
Introduction

style:1b. the shadow-producing pin of a sundial.
2c. the custom or plan followed in spelling,
capitalization, punctuation, and typographic
arrangement and display.

—Webster’s New Collegiate Dictionary

The syntax of a programming language tells you what code it is
possible to write—what machines will understand. Style tells
you what you ought to write—what humans reading the code
will understand. Code written with a consistent, simple style is
maintainable, robust, and contains fewer bugs. Code written
with no regard to style contains more bugs, and may simply
be thrown away and rewritten rather than maintained.

Attending to style is particularly important when developing
as a team. Consistent style facilitates communication, because
it enables team members to read and understand each other’s
work more easily. In our experience, the value of consistent
programming style grows exponentially with the number of
people working with the code.

Our favorite style guides are classics: Strunk and White’s The
Elements of Style3 and Kernighan and Plauger’s The Elements
of Programming Style.4 These small books work because they

3 Strunk, William Jr., and E. B. White. The Elements of Style, Fourth Edition.
(Allyn & Bacon, 2000).
4 Kernighan, Brian and P. J. Plauger. The Elements of Programming Style. (New
York: McGraw-Hill, 1988).

1

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521671590 - The Elements of C#Style
Kenneth Baldwin, Andrew Gray and Trevor Misfeldt
Excerpt
More information

http://www.cambridge.org/0521671590
http://www.cambridge.org
http://www.cambridge.org


2 THE ELEMENTS OF C# STYLE

are simple: a list of rules, each containing a brief explanation
and examples of correct, and sometimes incorrect, use. We fol-
lowed the same pattern in this book. This simple treatment—a
series of rules—enabled us to keep this book short and easy to
understand.

Some of the advice that you read here may seem obvious to
you, particularly if you’ve been writing code for a long time.
Others may disagree with some of our specific suggestions
about formatting or indentation. The most important thing
is consistency. What we’ve tried to do here is distill many
decades of development experience into an easily accessible
set of heuristics that encourage consistent coding practice (and
hopefully help you avoid some coding traps along the way).
The idea is to provide a clear standard to follow so program-
mers can spend their time on solving the problems of their
customers instead of worrying about things like naming con-
ventions and formatting.

The guidelines in this book complement the official .NET
design guidelines in the ECMA C# specification5 and
Krzysztof Cwalina and Brad Abrams’ excellent Framework
Design Guidelines.6 This book extends those guidelines to
internal implementation and coding style.

Disclaimer
We have dramatically simplified the code samples used in
this book to highlight the concepts related to a particular
rule. In many cases, these code fragments do not conform to

5 ECMA International, Standard ECMA-334: “C# Language Specification.”
3rd Edition, June 2005. http://www.ecma-international.org/publications/
standards/Ecma-334.htm.
6 Cwalina, Krzysztof and Brad Abrams. Framework Design Guidelines: Conven-
tions, Idioms, and Patterns for Reusable .NET Libraries. Addison-Wesley, 2005.
ISBN 0321246756.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521671590 - The Elements of C#Style
Kenneth Baldwin, Andrew Gray and Trevor Misfeldt
Excerpt
More information

http://www.cambridge.org/0521671590
http://www.cambridge.org
http://www.cambridge.org


INTRODUCTION 3

conventions described elsewhere in this book—they lack real
documentation and fail to meet certain minimum declara-
tive requirements. Do not treat these fragments as definitive
examples of real code!

Acknowledgments
Books like these are necessarily a team effort. Major contribu-
tions came from the original authors of The Elements of Java
Style: Al Vermeulen, Scott Ambler, Greg Bumgardner, Eldon
Metz, Trevor Misfeldt, Jim Shur, and Patrick Thompson, and
the original authors of The Elements of C++ Style: Trevor Mis-
feldt, Greg Bumgardner, and Andrew Gray. Both of those
books have some roots in “C++ Design, Implementation, and
Style Guide,” written by Tom Keffer, the “Rogue Wave Java
Style Guide,” and the “Ambysoft Inc. Coding Standards for
Java,” documents to which Jeremy Smith, Tom Keffer, Wayne
Gramlich, Pete Handsman, and Cris Perdue all contributed.

Thanks also to the reviewers who provided valuable feedback
on drafts of this book, particularly Brad Abrams, Krzysztof
Cwalina, and Mark Vulfson of Microsoft Corporation; Mike
Gunderloy of Larkware; and Michael Gerfen of Evolution
Software Design.

This book would certainly never have happened without the
help and encouragement of the folks at Cambridge University
Press, particularly Jessica Farris and Lauren Cowles, who kept
us on track throughout the writing and publication process.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521671590 - The Elements of C#Style
Kenneth Baldwin, Andrew Gray and Trevor Misfeldt
Excerpt
More information

http://www.cambridge.org/0521671590
http://www.cambridge.org
http://www.cambridge.org


1.

General Principles

While it is important to write software that performs well,
many other issues should concern the professional developer.
Good software gets the job done. But great software, written
with a consistent style, is predictable, robust, maintainable,
supportable, and extensible.

1. Adhere to the Style of the Original
When modifying existing software, your changes should fol-
low the style of the original code.7 Do not introduce a new
coding style in a modification, and do not attempt to rewrite
the old software just to make it match the new style. The use
of different styles within a single source file produces code that
is more difficult to read and comprehend. Rewriting old code
simply to change its style may result in the introduction of
costly yet avoidable defects.

2. Adhere to the Principle of Least Astonishment
The Principle of Least Astonishment suggests you should avoid
doing things that would surprise other software develop-
ers. This implies that the means of interaction and the
behavior exhibited by your software must be predictable and

7 Jim Karabatsos. “When does this document apply?” In “Visual Basic Program-
ming Standards.” (GUI Computing Ltd., 22 March 1996).

4

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521671590 - The Elements of C#Style
Kenneth Baldwin, Andrew Gray and Trevor Misfeldt
Excerpt
More information

http://www.cambridge.org/0521671590
http://www.cambridge.org
http://www.cambridge.org


GENERAL PRINCIPLES 5

consistent,8 and, if not, the documentation must clearly iden-
tify and justify any unusual patterns of use or behavior.

To minimize the chances that anyone would encounter some-
thing surprising in your software, you should emphasize the
following characteristics in the design, implementation, pack-
aging, and documentation of your software:

Simplicity Meet the expectations of your users with
simple classes and simple methods.

Clarity Ensure that each class, interface, method,
variable, and object has a clear purpose.
Explain where, when, why, and how to use
each.

Completeness Provide the minimum functionality that
any reasonable user would expect to find
and use. Create complete documentation;
document all features and functionality.

Consistency Similar entities should look and behave the
same; dissimilar entities should look and
behave differently. Create and apply
consistent standards whenever possible.

Robustness Provide predictable, documented behavior
in response to errors and exceptions. Do
not hide errors and do not force clients to
detect errors.

3. Do It Right the First Time
Apply these rules to any code you write, not just code destined
for production. More often than not, some piece of prototype

8 George Brackett. “Class 6: Designing for Communication: Layout, Structure,
Navigation for Nets and Webs.” In “Course T525: Designing Educational Expe-
riences for Networks and Webs.” (Harvard Graduate School of Education, 26
August 1999).

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521671590 - The Elements of C#Style
Kenneth Baldwin, Andrew Gray and Trevor Misfeldt
Excerpt
More information

http://www.cambridge.org/0521671590
http://www.cambridge.org
http://www.cambridge.org


6 THE ELEMENTS OF C# STYLE

or experimental code will make its way into a finished prod-
uct, so you should anticipate this eventuality. Even if your code
never makes it into production, someone else may still have
to read it. Anyone who must look at your code will appreci-
ate your professionalism and foresight at having consistently
applied these rules from the start.

4. Document Any Deviations
No standard is perfect and no standard is universally appli-
cable. Sometimes you will find yourself in a situation where
you need to deviate from an established standard. Regardless,
strive for clarity and consistency.

Before you decide to ignore a rule, you should first make sure
you understand why the rule exists and what the consequences
are if it is not applied. If you decide you must violate a rule,
then document why you have done so.

This is the prime directive.

5. Consider Using a Code-Checking Tool to Enforce
Coding Standards
A source code analysis tool enables you to check your code
for compliance with coding standards and best practices. For
example, FxCop9 is a popular .NET code analysis tool that
uses reflection, MSIL parsing, and callgraph analysis to check
for conformance to the .NET Framework design guidelines.
FxCop is extensible, and can thus incorporate the particular
coding standards used by your own organization.

9 http://www.gotdotnet.com/team/fxcop/.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521671590 - The Elements of C#Style
Kenneth Baldwin, Andrew Gray and Trevor Misfeldt
Excerpt
More information

http://www.cambridge.org/0521671590
http://www.cambridge.org
http://www.cambridge.org


2.

Formatting

2.1 White Space

6. Include White Space
White space is the area on a page devoid of visible charac-
ters. Code with too little white space is difficult to read and
understand, so use plenty of white space to delineate methods,
comments, code blocks, and expressions clearly.

Use a single space to separate the keywords, parentheses, and
curly braces in control flow statements:

for ·(...)
{
//...

}

while ·(...)
{
//...

}

do
{
//...

} · while ·(...);
switch ·(...)
{
//...

}

7

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521671590 - The Elements of C#Style
Kenneth Baldwin, Andrew Gray and Trevor Misfeldt
Excerpt
More information

http://www.cambridge.org/0521671590
http://www.cambridge.org
http://www.cambridge.org


8 THE ELEMENTS OF C# STYLE

if · (...)
{
//...

}
else · if · (...)
{
//...

}
else
{
//...

}

try
{
//...

}
catch · (Exception)
{
//...

}
finally
{
//...

}

Use a single space on either side of binary operators, except
for the “.” operator:

double length = Math.Sqrt(x ∗ x + y ∗ y);
double xNorm = (length > 0.0) ? (x / length) : x;
double currentTemperature =

engineBlock.Temperature;

Use a single space after commas and semicolons:

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521671590 - The Elements of C#Style
Kenneth Baldwin, Andrew Gray and Trevor Misfeldt
Excerpt
More information

http://www.cambridge.org/0521671590
http://www.cambridge.org
http://www.cambridge.org


FORMATTING 9

Vector normalizedVector =
NormalizeVector(x, y, z);

for (int i = 0; i < 100; i++)
{
//...

}

Use a single space between the parentheses for the parameter
list in a method declaration:

Vector NormalizeVector(double x, double y,
double z)

{
//...

}

Use blank lines to separate each logical section of a method
body:

public void HandleMessage(Message message)
{
string content = message.ReadContent();
switch (message.ErrorLevel)
{
case ErrorLevel.Warning:
//... do some stuff here ...
break;

case ErrorLevel.Severe:
//... do some stuff here ...
break;

default:
//... do some stuff here ...
break;

}
}

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521671590 - The Elements of C#Style
Kenneth Baldwin, Andrew Gray and Trevor Misfeldt
Excerpt
More information

http://www.cambridge.org/0521671590
http://www.cambridge.org
http://www.cambridge.org


10 THE ELEMENTS OF C# STYLE

Use blank lines to separate each method definition in a class:

public void SendEmail()
{
//...

}

public void SendFax()
{
//...

}

7. Use Indented Block Statements
One way to improve code readability is to group individual
statements into block statements and uniformly indent the
content of each block to set off its contents from the sur-
rounding code.

If you generate code using an integrated development envi-
ronment (such as Visual Studio), make sure that everyone on
your team uses consistent indentation options. If you are gen-
erating the code by hand, use two spaces to ensure readability
without taking up too much space (see Rule #9):

void PesterCustomer(Customer customer)
{
customer.SendLetter();
if (customer.HasEmailAddress())
{
customer.SendEmail();
if (customer.IsForgetful())
{
customer.ScheduleReminderEmail();

}
}
if (customer.HasFaxNumber())
{

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521671590 - The Elements of C#Style
Kenneth Baldwin, Andrew Gray and Trevor Misfeldt
Excerpt
More information

http://www.cambridge.org/0521671590
http://www.cambridge.org
http://www.cambridge.org

