
Part I

Propositional Logic
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1 Classical Logic and the Material
Conditional

1.1 Introduction

1.1.1 The first purpose of this chapter is to review classical propo-

sitional logic, including semantic tableaux. The chapter also sets out

some basic terminology and notational conventions for the rest of the

book.

1.1.2 In the second half of the chapter we also look at the notion of the

conditional that classical propositional logic gives, and, specifically, at some

of its shortcomings.

1.1.3 The point of logic is to give an account of the notion of validity: what

follows from what. Standardly, validity is defined for inferences couched in

a formal language, a language with a well-defined vocabulary and grammar,

the object language. The relationship of the symbols of the formal language

to the words of the vernacular, English in this case, is always an important

issue.

1.1.4 Accounts of validity themselves are in a language that is normally

distinct from the object language. This is called the metalanguage. In our

case, this is simply mathematical English. Note that ‘iff’ means ‘if and

only if’.

1.1.5 It is also standard to define two notions of validity. The first

is semantic. A valid inference is one that preserves truth, in a certain

sense. Specifically, every interpretation (that is, crudely, a way of assign-

ing truth values) that makes all the premises true makes the conclu-

sion true. We use the metalinguistic symbol ‘|=’ for this. What distin-

guishes different logics is the different notions of interpretation they

employ.

3
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4 An Introduction to Non-Classical Logic

1.1.6 The second notion of validity is proof-theoretic. Validity is defined in

terms of some purely formal procedure (that is, one that makes reference

only to the symbols of the inference). We use the metalinguistic symbol ‘�’

for this notion of validity. In our case, this procedure will (mainly) be one

employing tableaux. What distinguish different logics here are the different

tableau procedures employed.

1.1.7 Most contemporary logicians would take the semantic notion of valid-

ity to be more fundamental than the proof-theoretic one, though the matter

is certainly debatable. However, given a semantic notion of validity, it is

always useful to have a proof-theoretic notion that corresponds to it, in

the sense that the two definitions always give the same answers. If every

proof-theoretically valid inference is semantically valid (so that � entails |=)

the proof-theory is said to be sound. If every semantically valid inference is

proof-theoretically valid (so that |= entails �) the proof-theory is said to be

complete.

1.2 The Syntax of the Object Language

1.2.1 The symbols of the object language of the propositional calcu-

lus are an infinite number of propositional parameters:1 p0, p1, p2, . . . ;

the connectives: ¬ (negation), ∧ (conjunction), ∨ (disjunction), ⊃
(material conditional), ≡ (material equivalence); and the punctuation

marks: (, ).

1.2.2 The (well-formed) formulas of the language comprise all, and only, the

strings of symbols that can be generated recursively from the propositional

parameters by the following rule:

If A and B are formulas, so are ¬A, (A ∨ B), (A ∧ B), (A ⊃ B), (A ≡ B).

1.2.3 I will explain a number of important notational conventions here. I

use capital Roman letters, A,B,C, . . . , to represent arbitrary formulas of the

object language. Lower-case Roman letters, p, q, r, . . . , represent arbitrary,

1 These are often called ‘propositional variables’.
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Classical Logic and the Material Conditional 5

but distinct, propositional parameters. I will always omit outermost paren-

theses of formulas if there are any. So, for example, I write (A ⊃ (B ∨ ¬C))

simply as A ⊃ (B ∨ ¬C). Upper-case Greek letters, �, �, . . . , represent arbi-

trary sets of formulas; the empty set, however, is denoted by the (lower case)

φ, in the standard way. I often write a finite set, {A1, A2, . . . ,An}, simply as

A1,A2, . . . ,An.

1.3 Semantic Validity

1.3.1 An interpretation of the language is a function, ν, which assigns to each

propositional parameter either 1 (true), or 0 (false). Thus, we write things

such as ν(p) = 1 and ν(q) = 0.

1.3.2 Given an interpretation of the language, ν, this is extended to a func-

tion that assigns every formula a truth value, by the following recursive

clauses, which mirror the syntactic recursive clauses:2

ν(¬A) = 1 if ν(A) = 0, and 0 otherwise.

ν(A ∧ B) = 1 if ν(A) = ν(B) = 1, and 0 otherwise.

ν(A ∨ B) = 1 if ν(A) = 1 or ν(B) = 1, and 0 otherwise.

ν(A ⊃ B) = 1 if ν(A) = 0 or ν(B) = 1, and 0 otherwise.

ν(A ≡ B) = 1 if ν(A) = ν(B), and 0 otherwise.

1.3.3 Let � be any set of formulas (the premises); then A (the conclusion) is

a semantic consequence of � (� |= A) iff there is no interpretation that makes

all the members of � true and A false, that is, every interpretation that

makes all the members of � true makes A true. ‘� 	|= A’ means that it is not

the case that � |= A.

1.3.4 A is a logical truth (tautology) (|= A) iff it is a semantic consequence of

the empty set of premises (φ |= A), that is, every interpretation makes A

true.

2 The reader might be more familiar with the information

contained in these clauses when it is depicted in the form

of a table, usually called a truth table, such as the one for

conjunction displayed:

∧ 1 0
1 1 0

0 0 0
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6 An Introduction to Non-Classical Logic

1.4 Tableaux

1.4.1 A tree is a structure that looks, generally, like this:3

.

↓
.

↙ ↘
. .

↓ ↙ ↘
. . .

The dots are called nodes. The node at the top is called the root. The nodes at

the bottom are called tips. Any path from the root down a series of arrows as

far as you can go is called a branch. (Later on we will have trees with infinite

branches, but not yet.)

1.4.2 To test an inference for validity, we construct a tableau which begins

with a single branch at whose nodes occur the premises (if there are any) and

the negation of the conclusion. We will call this the initial list. We then apply

rules which allow us to extend this branch. The rules for the conditional

are as follows:

A ⊃ B
↙ ↘

¬A B

¬(A ⊃ B)

↓
A

↓
¬B

The rule on the right is to be interpreted as follows. If we have a formula

¬(A ⊃ B) at a node, then every branch that goes through that node is

extended with two further nodes, one for A and one for ¬B. The rule on

the left is interpreted similarly: if we have a formula A ⊃ B at a node, then

every branch that goes through that node is split at its tip into two branches;

one contains a node for ¬A; the other contains a node for B.

3 Strictly speaking, for those who want the precise mathematical definition, it is a partial

order with a unique maximum element, x0, such that for any element, xn, there is a

unique finite chain of elements xn ≤ xn−1 ≤ · · · ≤ x1 ≤ x0.
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Classical Logic and the Material Conditional 7

1.4.3 For example, to test the inference whose premises are A ⊃ B, B ⊃ C,

and whose conclusion is A ⊃ C, we construct the following tree:

A ⊃ B

↓
B ⊃ C

↓
¬(A ⊃ C)

↓
A

↓
¬C

↙ ↘
¬A B

↙ ↓ ↓ ↘
¬B C ¬B C

× × × ×

The first three formulas are the premises and negated conclusion. The next

two formulas are produced by the rule for the negated conditional applied to

the negated conclusion; the first split on the branch is produced by applying

the rule for the conditional to the first premise; the next splits are produced

by applying the same rule to the second premise. (Ignore the ‘×’s: we will

come back to those in a moment.)

1.4.4 The other connectives also have rules, which are as follows.

¬¬A⏐�
A

A ∨ B

↙ ↘
A B

¬(A ∨ B)⏐�
¬A⏐�
¬B
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8 An Introduction to Non-Classical Logic

¬(A ∧ B)

↙ ↘
¬A ¬B

A ∧ B⏐�
A⏐�
B

A ≡ B

↙ ↘
A ¬A⏐� ⏐�
B ¬B

¬(A ≡ B)

↙ ↘
A ¬A⏐� ⏐�

¬B B

Intuitively, what a tableau means is the following. If we apply a rule to a

formula, then if that formula is true in an interpretation, so are the for-

mulas below on at least one of the branches that the rule generates. (Of

course, there may be only one such branch.) This is a useful mnemonic for

remembering the rules. It must be stressed, though, that officially the rules

are purely formal.

1.4.5 A tableau is complete iff every rule that can be applied has been applied.

By applying the rules over and over, we may always construct a complete

tableau. In the present case, the branches of a completed tableau are always

finite,4 but in the tableaux of some subsequent chapters they may be

infinite.

1.4.6 A branch is closed iff there are formulas of the form A and ¬A on two of

its nodes; otherwise it is open. A closed branch is indicated by writing an ×
at the bottom. A tableau itself is closed iff every branch is closed; otherwise

it is open. Thus the tableau of 1.4.3 is closed: the leftmost branch contains

A and ¬A; the next contains A and ¬A (and C and ¬C); the next contains B

and ¬B; the rightmost contains C and ¬C.

1.4.7 A is a proof-theoretic consequence of the set of formulas �(� � A) iff

there is a complete tree whose initial list comprises the members of � and

the negation of A, and which is closed. We write � A to mean that φ � A,

4 This is not entirely obvious, though it is not difficult to prove.
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Classical Logic and the Material Conditional 9

that is, where the initial list of the tableau comprises just ¬A. ‘� 	� A’ means

that it is not the case that � � A.5

1.4.8 Thus, the tree of 1.4.3 shows that A ⊃ B, B ⊃ C � A ⊃ C. Here is

another, to show that � ((A ⊃ B) ∧ (A ⊃ C)) ⊃ (A ⊃ (B ∧ C)). To save space,

we omit arrows where a branch does not divide.

¬(((A ⊃ B) ∧ (A ⊃ C)) ⊃ (A ⊃ (B ∧ C)))

(A ⊃ B) ∧ (A ⊃ C)

¬(A ⊃ (B ∧ C))

(A ⊃ B)

(A ⊃ C)

A

¬(B ∧ C)

↙ ↘
¬B ¬C

↙ ⏐� ⏐� ↘
¬A B ¬A B
× × × ↓ ↘

¬A C
× ×

Note that when we find a contradiction on a branch, there is no point in

continuing it further. We know that the branch is going to close, what-

ever else is added to it. Hence, we need not bother to extend a branch as

soon as it is found to close. Notice also that, wherever possible, we apply

rules that do not split branches before rules that split branches. Though

this is not essential, it keeps the tableau simpler, and is therefore useful

practically.

1.4.9 In practice, it is also a useful idea to put a tick at the side of a for-

mula once one has applied a rule to it. Then one knows that one can forget

about it.

5 There may, in fact, be several completed trees for an inference, depending upon the

order of the premises in the initial list and the order in which rules are applied. For-

tunately, they all give the same result, though this is not entirely obvious. See 1.14,

problem 5.
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10 An Introduction to Non-Classical Logic

1.5 Counter-models

1.5.1 Here is another example, to show that (p ⊃ q) ∨ (r ⊃ q) 	� (p ∨ r) ⊃ q.

(p ⊃ q) ∨ (r ⊃ q)

¬((p ∨ r) ⊃ q)

(p ∨ r)

¬q

↙ ↘
(p ⊃ q) (r ⊃ q)

↙ ↓ ↓ ↘
¬p q ¬r q

↙ ↓ × ↓ ↘ ×
p r p r

× ×

The tableau has two open branches. The leftmost one is emphasised in bold

for future reference.

1.5.2 The tableau procedure is, in effect, a systematic search for an inter-

pretation that makes all the formulas on the initial list true. Given an open

branch of a tableau, such an interpretation can, in fact, be read off from the

branch.6

1.5.3 The recipe is simple. If the propositional parameter, p, occurs at a

node on the branch, assign it 1; if ¬p occurs at a node on the branch, assign

it 0. (If neither p nor ¬p occurs in this way, it may be assigned anything one

likes.)

1.5.4 For example, consider the tableau of 1.5.1 and its (bolded) leftmost

open branch. Applying the recipe gives the interpretation, ν, such that

ν(r) = 1, and ν(p) = ν(q) = 0. It is simple to check directly that ν((p ⊃ q) ∨
(r ⊃ q)) = 1 and ν((p ∨ r) ⊃ q) = 0. Since p is false, p ⊃ q is true, as is

(p ⊃ q)∨ (r ⊃ q). Since r is true, p∨ r is true; but q is false; hence, (p∨ r) ⊃ q

is false.

6 If one thinks of constructing a tableau as a search procedure for a counter-model,

then the soundness and completeness theorems constitute, in effect, a proof that the

procedure always gives the right result, that is, which verifies the algorithm in question.
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Classical Logic and the Material Conditional 11

1.5.4a Note that the tableau of 1.4.8 shows that any inference of the form

in question is valid. That is, A, B and C can be any formulas. To show that an

inference is invalid, we have to construct a counter-model, and this means

assigning truth values to particular formulas. This is why the example just

given uses ‘p’, ‘q’ and ‘r’, not ‘A’, ‘B’ and ‘C’. One may say that an inference

expressed using schematic letters (‘A’s and ‘B’s) is invalid, but this must

mean that there are some formulas that can be substituted for these letters

to make it so. Thus, we may write A � B, since p � q. But note that this does

not rule out the possibility that some inferences of that form are valid, e.g.,

p � q ∨ ¬q.

1.5.5 As one would hope, the tableau procedure we have been looking at is

sound and complete with respect to the semantic notion of consequence,

i.e., if � is a finite set of sentences, � � A iff � |= A. That is, the search

procedure really works. If there is an interpretation that makes all the for-

mulas on the initial list true, the tableau will have an open branch which,

in effect, specifies one. And if there is no such interpretation, every branch

will close. These facts are not obvious. The proof is in 1.11.7

1.6 Conditionals

1.6.1 In the remainder of this chapter, we look at the notion of condition-

ality that the above, classical, semantics give us, and at its inadequacy. But

first, what is a conditional?

1.6.2 Conditionals relate some proposition (the consequent) to some other

proposition (the antecedent) on which, in some sense, it depends. They are

expressed in English by ‘if’ or cognate constructions:

If the bough breaks (then) the cradle will fall.

The cradle will fall if the bough breaks.

The bough breaks only if the cradle falls.

7 The restriction to finite � is due to the fact that tableaux have been defined only for

finite sets of premises. It is possible to define tableaux for infinite sets of premises as

well (not putting all the premises at the start, but introducing them, one by one, at

regular intervals down the branches). If one does this, the soundness and completeness

results generalise to arbitrary sets of premises. We will take up this matter again in

Chapter 12 (Part II), where the matter assumes more significance.
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