
Introduction

The theory of elliptic partial differential equations has its origins in the eight-
eenth century, and the present chapter outlines a few of the most important
historical developments up to the beginning of the twentieth century. We con-
centrate on those topics that will play an important role in the main part of the
book, and change the notation of the original authors, wherever necessary, to
achieve consistency with what comes later. Such a brief account cannot pre-
tend to be a balanced historical survey, but this chapter should at least serve to
introduce the main ideas of the book in a readable manner.

To limit subsequent interruptions, we fix some notational conventions at the
outset. Let Q denote a bounded, open subset of Rn (where n = 2 or 3 in this chap-
ter), and assume that the boundary F = 3 Q is sufficiently regular for the outward
unit normal v and the element of surface area da to make sense. Given a function
u defined on Q, we denote the normal derivative by dvu or du/dv. Sometimes
we shall work with both the interior and the exterior domains (see Figure 1)

Q~ = Q and Q+ = Rn\(Q- U F),

in which case, if the function u is defined on Q±, we write

y±u(x) = lim u{y) and

^ = lim v(x) • gradw(j) for x e F,

whenever these limits exist. The Euclidean norm of x eW1 is denoted by |JC|.
The prototype of an elliptic partial differential equation is Aw = 0, where A

denotes the Laplace operator (or Laplacian), defined, in n dimensions, by

2
7 = 1 J

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-66332-8 - Strongly Elliptic Systems and Boundary Integral Equations
William McLean
Excerpt
More information

http://www.cambridge.org/9780521663328
http://www.cambridge.org
http://www.cambridge.org


Introduction

Figure 1. Interior and exterior domains Q and Q+ with boundary P.

When Aw = 0 on Q, we say that the function u is harmonic on Q. In two dimen-
sions, there is a close connection between the Laplace equation and complex-
analytic functions. Indeed, u + ivis differentiable as a function of the complex
variable x\ + 1x2 if and only if u and v satisfy the Cauchy-Riemann equations,

du dv du dv
— = — and — = - _ (1.2)
ax\ 0X2 9^2 ox\

in which case AM = 0 = Av and we say that u and v are conjugate harmonic
functions.

The pair of equations (1.2) appeared in Jean-le-Rond d'Alembert's Essai
d'une Nouvelle Theorie de la Resistance des Fluides, published in 1752. At
around the same time, Leonhard Euler derived the equations of motion for an
irrotational fluid in three dimensions. He showed that the fluid velocity has the
form grad u, and that for a steady flow the velocity potential satisfies Au = 0.
This work of d'Alembert and Euler is discussed by Truesdell [100]; see also
Dauben[18,p. 311].

In 1774, Joseph-Louis Lagrange won the Prix de VAcademie Roy ale des
Sciences for a paper [51] on the motion of the moon; see also [30, pp. 478-479,
1049]. This paper drew attention to two functions that later came to be known
as the fundamental solution,

G(x,y) = for JC, y eM? and x ^ y, (1.3)
4n\x-y\

and the Newtonian potential,

u(x)= [ G(x,y)f(y)dy. (1.4)

Up to an appropriate constant of proportionality, G(x, y) is the gravitational
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Introduction 3

potential at x due to a unit point mass at y, and thus u is the gravitational
potential due to a continuous mass distribution with density / . The Coulomb
force law in electrostatics has the same inverse-square form as Newton's law
of gravitational attraction. Thus, u also describes the electrostatic potential due
to a charge distribution with density / ; mathematically, the only change is that
/ may be negative.

In a paper of 1782 entitled Theorie des attractions des spheroides et de
la figure des planetes, Pierre Simon de Laplace observed that the Newtonian
potential (1.4) satisfies Au — 0 outside the support of / , writing Au in spherical
polar coordinates. Later, in a paper of 1787 on the rings of Saturn, he gave the
same result in Cartesian and cylindrical coordinates. Birkhoff and Merzbach
[7, pp. 335-338] give English translations of relevant excerpts from these two
works.

By transforming to polar coordinates centred at x, i.e., by using the substitu-
tion y = x + pco where p = \y—x\,itis easy to see that the Newtonian potential
(1.4) makes sense even if x lies within the support of / , because dy = p2 dp dco.
However, the second partial derivatives of G are O(p~3), and this singularity
is too strong to allow a direct calculation of Aw by simply differentiating under
the integral sign. In fact, it turns out that

-Au = f

everywhere on R3, an equation derived by Simeon-Denis Poisson [7, pp. 342-
346] in 1813; see Exercise 1.1 for the special case when/ is radially symmetric.

Poisson made other important contributions to potential theory. A paper
[18, p. 360] of 1812 dealt with the distribution of electric charge on a con-
ductor Q. In equilibrium, mutual repulsion causes all of the charge to reside on
the surface F of the conducting body, and F is an equipotential surface. The
electrical potential at x e R3 due to a charge distribution with surface density
\\r on F is given by the integral

= / G(x,y)f(y)doy, (1.5)
Jr

so SL \\r is constant on F if ^ is the equilibrium distribution. The function
SL ̂  is known as the single-layer potential with density xj/, and satisfies the
Laplace equation on the complement of F, i.e., on Q+ U Q~. Although SL xp-
is continuous everywhere, Poisson found that its normal derivative has a jump
discontinuity:

d+SLx/s -d;SLxl/ = -x// onF. (1.6)

Exercise 1.2 proves an easy special case of this result.
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4 Introduction

A further stimulus to the study of the Laplace equation was Jean-Baptiste-
Joseph Fourier's theory of heat diffusion. In 1807, he published a short note
containing the heat equation,

du
aAu = 0,

dt

where u = u(x, t) is the temperature at position x and time t, and a > 0
is the thermal conductivity (here assumed constant). For a body Q in thermal
equilibrium, du/dt = 0, so if one knows the temperature distribution g on the
bounding surface F, then one can determine the temperature distribution u in
the interior by solving the boundary value problem

Au = 0 on Q,
(1.7)

u = g on P.

This problem later became known as the Dirichlet problem, and for particular,
simple choices of Q, Fourier constructed solutions using separation of variables;
see [7, pp. 132-138]. His book, Theorie analytique de la chaleur, was published
in 1822.

In 1828, George Green published Aw Essay on the Application of Mathemati-
cal Analysis to the Theories of Electricity and Magnetism [31], [33, pp. 1-115];
an extract appears in [7, pp. 347-358]. In his introduction, Green discusses
previous work by other authors including Poisson, and writes that

although many of the artifices employed in the works before mentioned are remarkable
for their elegance, it is easy to see they are adapted only to particular objects, and that
some general method, capable of being employed in every case, is still wanting.

Green's "general method" was based on his two integral identities:

I grad w - grad u dx = I w—da — I wAudx (1.8)

Jn Jv dv Jn

and

r r f du dw\
/ (wAu -uAw)dx = / w w— )dcr, (1.9)

Jn Jr\ dv d v /
where u and w are arbitrary, sufficiently regular functions. Using (1.9) with
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Introduction

w(y) = G(x, y), he obtained a third identity,

u(x) = - / G(x,y)Au(y)dy- / u(y) G(x,y)dcry

Jn Jr °vy

f du
+ G(x,y) — (y)dcry for* €  ft.

Jr ov
(1.10)

Actually, Green derived a more general result, showing that (1.10) is valid when
G(x,y) is replaced by a function of the form

Gr(x, y) = G(x, y) + V(x, y),

where V is any smooth function satisfying AyV(x, y) = 0 for x, y e ft. In
other words, Gr(x, y) has the same singular behaviour as G(x, y) when y = x,
and satisfies A^Gr(jc, y) = 0 for y ^ x. Green gave a heuristic argument
for the existence of a unique such Gr satisfying Gr(x, y) = 0 for all y e F:
physically, Gr(x, y) represents the electrostatic potential at y due to a point
charge at x when F is an earthed conductor. This particular Gr became known
as the Green's function for the domain ft, and yields an integral representation
formula for the solution of the Dirichlet problem (1.7),

u(x) = - g(y) Gr(;c, y)doy for* e ft. (1.11)

In practice, finding an explicit formula for Gr is possible only for very simple
domains. For instance, if ft is the open ball with radius r > 0 centred at the
origin, then

v ' y / 47T\x-y\ 4:

where x$ = (r/\x\)2x is the image of x under a reflection in the sphere F. In
this case, the integral (1.11) is given by

I f r |JC |
u(x) = -— / g(y)- T^day for \x\ < r,

Anr Jlyl=r \x y\3

— |JC | 2

T
\x - y\3

a formula obtained by Poisson [18, p. 360] in 1813 by a different method.
Green also used (1.10) to derive a kind of converse to the jump relation (1.6),
by showing that if a function u satifies the Laplace equation on ft+ U Q~, is
continuous everywhere and decays appropriately at infinity, then u =
where ^ = — (d+u — d~u).
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6 Introduction

Green's Essay did not begin to become widely known until 1845, when
William Thomson (Lord Kelvin) introduced it to Joseph Liouville in Paris [99,
pp. 113-121]. Eventually, Thomson had the work published in three parts dur-
ing 1850-1854 in Crelle's Journal fur die reine und angewandte Mathematik
[31].

Meanwhile, Poisson and others continued to apply the method of separa-
tion of variables to a variety of physical problems. A key step in many such
calculations is to solve a two-point boundary value problem with a parameter
X > 0,

(a — ) + (b-Xw)u = 0 forO <x < 1,
dx \ dx )

— -m0u=0 at*=O, (1-12)
dx
du

m\u = 0 at x = 1,
dx

where a, b and w are known real-valued functions of x such that a > 0 and
w > 0, and where mo and m\ are known constants (possibly oo, in which case
the boundary condition is to be interpreted as u = 0). The main features of the
problem (1.12) can be seen in the simplest example: a = w = 1 and b = 0.
The general solution of the differential equation is then a linear combination of
sin(vTx) and cos(V^x), and the boundary conditions imply that the solution is
identically zero unless the parameter X satisfies a certain transcendental equation
having a sequence of positive solutions X\ < X2 < X$ < - • with Xj -> oo. In
the general case, the number Xj was subsequently called an eigenvalue for the
problem, and any corresponding, non-trivial solution u = 0y of the differential
equation was called an eigenfunction. For the special case a = w = 1, Poisson
showed in 1826 that eigenfunctions corresponding to distinct eigenvalues are
orthogonal, i.e.,

L
l

(Pj(x)(Pk(x)w(x)dx=0

and that all eigenvalues are real; see [62, p. 433]. A much deeper analysis was
given by Charles Francois Sturm in 1836, who established many important prop-
erties of the eigenfunctions, as well as proving the existence of infinitely many
eigenvalues. Building on Sturm's work, Liouville showed in two papers from
1836 and 1837 that an arbitrary function / could be expanded in a generalised
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Introduction

Fourier series,

f^j(x)f(x)w(x)dx
fix) = 22cj4jM> w e e CJ r i . . ,2 , w

j=\ Jo (j)j{x)2w{x)dx

thereby justifying many applications of the method of separation of variables.
Excerpts from the papers of Sturm and Liouville are reproduced in [7, pp. 258-
281]; see also [62, Chapter X].

Carl Friedrich Gauss wrote a long paper [26] on potential theory in 1839;
see also [7, pp. 358-361] and Liitzen [62, pp. 583-586]. He re-derived many
of Poisson's results, including (1.6), using more rigorous arguments, and was
apparently unaware of Green's work. Gauss sought to find, for an arbitrary
conductor Q, the equilibrium charge distribution with total charge M, i.e., in
mathematical terms, he sought to find a function \j/ whose single-l^yer potential
SL xjf is constant on F, subject to the constraint that fr\[r da = M. Introducing
an arbitrary function g, he considered the quadratic functional

-L
where S0 = y+ SL0 = y~ SL0 denotes the boundary values of the single-
layer potential, or, explicitly,

-LS(p(x)= / G(x,y)(/)(y)d(jy for* €  F.
Jr

In the case g = 0, the quantity Jg((/>) has a physical meaning: it is proportional
to the self-energy of the charge distribution 0; see Kellogg [45, pp. 79-80].

One easily sees that Jg((p) is bounded below for all 0 in the class VM of
functions satisfying fr(pda = M and 0 > 0 on F. Also, Jg{(j) + 50) =
/g(0) + 8Jg + 0(502), where the first variation of Jg is given by

8Jg = 8 Jg (0, 50) = 2 / (S(p — g) 50 da.
Jr

Suppose that the minimum value of Jg over the class VM is achieved when
0 = f. It follows that 8Jg(\J/, 50) = 0 for all 50 satisfying fr 8(pdo = 0
and if/ + 50 > 0 on F, and therefore S\j/ — g is constant on any component
of F where xj/ > 0. Gauss showed that if g = 0, then \\r > 0 everywhere
on F, and thus deduced the existence of an equilibrium potential from the
existence of a minimiser for JQ. He also showed that this minimiser is unique,
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8 Introduction

and gave an argument for the existence of a solution f to the boundary integral
equation

Sil/=g onT. (1.13)

The single-layer potential of this \f/ is the solution of the Dirichlet problem for
the Laplace equation, i.e., u = S L ^ satisfies (1.7).

In a series of papers from 1845 to 1846, Liouville studied the single-layer
potential when V is an ellipsoid, solving the integral equation (1.13) by adapting
his earlier work on the eigenvalue problem (1.12). Let w be the equilibrium
density for f, normalised so that Sw = 1. Liouville showed that if F is an
ellipsoid, then

S(w\//j) = fiji/fj for j = 1, 2, 3 , . . . ,

where the ifrj are Lame functions, and the \ij are certain constants satisfying

Mi > M2 > M3 > * * * > 0 with \xj - • 0 as j —• oo.

He established the orthogonality property

= 0 for j / k,
/r

and concluded that the solution of (1.13) is

\[r(x) = w(x) ycjijfjix), where Cj = Jrirj(x)2w(x)dax

In his unpublished notebooks (described in [62, Chapter XV]) Liouville went
a considerable distance towards generalising these results to the case of an
arbitrary surface T, inventing in the process the Rayleigh-Ritz procedure for
finding the eigenvalues and eigenfunctions, 20 years before Rayleigh [97] and
60 years before Ritz [98].

During the 1840s, Thomson and Peter Gustav Lejeune Dirichlet separately
advanced another type of existence argument [7, pp. 379-387] that became
widely known on account of its use by Riemann in his theory of complex
analytic functions. Riemann introduced the term Dirichlet's principle for this
method of establishing the existence of a solution to the Dirichlet problem,
although a related variational argument had earlier been used by Green [32]. If
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Introduction 9

one considers the functional

J(v)= f \gmdv\2dx
Jn

for v in a class of sufficiently regular functions Vg satisfying v = g on F, then
it seems obvious, because J(v) > 0 for all v e Vg, that there exists a u e Vg

satisfying

J(u)<J(v) forallueV^. (1.14)

Given any w such that w = 0 on F, and any constant h, the function v = u + hw
belongs to Vg, and, assuming the validity of the first Green identity (1.8), simple
manipulations yield

J(v) = J(u) -2h wAu dx + h2J(w).
JJn

Here, the constant h is arbitrary, so the minimum condition (1.14) implies that

wAu dx = 0 whenever w = 0 on F.

By choosing w to take the same sign as Au throughout Q, we conclude that
u is a solution of the Dirichlet problem for the Laplace equation. Conversely,
each solution of the Dirichlet problem minimises the integral. Dirichlet also
established the uniqueness of the minimiser u. In fact, if both u \ and u2 minimise
J in the class of functions Vg, then the difference w = u\ — u2 vanishes on F,
and, arguing as above with h = 1, we find that J(u\) = J(u2) + J(w). Thus,
J(w) = 0, so w is constant, and hence identically zero, implying that u\ = u2

on Q.

In 1869, H. Weber [104] employed the quadratic functional J(v) in a
Rayleigh-Ritz procedure to show the existence of eigenfunctions and eigen-
values for the Laplacian on a general bounded domain. He minimised J(v)
subject to two constraints: v = 0 on F, and fQ v(x)2 dx = 1. If we suppose
that a minimum is achieved when v = u \, then by arguing as above we see that

/ wAwi dx = 0 whenever w = 0 on F and / w(x)u\(x) dx = 0.
Jn Jn

Here, the extra restriction on w arises from the second of the constraints in
the minimisation problem. Weber showed that —AMI = ^i«i on £2, where
Ai = J{u\). In fact, for an arbitrary v satisfying v = 0 on F, if we put
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10 Introduction

a — fQvu\ dx and w = v — au\, then w = 0 on F, and fQ wu\ dx = 0, so by
the first Green identity,

/ v(—Au\)dx =
JQ

= a\ J(u\) — / u\ da I = A.i / vu\ dx,
\ JT dv ) JQ

remembering that u\ — 0 on F. Next, Weber minimised J(v) subject to three
constraints: the two previous ones and in addition fQ vu\dx = 0. The minimiser
U2 is the next eigenfunction, satisfying —Au2 = A.2W2 on £2, where X2 =
J(u2) > A.i. Continuing in this fashion, he obtained sequences of (orthonormal)
eigenfunctions Uj and corresponding eigenvalues X7, with 0 < X{ < X2 <

Although simple and beautiful, Dirichlet's principle (in its naive form) is
based on a false assumption, namely, that a minimiser u e Vg must exist
because J(v) > 0 for all v e Vg. This error was pointed out by Karl Theodore
Wilhelm WeierstraB [7, pp. 390-391] in 1870, and the same objection applies
to the variational arguments of Gauss, Liouville and Weber. During the period
from 1870 to 1890, alternative existence proofs for the Dirichlet problem were
devised by Hermann Amandus Schwarz, Carl Gottfried Neumann and Jules
Henri Poincare; see Garding [25] and Kellogg [45, pp. 277-286]. We shall
briefly describe the first of these proofs, Neumann's Methode des arithmetischen
Mittels, after first introducing some important properties of the double-layer
potential,

DLx//(x)= I \j/(y) G{x,y)doy for* ^ F.

A surface potential of this type appears in the third Green identity (1.10), with
\jr = U\Y\ note the similarity with the general Poisson integral formula (1.11).

The double layer potential has a very simple form when the density is constant
on F. In fact

1-1 foxxeQ~,
(1.15)

0 forxeQ+,

as one sees by taking u = 1 in (1.10) if x e Q~, and by applying the divergence
theorem if x e £2+. Obviously, D L ^ is harmonic on Q±, but the example^ = 1
shows that the double-layer potential can have a jump discontinuity, and it turns

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-66332-8 - Strongly Elliptic Systems and Boundary Integral Equations
William McLean
Excerpt
More information

http://www.cambridge.org/9780521663328
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9780521663328: 


