mented. In his own words, “an algorithm is
likely to be understood more readily by un-
derstanding the nature of the problem being
solved than by examining the mechanism
(and the hardware) in which it is embod-
ied” (p. 27). Thus, he preferred a top-down
approach – from a more abstract level to a
more detailed level. See Table 1.1 for the
three levels. It often appears that Marr’s
theory centered too much on the relatively
minor differences in computational abstrac-
tions (e.g., algorithms, programs, and im-
plementations; see Sun, Coward, & Zenzen,
2005; Dayan, 2003; Dawson, 2002). It also
appears that his theory represented an over-
simplification of biological reality (e.g., ig-
noring the species-specific or motivation-
relevant representations of the environment
and the close relationship between low-level
implementations and high-level computa-
tion) and as a result represented an over-
rationalization of cognition.

Another variant is Newell and Simon’s
three-level theory. Newell and Simon
(1976) proposed the following three lev-
els: (1) the knowledge level, in which
why cognitive agents do certain things is
explained by appealing to their goals and
their knowledge, and by showing rational
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Table 1.2: Another hierarchy of four levels (Sun, Coward, & Zenzen, 2005)

Level Object of analysis Type of analysis Computational model

1 Inter-agent processes Social/cultural Collections of agents
2 Agents Psychological Individual agents
3 Intra-agent processes Componential Modular construction of agents
4 Substrates Physiological Biological realization of modules

connections between them; (2) the symbol
level, in which the knowledge and goals are
encoded by symbolic structures, and the ma-
nipulation of these structures implements
their connections; and (3) the physical level,
in which the symbol structures and their
manipulations are realized in some physical
form. (Sometimes, this three-level organiza-
tion was referred to as “the classical cognitive
architecture” (Newell, 1990).) The point
being emphasized here was very close to
Marr’s view: What is important is the anal-
ysis at the knowledge level and then at the
symbol level, that is, identifying the task and
designing symbol structures and symbol ma-
nipulation procedures suitable for it. Once
this analysis (at these two levels) is worked
out, the analysis can be implemented in any
available physical means.

In contrast, according to Sun, Cow-
ard, and Zenzen (2005), the differences
(borrowed from computer programming)
among “computation,” algorithms, pro-
grams, and hardware realizations, and their
variations, as have been the focus in Marr’s
(1982) and Newell and Simon’s (1976) level
theories, are relatively insignificant. This is
because, first of all, the differences among
them are usually small and subtle, com-
pared with the differences among the pro-
cesses to be modeled (that is, the differences
among the sociological vs. the psychological
vs. the intra-agent, etc.). Second, these dif-
ferent computational constructs are in real-
ity closely tangled (especially in the biolog-
ical world): One cannot specify algorithms
without at least some considerations of pos-
sible implementations, and what is to be
considered “computation” (i.e., what can be
computed) relies on algorithms, especially

the notion of algorithmic complexity, and
so on. Therefore, one often has to consider
computation, algorithms, and implementa-
tion together somehow (especially in rela-
tion to cognition). Third, according to Sun,
Coward, and Zenzen (2005), the separation
of these computational details failed to pro-
duce any major useful insight in relation to
cognition, but instead produced theoretical
baggage. A reorientation toward a system-
atic examination of phenomena, instead of
tools one uses for modeling them, is thus a
step in the right direction.

The viewpoint of Sun, Coward, and
Zenzen (2005) focused attention on the
very phenomena to be studied and on
their scopes, scales, degrees of abstractness,
and so on. Thus, the differences among
levels of analysis can be roughly cast as
the differences among disciplines, from the
most macroscopic to the most microscopic.
These levels of analysis include the sociolog-
ical level, psychological level, componential
level, and physiological level. See Table 1.2
for these levels. Different levels of modeling
may be established in exact correspondence
with different levels of analysis.

First, there is the sociological level,
which includes collective behavior of agents
(Durkheim, 1895), inter-agent processes
(Vygotsky, 1986), and sociocultural pro-
cesses, as well as interaction between agents
and their (physical and sociocultural) en-
vironments. Only recently, the field of
cognitive science has come to grips with
the fact that cognition is, at least in
part, a social/cultural process (Lave, 1988;
Vygotsky, 1986; Sun, 2006). To ignore the
sociocultural process is to ignore a ma-
jor underlying determinant of individual
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cognition. The lack of understanding of so-
ciological processes may result in the lack of
understanding of some major structures and
constraints in cognition. Thus, any under-
standing of individual cognition can only be
partial and incomplete when sociocultural
processes are ignored or downplayed.3

The second level is the psychological
level, which covers individual behaviors, be-
liefs, knowledge, concepts, and skills (as well
as motivation, emotion, perception, and so
on). In relation to the sociological level, one
can investigate the relationship of individual
beliefs, knowledge, concepts, and skills with
those of the society and the culture, and the
processes of change of these beliefs, knowl-
edge, concepts, and skills, independent of or
in relation to those of the society and the
culture. At this level, one can examine hu-
man behavioral data and compare them with
models and with insights from the sociolog-
ical level and further details from the lower
levels.

The third level is the componential level.
In computational cognitive modeling, the
computational process of an agent is mostly
specified in terms of components of the agent,
that is, in terms of intra-agent processes.
Thus, at this level, one may specify a cog-
nitive architecture and components therein.
In the process of analysis, one specifies
essential computational processes of each
component as well as essential connections
among various components. Thus, analysis
of capacity (functional analysis) and analy-
sis of components (structural analysis) be-
come one and the same at this level. How-
ever, at this level, unlike at the psycholog-
ical level, work is more along the line of
structural analysis than functional analysis
(whereas the psychological level is mostly
concerned with functional analysis). At this
level, one models cognitive agents in terms
of components, with the theoretical lan-
guage of a particular paradigm, for exam-
ple, symbolic computation or connection-
ist networks, or their combinations (Sun

3 See Sun (2001, 2006) for a more detailed argument
of the relevance of sociocultural processes to cogni-
tion and vice versa.

& Bookman, 1994); that is, one imputes
a computational process onto a cognitive
function. Ideas and data from the psycho-
logical level – the psychological constraints
from above, which bear on the division
of components and possible implementa-
tions of components, are among the most
important considerations. This level may
also incorporate biological/physiological ob-
servations regarding plausible divisions and
implementations; that is, it can incorpo-
rate ideas from the next level down – the
physiological level, which offers the biolog-
ical constraints. This level results in cog-
nitive mechanisms, although they are usu-
ally computational and abstract, compared
with physiological-level specifications of
details.

Although this level is essentially in
terms of intra-agent processes, computa-
tional models developed therein may also be
used to model processes at higher levels, in-
cluding the interaction at a sociological level
where multiple individuals are involved.
This can be accomplished, for example, by
examining interactions of multiple copies of
individual agents (Sun, 2006).

The lowest level of analysis is the physio-
logical level, that is, the biological substrate,
or biological implementation, of computa-
tion (Dayan, 2003). This level is the focus of
a range of disciplines, including physiology,
biology, computational neuroscience, cogni-
tive neuroscience, and so on. Although bio-
logical substrates are not among our major
concerns here, they may nevertheless pro-
vide valuable input as to what kind of com-
putation is likely employed and what a plau-
sible architecture (at a higher level) should
be like. The main utility of this level is to
facilitate analysis at higher levels, that is, to
use low-level information to narrow down,
at higher levels, choices in selecting compu-
tational architectures and choices in imple-
menting componential computation.

Although computational cognitive mod-
eling is often limited to within a particu-
lar level at a time (inter-agent, agent, intra-
agent, or substrate), this need not always be
the case: Cross-level analysis and modeling
could be intellectually highly enlightening
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and might be essential to the progress of
computational cognitive modeling in the fu-
ture (Sun, Coward, & Zenzen, 2005; Dayan,
2003). These levels described earlier do in-
teract with each other (e.g., constraining
each other) and may not be easily isolated
and tackled alone. Moreover, their respec-
tive territories are often intermingled, with-
out clear-cut boundaries.

For instance, the cross-level link between
the psychological and the neurophysiologi-
cal level has been emphasized in recent years
(in the form of cognitive neuroscience; see,
e.g., LeDoux, 1992; Damasio, 1994; Milner
& Goodale, 1995). For example, Wilson et
al. (2000) presented a model of human sub-
jects perceiving the orientation of the head
of another person. They accounted for the
empirical findings from psychological exper-
iments with a model based on a popula-
tion code of neurons in the visual cortex,
and thus the underlying neural structures
were used to explain a psychological phe-
nomenon at a higher level. For another in-
stance of cross-level research, the psycholog-
ical and the social level may also be crossed
in many ways to generate new insights into
social phenomena on the basis of cogni-
tive processes (e.g., Boyer & Ramble, 2001;
Sun, 2006) and, conversely, to generate in-
sights into cognitive phenomena on the ba-
sis of sociocultural processes (e.g., Hutchins,
1995; Nisbett et al., 2001). In all of these
cases, shifting appropriately between lev-
els when needed is a critical part of the
work.

Beyond cross-level analysis, there may
be “mixed-level” analysis (Sun, Coward,
Zenzen, 2005). The idea of mixed-level
analysis may be illustrated by the research
at the boundaries of quantum mechanics.
In deriving theories, physicists often start
working in a purely classical language that
ignores quantum probabilities, wave func-
tions, and so forth, and subsequently overlay
quantum concepts on a classical framework
(Greene, 1999; Coward & Sun, 2004). The
very same idea applies to mixing cognitive
modeling and social simulation as well. One
may start with purely social descriptions but
then substitute cognitive principles and cog-

nitive process details for simpler descrip-
tions of agents (e.g., Sun & Naveh, 2004).
Relatedly, there has also been strong inter-
play between psychological models and neu-
rophysiological models – for example, going
from psychological descriptions to neurobi-
ological details.

Note that Rasmussen (1986) proposed
something similar to the view described
above on levels. His hierarchy was a more
general framework but had a number of
constraining properties (see also Vicente &
Wang 1998): (1) all levels deal with the
same system, with each level providing a
different description of the system; (2) each
level has its own terms, concepts, and prin-
ciples; (3) the selection of levels may be de-
pendent on the observer’s purpose, knowl-
edge, and interest; (4) the description at any
level may serve as constraints on the oper-
ation of lower levels, whereas changes at a
higher level may be specified by the effects
of the lower levels; (5) by moving up the
hierarchy, one understands more the signif-
icance of some process details with regard
to the purpose of the system; by mov-
ing down the hierarchy, one understands
more how the system functions in terms of
the process details; and (6) there is also a
means–ends relationship between levels in a
hierarchy.

Note also Ohlsson and Jewett’s (1997)
and Langley’s (1999) idea of abstract cog-
nitive model, which is relevant here as
well. To guard against overinterpretation of
empirical evidence and to avoid the (usu-
ally large) gaps between evidence and full-
blown computational models, Ohlsson and
Jewett (1997) proposed “abstract compu-
tational models,” which were relatively ab-
stract models that were designed to test a
particular (high-level) hypothesis without
taking a stand on all the (lower-level) de-
tails of a cognitive architecture. Similar ideas
were also expressed by Langley (1999), who
argued that the source of explanatory power
of a model often lay at a higher level of ab-
straction.

In summary, there have been various
proposals regarding multiple levels of com-
putational cognitive modeling. Although
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