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1
Introduction

The theory of elliptic partial differential equations has its origins in the eight-
eenth century, and the present chapter outlines a few of the most important
historical developments up to the beginning of the twentieth century. We con-
centrate on those topics that will play an important role in the main part of the
book, and change the notation of the original authors, wherever necessary, to
achieve consistency with what comes later. Such a brief account cannot pre-
tend to be a balanced historical survey, but this chapter should at least serve to
introduce the main ideas of the book in a readable manner.

To limit subsequent interruptions, we fix some notational conventions at the
outset. LetÄdenote a bounded, open subset ofRn (wheren=2 or 3 in this chap-
ter), and assume that the boundary0= ∂Ä is sufficiently regular for the outward
unit normalν and the element of surface areadσ to make sense. Given a function
u defined onÄ, we denote the normal derivative by∂νu or ∂u/∂ν. Sometimes
we shall work with both the interior and the exterior domains (see Figure 1)

Ä− = Ä and Ä+ = Rn\(Ä− ∪ 0),

in which case, if the functionu is defined onÄ±, we write

γ±u(x) = lim
y→x,y∈Ä±

u(y) and

∂±ν u(x) = lim
y→x,y∈Ä±

ν(x) · gradu(y) for x ∈ 0,

whenever these limits exist. The Euclidean norm ofx ∈ Rn is denoted by|x|.
The prototype of an elliptic partial differential equation is4u = 0, where4

denotes the Laplace operator (or Laplacian), defined, inn dimensions, by

4u(x) =
n∑

j=1

∂2u

∂x2
j

. (1.1)

1
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2 Introduction

Figure 1. Interior and exterior domainsÄ− andÄ+ with boundary0.

When4u = 0 onÄ, we say that the functionu isharmoniconÄ. In two dimen-
sions, there is a close connection between the Laplace equation and complex-
analytic functions. Indeed,u+ iv is differentiable as a function of the complex
variablex1+ ix2 if and only if u andv satisfy the Cauchy–Riemann equations,

∂u

∂x1
= ∂v

∂x2
and

∂u

∂x2
= − ∂v

∂x1
, (1.2)

in which case4u = 0 = 4v and we say thatu andv areconjugate harmonic
functions.

The pair of equations (1.2) appeared in Jean-le-Rond d’Alembert’sEssai
d’une Nouvelle Th́eorie de la Ŕesistance des Fluides, published in 1752. At
around the same time, Leonhard Euler derived the equations of motion for an
irrotational fluid in three dimensions. He showed that the fluid velocity has the
form gradu, and that for a steady flow the velocity potential satisfies4u = 0.
This work of d’Alembert and Euler is discussed by Truesdell [100]; see also
Dauben [18, p. 311].

In 1774, Joseph-Louis Lagrange won thePrix de l’Academie Royale des
Sciencesfor a paper [51] on the motion of the moon; see also [30, pp. 478–479,
1049]. This paper drew attention to two functions that later came to be known
as thefundamental solution,

G(x, y) = 1

4π |x − y| for x, y ∈ R3 and x 6= y, (1.3)

and theNewtonian potential,

u(x) =
∫
R3

G(x, y) f (y)dy. (1.4)

Up to an appropriate constant of proportionality,G(x, y) is the gravitational
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potential atx due to a unit point mass aty, and thusu is the gravitational
potential due to a continuous mass distribution with densityf . The Coulomb
force law in electrostatics has the same inverse-square form as Newton’s law
of gravitational attraction. Thus,u also describes the electrostatic potential due
to a charge distribution with densityf ; mathematically, the only change is that
f may be negative.

In a paper of 1782 entitledThéorie des attractions des sphéröıdes et de
la figure des plaǹetes, Pierre Simon de Laplace observed that the Newtonian
potential (1.4) satisfies4u = 0 outside the support off , writing4u in spherical
polar coordinates. Later, in a paper of 1787 on the rings of Saturn, he gave the
same result in Cartesian and cylindrical coordinates. Birkhoff and Merzbach
[7, pp. 335–338] give English translations of relevant excerpts from these two
works.

By transforming to polar coordinates centred atx, i.e., by using the substitu-
tion y = x+ ρωwhereρ= |y−x|, it is easy to see that the Newtonian potential
(1.4) makes sense even ifx lies within the support off , becausedy= ρ2 dρ dω.
However, the second partial derivatives ofG areO(ρ−3), and this singularity
is too strong to allow a direct calculation of4u by simply differentiating under
the integral sign. In fact, it turns out that

−4u = f

everywhere onR3, an equation derived by Sim´eon-Denis Poisson [7, pp. 342–
346] in 1813; see Exercise 1.1 for the special case whenf is radially symmetric.

Poisson made other important contributions to potential theory. A paper
[18, p. 360] of 1812 dealt with the distribution of electric charge on a con-
ductorÄ. In equilibrium, mutual repulsion causes all of the charge to reside on
the surface0 of the conducting body, and0 is an equipotential surface. The
electrical potential atx ∈ R3 due to a charge distribution with surface density
ψ on0 is given by the integral

SLψ(x) =
∫
0

G(x, y)ψ(y)dσy, (1.5)

so SLψ is constant on0 if ψ is the equilibrium distribution. The function
SLψ is known as thesingle-layer potentialwith densityψ , and satisfies the
Laplace equation on the complement of0, i.e., onÄ+ ∪Ä−. Although SLψ
is continuous everywhere, Poisson found that its normal derivative has a jump
discontinuity:

∂+ν SLψ − ∂−ν SLψ = −ψ on0. (1.6)

Exercise 1.2 proves an easy special case of this result.
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A further stimulus to the study of the Laplace equation was Jean-Baptiste-
Joseph Fourier’s theory of heat diffusion. In 1807, he published a short note
containing the heat equation,

∂u

∂t
− a4u = 0,

whereu = u(x, t) is the temperature at positionx and timet , anda > 0
is the thermal conductivity (here assumed constant). For a bodyÄ in thermal
equilibrium,∂u/∂t = 0, so if one knows the temperature distributiong on the
bounding surface0, then one can determine the temperature distributionu in
the interior by solving the boundary value problem

4u = 0 onÄ,

u = g on0.
(1.7)

This problem later became known as theDirichlet problem, and for particular,
simple choices ofÄ, Fourier constructed solutions using separation of variables;
see [7, pp. 132–138]. His book,Théorie analytique de la chaleur, was published
in 1822.

In 1828, George Green publishedAn Essay on the Application of Mathemati-
cal Analysis to the Theories of Electricity and Magnetism[31], [33, pp. 1–115];
an extract appears in [7, pp. 347–358]. In his introduction, Green discusses
previous work by other authors including Poisson, and writes that

although many of the artifices employed in the works before mentioned are remarkable
for their elegance, it is easy to see they are adapted only to particular objects, and that
some general method, capable of being employed in every case, is still wanting.

Green’s “general method” was based on his two integral identities:

∫
Ä

gradw · gradu dx=
∫
0

w
∂u

∂ν
dσ −

∫
Ä

w4u dx (1.8)

and ∫
Ä

(w4u− u4w)dx =
∫
0

(
w
∂u

∂ν
− u

∂w

∂ν

)
dσ, (1.9)

whereu andw are arbitrary, sufficiently regular functions. Using (1.9) with
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w(y) = G(x, y), he obtained a third identity,

u(x) = −
∫
Ä

G(x, y)4u(y)dy−
∫
0

u(y)
∂

∂νy
G(x, y)dσy

+
∫
0

G(x, y)
∂u

∂ν
(y)dσy for x ∈ Ä. (1.10)

Actually, Green derived a more general result, showing that (1.10) is valid when
G(x, y) is replaced by a function of the form

Gr(x, y) = G(x, y)+ V(x, y),

whereV is any smooth function satisfying4yV(x, y) = 0 for x, y ∈ Ä. In
other words, Gr(x, y) has the same singular behaviour asG(x, y)wheny = x,
and satisfies4yGr(x, y) = 0 for y 6= x. Green gave a heuristic argument
for the existence of a unique such Gr satisfying Gr(x, y) = 0 for all y ∈ 0:
physically, Gr(x, y) represents the electrostatic potential aty due to a point
charge atx when0 is an earthed conductor. This particular Gr became known
as theGreen’s functionfor the domainÄ, and yields an integral representation
formula for the solution of the Dirichlet problem (1.7),

u(x) = −
∫
0

g(y)
∂

∂νy
Gr(x, y)dσy for x ∈ Ä. (1.11)

In practice, finding an explicit formula for Gr is possible only for very simple
domains. For instance, ifÄ is the open ball with radiusr > 0 centred at the
origin, then

Gr(x, y) = 1

4π |x − y| −
1

4π

r

|x||x] − y| ,

wherex] = (r/|x|)2x is the image ofx under a reflection in the sphere0. In
this case, the integral (1.11) is given by

u(x) = 1

4πr

∫
|y|=r

g(y)
r 2− |x|2
|x − y|3 dσy for |x| < r ,

a formula obtained by Poisson [18, p. 360] in 1813 by a different method.
Green also used (1.10) to derive a kind of converse to the jump relation (1.6),
by showing that if a functionu satifies the Laplace equation onÄ+ ∪ Ä−, is
continuous everywhere and decays appropriately at infinity, thenu = SLψ ,
whereψ = −(∂+ν u− ∂−ν u).
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Green’sEssaydid not begin to become widely known until 1845, when
William Thomson (Lord Kelvin) introduced it to Joseph Liouville in Paris [99,
pp. 113–121]. Eventually, Thomson had the work published in three parts dur-
ing 1850–1854 in Crelle’sJournal f̈ur die reine und angewandte Mathematik
[31].

Meanwhile, Poisson and others continued to apply the method of separa-
tion of variables to a variety of physical problems. A key step in many such
calculations is to solve a two-point boundary value problem with a parameter
λ > 0,

− d

dx

(
a

du

dx

)
+ (b− λw)u = 0 for 0< x < 1,

du

dx
−m0u = 0 atx = 0,

du

dx
−m1u = 0 atx = 1,

(1.12)

wherea, b andw are known real-valued functions ofx such thata > 0 and
w > 0, and wherem0 andm1 are known constants (possibly∞, in which case
the boundary condition is to be interpreted asu = 0). The main features of the
problem (1.12) can be seen in the simplest example:a = w = 1 andb = 0.
The general solution of the differential equation is then a linear combination of
sin(
√
λx) and cos(

√
λx), and the boundary conditions imply that the solution is

identically zero unless the parameterλsatisfies a certain transcendental equation
having a sequence of positive solutionsλ1 ≤ λ2 ≤ λ3 ≤ · · · with λ j →∞. In
the general case, the numberλ j was subsequently called aneigenvaluefor the
problem, and any corresponding, non-trivial solutionu = φ j of the differential
equation was called aneigenfunction. For the special casea = w = 1, Poisson
showed in 1826 that eigenfunctions corresponding to distinct eigenvalues are
orthogonal, i.e.,

∫ 1

0
φ j (x)φk(x)w(x)dx = 0 if λ j 6= λk,

and that all eigenvalues are real; see [62, p. 433]. A much deeper analysis was
given by Charles Fran¸cois Sturm in 1836, who established many important prop-
erties of the eigenfunctions, as well as proving the existence of infinitely many
eigenvalues. Building on Sturm’s work, Liouville showed in two papers from
1836 and 1837 that an arbitrary functionf could be expanded in a generalised
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Fourier series,

f (x) =
∞∑
j=1

cjφ j (x), where cj =
∫ 1

0 φ j (x) f (x)w(x)dx∫ 1
0 φ j (x)2w(x)dx

,

thereby justifying many applications of the method of separation of variables.
Excerpts from the papers of Sturm and Liouville are reproduced in [7, pp. 258–
281]; see also [62, Chapter X].

Carl Friedrich Gauss wrote a long paper [26] on potential theory in 1839;
see also [7, pp. 358–361] and L¨utzen [62, pp. 583–586]. He re-derived many
of Poisson’s results, including (1.6), using more rigorous arguments, and was
apparently unaware of Green’s work. Gauss sought to find, for an arbitrary
conductorÄ, the equilibrium charge distribution with total chargeM , i.e., in
mathematical terms, he sought to find a functionψ whose single-layer potential
SLψ is constant on0, subject to the constraint that

∫
0
ψ dσ = M . Introducing

an arbitrary functiong, he considered the quadratic functional

Jg(φ) =
∫
0

(Sφ − 2g)φ dσ,

whereSφ = γ+ SLφ = γ− SLφ denotes the boundary values of the single-
layer potential, or, explicitly,

Sφ(x) =
∫
0

G(x, y)φ(y)dσy for x ∈ 0.

In the caseg = 0, the quantityJg(φ) has a physical meaning: it is proportional
to the self-energy of the charge distributionφ; see Kellogg [45, pp. 79–80].

One easily sees thatJg(φ) is bounded below for allφ in the classVM of
functions satisfying

∫
0
φ dσ = M andφ ≥ 0 on 0. Also, Jg(φ + δφ) =

Jg(φ)+ δJg + O(δφ2), where the first variation ofJg is given by

δJg = δJg(φ, δφ) = 2
∫
0

(Sφ − g) δφ dσ.

Suppose that the minimum value ofJg over the classVM is achieved when
φ = ψ . It follows that δJg(ψ, δφ) = 0 for all δφ satisfying

∫
0
δφ dσ = 0

andψ + δφ ≥ 0 on0, and thereforeSψ − g is constant on any component
of 0 whereψ > 0. Gauss showed that ifg = 0, thenψ > 0 everywhere
on 0, and thus deduced the existence of an equilibrium potential from the
existence of a minimiser forJ0. He also showed that this minimiser is unique,
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and gave an argument for the existence of a solutionψ to the boundary integral
equation

Sψ = g on0. (1.13)

The single-layer potential of thisψ is the solution of the Dirichlet problem for
the Laplace equation, i.e.,u = SLψ satisfies (1.7).

In a series of papers from 1845 to 1846, Liouville studied the single-layer
potential when0 is an ellipsoid, solving the integral equation (1.13) by adapting
his earlier work on the eigenvalue problem (1.12). Letw be the equilibrium
density for0, normalised so thatSw = 1. Liouville showed that if0 is an
ellipsoid, then

S(wψ j ) = µ jψ j for j = 1, 2, 3,. . . ,

where theψ j areLamé functions, and theµ j are certain constants satisfying

µ1 ≥ µ2 ≥ µ3 ≥ · · · > 0 withµ j → 0 as j →∞.

He established the orthogonality property∫
0

ψ j (x)ψk(x)w(x)dσx = 0 for j 6= k,

and concluded that the solution of (1.13) is

ψ(x) = w(x)
∞∑
j=1

cjψ j (x), where cj =
∫
0
ψ j (x)g(x)w(x)dσx∫
0
ψ j (x)2w(x)dσx

.

In his unpublished notebooks (described in [62, Chapter XV]) Liouville went
a considerable distance towards generalising these results to the case of an
arbitrary surface0, inventing in the process the Rayleigh–Ritz procedure for
finding the eigenvalues and eigenfunctions, 20 years before Rayleigh [97] and
60 years before Ritz [98].

During the 1840s, Thomson and Peter Gustav Lejeune Dirichlet separately
advanced another type of existence argument [7, pp. 379–387] that became
widely known on account of its use by Riemann in his theory of complex
analytic functions. Riemann introduced the termDirichlet’s principle for this
method of establishing the existence of a solution to the Dirichlet problem,
although a related variational argument had earlier been used by Green [32]. If
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one considers the functional

J(v) =
∫
Ä

|gradv|2 dx

for v in a class of sufficiently regular functionsVg satisfyingv = g on0, then
it seems obvious, becauseJ(v) ≥ 0 for all v ∈ Vg, that there exists au ∈ Vg

satisfying

J(u) ≤ J(v) for all v ∈ Vg. (1.14)

Given anyw such thatw = 0 on0, and any constanth, the functionv = u+ hw
belongs toVg, and, assuming the validity of the first Green identity (1.8), simple
manipulations yield

J(v) = J(u)− 2h
∫
Ä

w4u dx+ h2J(w).

Here, the constanth is arbitrary, so the minimum condition (1.14) implies that∫
Ä

w4u dx= 0 wheneverw = 0 on0.

By choosingw to take the same sign as4u throughoutÄ, we conclude that
u is a solution of the Dirichlet problem for the Laplace equation. Conversely,
each solution of the Dirichlet problem minimises the integral. Dirichlet also
established the uniqueness of the minimiseru. In fact, if bothu1 andu2 minimise
J in the class of functionsVg, then the differencew = u1− u2 vanishes on0,
and, arguing as above withh = 1, we find thatJ(u1) = J(u2)+ J(w). Thus,
J(w) = 0, sow is constant, and hence identically zero, implying thatu1 = u2

onÄ.
In 1869, H. Weber [104] employed the quadratic functionalJ(v) in a

Rayleigh–Ritz procedure to show the existence of eigenfunctions and eigen-
values for the Laplacian on a general bounded domain. He minimisedJ(v)
subject totwo constraints:v = 0 on0, and

∫
Ä
v(x)2 dx = 1. If we suppose

that a minimum is achieved whenv = u1, then by arguing as above we see that∫
Ä

w4u1 dx = 0 wheneverw = 0 on0 and
∫
Ä

w(x)u1(x)dx = 0.

Here, the extra restriction onw arises from the second of the constraints in
the minimisation problem. Weber showed that−4u1 = λ1u1 on Ä, where
λ1 = J(u1). In fact, for an arbitraryv satisfyingv = 0 on 0, if we put
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a = ∫
Ä
vu1 dx andw = v − au1, thenw = 0 on0, and

∫
Ä
wu1 dx = 0, so by

the first Green identity,∫
Ä

v(−4u1)dx = −
∫
Ä

(w + au1)4u1 dx

= a

(
J(u1)−

∫
0

u1
∂u1

∂ν
dσ

)
= λ1

∫
Ä

vu1 dx,

remembering thatu1 = 0 on0. Next, Weber minimisedJ(v) subject to three
constraints: the two previous ones and in addition

∫
Ä
vu1 dx = 0. The minimiser

u2 is the next eigenfunction, satisfying−4u2 = λ2u2 on Ä, whereλ2 =
J(u2) ≥ λ1. Continuing in this fashion, he obtained sequences of (orthonormal)
eigenfunctionsu j and corresponding eigenvaluesλ j , with 0 < λ1 ≤ λ2 ≤
λ3 ≤ · · · .

Although simple and beautiful, Dirichlet’s principle (in its na¨ıve form) is
based on a false assumption, namely, that a minimiseru ∈ Vg must exist
becauseJ(v) ≥ 0 for all v ∈ Vg. This error was pointed out by Karl Theodore
Wilhelm Weierstraß [7, pp. 390–391] in 1870, and the same objection applies
to the variational arguments of Gauss, Liouville and Weber. During the period
from 1870 to 1890, alternative existence proofs for the Dirichlet problem were
devised by Hermann Amandus Schwarz, Carl Gottfried Neumann and Jules
Henri Poincar´e; see G˚arding [25] and Kellogg [45, pp. 277–286]. We shall
briefly describe the first of these proofs, Neumann’sMethode des arithmetischen
Mittels, after first introducing some important properties of thedouble-layer
potential,

DL ψ(x) =
∫
0

ψ(y)
∂

∂νy
G(x, y)dσy for x /∈ 0.

A surface potential of this type appears in the third Green identity (1.10), with
ψ = u|0; note the similarity with the general Poisson integral formula (1.11).

The double layer potential has a very simple form when the density is constant
on0. In fact

DL 1(x) =
{
−1 for x ∈ Ä−,
0 for x ∈ Ä+, (1.15)

as one sees by takingu = 1 in (1.10) ifx ∈ Ä−, and by applying the divergence
theorem ifx ∈ Ä+. Obviously, DLψ is harmonic onÄ±, but the exampleψ = 1
shows that the double-layer potential can have a jump discontinuity, and it turns
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out that in general

γ+DL ψ − γ− DL ψ = ψ on0;

cf. (1.6). Thus, if we let

Tψ = γ+DL ψ + γ− DL ψ, (1.16)

then

γ±DL ψ = 1
2(±ψ + Tψ) on0. (1.17)

The operatorT may be written explicitly as

Tψ(x) = −ψ(x)+ 2
∫
0

[ψ(y)− ψ(x)] ∂
∂νy

G(x, y)dσy for x ∈ 0,

and we see in particular thatT1= −1, in agreement with (1.15).
Neumann’s existence proof built on earlier work by A. Beer [4], who, in

1856, sought a solution to the Dirichlet problem (1.7) in the form of a double-
layer potentialu = DL ψ . Beer worked in two dimensions, and so used the
fundamental solution

G(x, y) = 1

2π
log

1

|x − y| for x, y ∈ R2 and x 6= y.

In view of (1.17), the boundary conditionγ−u = g on0 leads to the integral
equation

−ψ + Tψ = 2g on0. (1.18)

The form of this equation suggests application of the method of successive
approximations, a technique introduced by Liouville in 1830 to construct the
solution to a two-point boundary value problem; see [62, p. 447]. Beer defined
a sequenceψ0, ψ1, ψ2, . . . by

ψ0 = −2g and ψ j = Tψ j−1− 2g for j ≥ 1,

which, if it converged uniformly, would yield the desired solutionψ =
lim j→∞ ψ j . However, Beer did not attempt to prove convergence; see Hellinger
and Toeplitz [38, pp. 1345–1349].

The kernel appearing in the double layer potential has the form

∂

∂νy
G(x, y) = 1

ϒn

νy · (x − y)

|x − y|n ,
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whereϒ2 = 2π is the length of the unit circle, andϒ3 = 4π is the area of the
unit sphere. For his proof, Neumann [77] assumed thatÄ− is convex. In this
case,νy · (x − y) ≤ 0 for all x, y ∈ 0, so

min
0
ψ ≤ −(Tψ)(x) ≤ max

0
ψ for x ∈ 0,

and it can be shown that (provided the convex domainÄ− is not the intersection
of two cones) for every continuousg there exists a constantag such that

max
x∈0

∣∣(Tmg)(x)− (−1)mag

∣∣ ≤ Crm, with 0< r < 1,

where the constantsC andr depend only on0. We define a density function

ψ =
∞∑
j=0

(T2 j g+ T2 j+1g),

noting that the series converges uniformly on0 because

|T2 j g+ T2 j+1g| ≤ |T2 j g− (−1)2 j ag| + |T2 j+1g− (−1)2 j+1ag|
≤ C(r 2 j + r 2 j+1).

Also, the identity

g+ T
m∑

j=0

(T2 j g+ T2 j+1g) = T2m+2g+
m∑

j=0

(
T2 j g+ T2 j+1g

)
implies thatg+ Tψ = ag + ψ , so by (1.17) we haveγ−DL ψ = 1

2(ag − g).
Therefore, the desired solution of the Dirichlet problem (1.7) is the function
u = ag − 2 DLψ .

In a paper of 1888 dealing with the Laplace equation, P. du Bois-Reymond
[20] expressed the view that a general theory of integral equations would be of
great value, but confessed his inability to see even the outline of such a theory.
(This paper, incidentally, contains the first use of the term “integral equation”,
or ratherIntegralgleichung.) The various results known at that time all seemed
to rely on special properties of the particular equation under investigation. Only
during the final decade of the nineteenth century did a way forward begin to
emerge. In 1894, Le Roux [55] successfully analysed an integral equation of
the form ∫ x

a
K (x, y)u(y)dy= f (x) for a ≤ x ≤ b,
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with a sufficiently smooth but otherwise quitegeneral kernelK , and a right-
hand side satisfyingf (a) = 0. He constructed a solution by first differentiating
with respect tox, and then applying the method of successive approximations.
Two years later, Volterra [103, Volume 2, pp. 216–262] independently consid-
ered the same problem, using the same approach, and remarked in passing that
the integral equation could be looked upon as the continuous limit of ann× n
linear algebraic system asn→∞.

Volterra’s remark was taken up by Ivar Fredholm [23] in a short paper of 1900,
which was subsequently expanded into a longer work [24] in 1903. Fredholm
considered an integral equation of the form

u(x)+ λ
∫ 1

0
K (x, y)u(y)dy= f (x) for 0≤ x ≤ 1, (1.19)

with a general continuous kernelK and a complex parameterλ. As motivation,
he mentions a problem discussed a few years earlier in an influential paper
of Poincaré [82], namely, for a given functionf on 0 to find a double-layer
potentialu = DL ψ satisfying

γ−u− γ+u = λ(γ−u+ γ+u)+ 2 f on0.

In view of (1.16) and (1.17), this problem amounts to finding a density function
ψ satisfying

−ψ − λTψ = 2 f on0. (1.20)

The special caseλ = −1 and f = g is just Beer’s equation (1.18) arising
from the interior Dirichlet problem, and similarlyλ = +1 and f = −g gives
the analogous equation arising from theexterior Dirichlet problem. Poincar´e
had shown that both equations are solvable for a wide class of smooth butnot
necessarily convexdomains.

Fredholm began his analysis of (1.19) by introducing a functionD(λ) defined
by the series

D(λ) = 1+ λ
∫ 1

0
K (y, y)dy

+ λ
2

2!

∫ 1

0

∫ 1

0

∣∣∣∣ K (y1, y1) K (y1, y2)

K (y2, y1) K (y2, y2)

∣∣∣∣dy1 dy2+ · · · , (1.21)

which he called thedeterminantof the integral equation. In fact, if we put
xj = j/n for 1 ≤ j ≤ n, and replace the integral in (1.19) by the obvious
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Riemann sum, then we obtain the discrete system

u(xj )+ λ
n

n∑
k=1

K (xj , xk)u(xk) = f (xj ) for 1≤ j ≤ n,

whose determinant can be written as

1+ λ
n

n∑
k=1

K (xk, xk) + λ2

2!n2

n∑
k1=1

n∑
k2=1

∣∣∣∣ K (xk1, xk1) K (xk1, xk2)

K (xk2, xk1) K (xk2, xk2)

∣∣∣∣+ · · ·
+ λn

n!nn

n∑
k1=1

· · ·
n∑

kn=1

∣∣∣∣∣∣∣
K (xk1, xk1) · · · K (xk1, xkn)

...
...

K (xkn, xk1) · · · K (xkn, xkn)

∣∣∣∣∣∣∣ .
Formally at least, in the limit asn→∞ the determinant of the discrete system
tends toD(λ). (This heuristic derivation does not appear in Fredholm’s papers,
but see [38, p. 1356] and [19, p. 99].) Fredholm proved that the series (1.21)
converges uniformly forλ in any compact subset of the complex plane, and so
defines an entire function. By generalising Cramer’s rule for finite linear sys-
tems, Fredholm showed that ifD(λ) 6= 0, then (1.19) has a unique continuous
solutionu for each continuousf . He applied this result to the boundary inte-
gral equation (1.20), and so proved the existence of a solution to the Dirichlet
problem on any boundedC3 domain in the plane.

Fredholm also gave a complete account of the case whenD(λ) = 0, by
considering thetransposedintegral equation

v(x)+ λ
∫ 1

0
K (y, x)v(y)dy= g(x) for 0≤ x ≤ 1, (1.22)

which has the same determinant as the original equation (1.19). He proved
that if D(λ) has a zero of multiplicitym at λ = λ0, then for this value of the
parameter the twohomogeneousequations, i.e., (1.19) and (1.22) withf and
g identically zero, each havem linearly independent solutions. In this case,
the inhomogeneous equation (1.19) has a (non-unique) solutionu if and only
if
∫ 1

0 f (x)v(x)dx = 0 for every solutionv of the transposed homogenenous
equation. The above dichotomy in the behaviour of the two integral equations,
corresponding to the casesD(λ) 6= 0 andD(λ) = 0, is today known as the
Fredholm alternative.

The simplicity and generality of Fredholm’s theory made an immediate
and lasting impression, not least on David Hilbert, who, during the period
1904–1906, made important contributions that later appeared in his influen-
tial book [39] on integral equations. Hilbert was especially interested in the
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case when the kernel issymmetric, i.e., whenK is real-valued and satisfies
K (y, x) = K (x, y) for all x andy. The zeros of the determinant are then purely
real, and form a nondecreasing sequenceλ1, λ2, . . . , counting multiplicities.
For eachj there is a non-trivial solutionψ j of the homogeneous equation with
λ = λ j , and the sequenceψ1, ψ2, . . . can be chosen in such a way that the
functions are orthonormal:∫ 1

0
ψ j (x)ψk(x)dx = δ jk =

{
1 if j = k,

0 if j 6= k.

Of course,ψ j is an eigenfunction of the integral operator with kernelK , and
the corresponding eigenvalue is 1/λ j . Hilbert proved the identity∫ 1

0

∫ 1

0
K (x, y)u(x)v(y)dx dy=

∑
j≥1

1

λ j

∫ 1

0
ψ j (x)u(x)dx

×
∫ 1

0
ψ j (y)v(y)dy,

which is the continuous analogue of the reduction to principal axes of the
quadratic form associated with a real symmetric matrix. He also studied the
convergence of eigenfunction expansions.

Our story has now arrived at a natural stopping point. The period of classical
analysis is about to be overtaken by the geometric spirit of functional analysis.
By 1917, F. Reisz [87] had effectively subsumed Fredholm’s results in the
general theory of compact linear operators, a topic we shall take up in the next
chapter.

Exercises

1.1 Show that if f is a radially symmetric function, sayf (y) = F(τ ) where
τ = |y|, then the Newtonian potential (1.4) is radially symmetric, and is
given byu(x) = U (ρ), whereρ = |x| and

U (ρ) = 1

ρ

∫ ρ

0
F(τ )τ 2 dτ +

∫ ∞
ρ

F(τ )τ dτ.

Hence verify Poisson’s equation:

−4u(x) = − 1

ρ2

d

dρ

(
ρ2 dU

dρ

)
= F(ρ) = f (x).
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1.2 Let 0 = {y ∈ R3 : |y| = a} denote the sphere of radiusa > 0 centred at
the origin. Show that if the densityψ is constant on0, then the single-layer
potential (1.5) is radially symmetric, i.e., a function ofρ = |x|. Show in
particular that

SL 1(x) =
{

a if ρ < a,

a2/ρ if ρ > a,

and verify that the jump relation (1.6) holds in this case.
1.3 Fix x, y ∈ Ä with x 6= y, and for any sufficiently smallε > 0 let Äε

denote the region obtained fromÄ by excising the balls with radiusε
centred atx and y. By applying the second Green identity (1.9) to the
functions Gr(x, ·) and Gr(y, ·) overÄε , and then sendingε ↓0, show that
Gr(x, y) = Gr(y, x).


