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Introduction

Richard Dybowski and Vanya Gant

In this introduction we outline the types of neural network featured in this book

and how they relate to standard statistical methods. We also examine the issue of

the so-called ‘black-box’ aspect of neural network and consider some possible

future directions in the context of clinical medicine. Finally, we overview the

remaining chapters.

A few evolutionary branches

The structure of the brain as a complex network of multiply connected cells

(neural networks) was recognized in the late 19th century, primarily through the

work of the Italian cytologist Golgi and the Spanish histologist Ramón y Cajal.1

Within the reductionist approach to cognition (Churchland 1986), there appeared

the question of how cognitive function could be modelled by artiWcial versions of

these biological networks. This was the initial impetus for what has become a

diverse collection of computational techniques known as artiWcial neural networks

(ANNs).

The design of artiWcial neural networks was originally motivated by the phe-

nomena of learning and recognition, and the desire to model these cognitive

processes. But, starting in the mid-1980s, a more pragmatic stance has emerged,

and ANNs are now regarded as non-standard statistical tools for pattern recogni-

tion. It must be emphasized that, in spite of their biological origins, they are not

‘computers that think’, nor do they perform ‘brain-like’ computations.

The ‘evolution’ of artiWcial neural networks is divergent and has resulted in a

wide variety of ‘phyla’ and ‘genera’. Rather than examine the development of every

branch of the evolutionary tree, we focus on those associated with the types of

ANN mentioned in this book, namely multilayer perceptrons (Chapters 2–8,

10–13), radial basis function networks (Chapter 12), Kohonen feature maps

(Chapters 2, 5), adaptive resonance theory networks (Chapters 2, 9), and neuro-

fuzzy networks (Chapters 10, 12).

We have not set out to provide a comprehensive tutorial on ANNs; instead, we
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Figure 1.1. A graphical representation of a McCulloch–Pitts neuron, and also of a single-layer percep-

tron. In the former, a discontinuous step function is applied to the weighted sum

w
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x
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d
to produce the output y; in the latter, the step function is replaced by a

continuous sigmoidal function.

2 R. Dybowski and V. Gant

have suggested sources of information throughout the text, and we have provided

some recommended reading in Appendix 1.1.

Multilayer perceptrons

At the start of the 20th century, a number of general but non-mathematical

theories of cognition existed, such as those of Helmholtz and Pavlov. At the

University of Pittsburgh in the 1920s, Nicolas Rashevsky, a physicist, began a

research programme to place biology within the framework of mathematical

physics. This involved a number of projects, including an attempt to mathemat-

ically model Pavlovian conditioning in terms of neural networks (Rashevsky

1948). He continued his work at the University of Chicago, where he was joined by

Warren McCulloch, a neuroanatomist, and then, in 1942, by a mathematical

prodigy called Walter Pitts. Together, McCulloch & Pitts (1943) devised a simple

model of the neuron. In this model (Figure 1.1), the input signals x1, . . ., xd to a

neuron are regarded as a weighted sum w
0
+ w

1
x

1
+ · · · + w

d
x

d
. If the sum exceeds a

predeWned threshold value, the output signal y from the neuron equals 1; other-

wise, it is 0. However, a McCulloch–Pitts neuron by itself is capable only of simple

tasks, namely discrimination between sets of input values separable by a (possibly

multidimensional) plane. Furthermore, the weights required for the neurons of a

network had to be provided as no method for automatically determining the

weights was available at that time.

Rosenblatt (1958) proposed that the McCulloch–Pitts neuron could be the basis

of a system able to distinguish between patterns originating from diVerent classes.

The system, which he dubbed a perceptron, was a McCulloch–Pitts neuron with

preprocessed inputs.2 Motivated by Hebb’s (1949) hypothesis that learning is

based on the reinforcement of active neuronal connections, Rosenblatt (1960,
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Figure 1.2. A multilayer perceptron with two layers of weights. The first layer of nodes, which receive the

inputs x
1
, . . ., x

d
, is called the input layer. The layer of nodes producing the output values is

called the output layer. Layers of nodes between the input and output layers are referred to

as hidden layers. The weighted sum h
j

at the j-th hidden node is given by

w(1)

0, j
+ w(1)

1, j
+ · · · w (1)

d, j
x

d
. The value from the j-th hidden node to the output node is a function f

hid

of h
j
, and the output y(x; w) is a function of f

out
of the weighted sum

w(2)

0
+ w (2)

1
f
hid

(h
1
) + · · · + w (2)

m
f
hid

(h
m
). Functions f

hid
and f

out
are typically sigmoidal. Note that a

multilayer perceptron can have more than one layer of hidden nodes and more than one

node providing output values.

3 Introduction

1962) developed the perceptron learning rule and its associated convergence theo-

rem. This solved the problem of a McCulloch–Pitts neuron ‘learning’ a set of

weights. A number of workers (e.g. Block 1962) proved that the learning rule,

when applied to a perceptron consisting of only a single layer of weights, would

always modify the weights so as to give the optimal planar decision boundary

possible for that perceptron.

Multilayer perceptrons (MLPs) are perceptrons having more than one layer of

weights (Figure 1.2), which enables them to produce complex decision bound-

aries. Unfortunately, as pointed out by Minsky & Papert (1969), the perceptron

learning rule did not apply to MLPs,3 a fact that severely limited the types of

problem to which perceptrons could be applied. This caused many researchers to

leave the Weld, thereby starting the ‘Dark Ages’ of neural networks, during which

little research was done. The turning point came in the mid-1980s when the

back-propagation algorithm for training multilayer perceptrons was discovered

independently by several researchers (LeCun 1985; Parker 1985; Rumelhart et al.

1986).4 This answered the criticisms of Minsky & Papert (1969), and the Renais-

sance of neural networks began.

Multilayer perceptrons with sigmoidal hidden node functions are the most

commonly used ANNs, as exempliWed by the contributions to this book and the

reviews by Baxt (1995) and Dybowski & Gant (1995). Each hidden node in Figure

1.2 produces a hyperplane boundary in the multidimensional space containing the

input data. The output node smoothly interpolates between these boundaries to

give decision regions of the input space occupied by each class of interest. With a

www.cambridge.org/9780521662710
www.cambridge.org


Cambridge University Press
978-0-521-66271-0 — Clinical Applications of Artificial Neural Networks
Edited by Richard Dybowski , Vanya Gant 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 R. Dybowski and V. Gant

single logistic output unit, MLPs can be viewed as a non-linear extension of

logistic regression, and, with two layers of weights, they can approximate any

continuous function (Blum & Li 1991).5 Although training an MLP by back-

propagation can be a slow process, there are faster alternatives such as Quickprop

(Fahlman 1988).

A particularly eloquent discussion of MLPs is given by Bishop (1995, Chap. 4)

in his book Neural Networks for Pattern Recognition.

A statistical perspective on multilayer perceptrons

The genesis and renaissance of ANNs took place within various communities, and

articles published during this period reXect the disciplines involved: biology and

cognition, statistical physics, and computer science. But it was not until the early

1990s that a probability-theoretic perspective emerged, with Bridle (1991), Ripley

(1993), Amari (1993) and Cheng & Titterington (1994) being amongst the Wrst to

regard ANNs as being within the framework of statistics. The statistical aspect of

ANNs has also been highlighted in textbooks by Smith (1993), Bishop (1995) and

Ripley (1996).

A recurring theme of this literature is that many ANNs are analogous to, or

identical with, existing statistical techniques. For example, a popular statistical

method for modelling the relationship between a binary response variable y and a

vector (an ordered set) of covariates x is logistic regression (Hosmer & Lemeshow

1989; Collett 1991), but consider the single-layer perceptron of Figure 1.1:

y(x; w) = f
out�w

0
+

d

�
i=1

w
i
x

i� . (1.1)

If the output function f
out

of Eq. (1.1) is logistic,

fout(r) = 1 + exp[ − (r)]−1,

(where r is any value) and the perceptron is trained by a cross-entropy error

function, Eq. (1.1) will be functionally identical with a main-eVects logistic

regression model

p̂(y = 1 � x) =�1 + exp�− (�̂0 +
d

�
i=1

�̂ixi)��
−1

.

Using the notation of Figure 1.2, the MLP can be written as

y(x; w) = f
out�w (2)

0
+

m

�
j=1

w (2)
j

f
hid�w(1)

0,j
+

d

�
i=1

w(1)
i,j

x
i�� , (1.2)

but Hwang et al. (1994) have indicated that Eq. (1.2) can be regarded as a
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particular type of projection pursuit regression model when fout is linear:

y(x; w) = v
0
+

m

�
j=1

v
j
f
j�u

0,j
+

d

�
i=1

u
i,j

x
i� . (1.3)

Projection pursuit regression (Friedman & Stuetzle 1981) is an established statistical

technique and, in contrast to an MLP, each function f
j
in Eq. (1.3) can be diVerent,

thereby providing more Xexibility.6 However, Ripley and Ripley (Chapter 11)

point out that the statistical algorithms for Wtting projection pursuit regression are

not as eVective as those for Wtting MLPs.

Another parallel between neural and statistical models exists with regard to the

problem of overWtting. In using an MLP, the aim is to have the MLP generalize

from the data rather than have it Wt to the data (overWtting). OverWtting can be

controlled for by adding a regularization function to the error term (Poggio et al.

1985). This additional term penalizes an MLP that is too Xexible. In statistical

regression the same concept exists in the form of the Akaike information criterion

(Akaike 1974). This is a linear combination of the deviance and the number of

independent parameters, the latter penalizing the former. Furthermore, when

regularization is implemented using weight decay (Hinton 1989), a common

approach, the modelling process is analogous to ridge regression (Montgomery &

Peck 1992, pp. 329–344) – a regression technique that can provide good generaliz-

ation.

One may ask whether the apparent similarity between ANNs and existing

statistical methods means that ANNs are redundant within pattern recognition.

One answer to this is given by Ripley (1996, p. 4):

The traditional methods of statistics and pattern recognition are either parametric based on a

family of models with a small number of parameters, or non-parametric in which the models

used are totally flexible. One of the impacts of neural network methods on pattern recogni-

tion has been to emphasize the need in large-scale practical problems for something in

between, families of models with large but not unlimited flexibility given by a large number of

parameters. The two most widely used neural network architectures, multi-layer perceptrons

and radial basis functions (RBFs), provide two such families (and several others already in

existence).

In other words, ANNs can act as semi-parametric classiWers, which are more

Xexible than parametric methods (such as the quadratic discriminant function

(e.g. Krzanowski 1988)) but require fewer model parameters than non-parametric

methods (such as those based on kernel density estimation (Silverman 1986)).

However, setting up a semi-parametric classiWer can be more computationally

intensive than using a parametric or non-parametric approach.

Another response is to point out that the widespread fascination for ANNs has
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6 R. Dybowski and V. Gant

attracted many researchers and potential users into the realm of pattern recogni-

tion. It is true that the neural-computing community rediscovered some statistical

concepts already in existence (Ripley 1996), but this inXux of participants has

created new ideas and reWned existing ones. These beneWts include the learning of

sequences by time delay and partial recurrence (Lang & Hinton 1988; Elman 1990)

and the creation of powerful visualization techniques, such as generative topo-

graphic mapping (Bishop et al. 1997). Thus the ANN movement has resulted in

statisticians having available to them a collection of techniques to add to their

repertoire. Furthermore, the placement of ANNs within a statistical framework

has provided a Wrmer theoretical foundation for neural computation, and it has

led to new developments such as the Bayesian approach to ANNs (MacKay 1992).

Unfortunately, the rebirth of neural networks during the 1980s has been

accompanied by hyperbole and misconceptions that have led to neural networks

being trained incorrectly. In response to this, Tarassenko (1995) highlighted three

areas where care is required in order to achieve reliable performance: Wrstly, there

must be suYcient data to enable a network to generalize eVectively; secondly,

informative features must be extracted from the data for use as input to a network;

thirdly, balanced training sets should be used for underrepresented classes (or

novelty detection used when abnormalities are very rare (Tarassenko et al. 1995)).

Tarassenko (1998) discussed these points in detail, and he stated:

It is easy to be carried away and begin to overestimate their capabilities. The usual conse-

quence of this is, hopefully, no more serious than an embarrassing failure with concomitant

mutterings about black boxes and excessive hype. Neural networks cannot solve every

problem. Traditional methods may be better. Nevertheless, neural networks, when they are

used wisely, usually perform at least as well as the most appropriate traditional method and

in some cases significantly better.

It should also be emphasized that, even with correct training, an ANN will not

necessarily be the best choice for a classiWcation task in terms of accuracy. This has

been highlighted by Wyatt (1995), who wrote:

Neural net advocates claim accuracy as the major advantage. However, when a large

European research project, StatLog, examined the accuracy of five ANN and 19 traditional

statistical or decision-tree methods for classifying 22 sets of data, including three medical

datasets [Michie et al. 1994], a neural technique was the most accurate in only one dataset,

on DNA sequences. For 15 (68%) of the 22 sets, traditional statistical methods were the most

accurate, and those 15 included all three medical datasets.

But one should add the comment made by Michie et al. (1994, p. 221) on the

results of the StatLog project:

With care, neural networks perform very well as measured by error rate. They seem to provide

either the best or near best predictive performance in nearly all cases . . .

www.cambridge.org/9780521662710
www.cambridge.org


Cambridge University Press
978-0-521-66271-0 — Clinical Applications of Artificial Neural Networks
Edited by Richard Dybowski , Vanya Gant 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Figure 1.3. A radial basis function network. The network has a single layer of basis functions between the

input and output layers. The value of �
j
produced by the j-th basis function is dependent on

the distance between the ‘centre’ x
[j] of the function and the vector of input values x

1
, . . ., x

d
.

The output y(x; w) is the weighted sum w
0
+ w

1
�

1
+ · · · + w

m
�

m
. Note that a radial basis

function network can have more than one output node, and the functions �
1
, . . ., �

m
need not

be the same.

7 Introduction

Nevertheless,when an ANN is being evaluated, its performance must be compared

with that obtained from one or more appropriate standard statistical techniques.

Radial basis function networks

Unlike MLPs, a number of so-called ‘neural networks’ were not biologically

motivated, and one of these is the radial basis function network. Originally

conceived in order to perform multivariate interpolation (Powell 1987), radial

basis function networks (RBFNs) (Broomhead & Lowe 1988) are an alternative to

MLPs. Like an MLP, an RBFN has input and output nodes; but there the similarity

ends, for an RBFN has a middle layer of radially symmetric functions called basis

functions, each of which can be designed separately (Figure 1.3). The idea of using

basis functions originates from the concept of potential functions proposed by

Bashkirov et al. (1964) and illustrated by Duda & Hart (1973).

Each basis function can be regarded as being centred on a prototypic vector of

input values. When a vector of values is applied to an RBFN, a measure of the

proximity of the vector to each of the prototypes is determined by the correspond-

ing basis functions, and a weighted sum of these measures is given as the output of

the RBFN (Figure 1.3).

The basis functions deWne local responses (receptive Welds) (Figure 1.4). Typi-

cally, only some of the hidden units (basis functions) produce signiWcant values

for the Wnal layers. This is why RBFNs are sometimes referred to as localized

receptive Weld networks. In contrast, all the hidden units of an MLP are involved in

determining the output from the network (they are said to form a distributed

representation). The receptive Weld approach can be advantageous when the
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Figure 1.4. Schematic representation of possible decision regions created by (a) the hyperplanes of a

multilayer perceptron, and (b) the kernel functions of a radial basis function network. The

circles and crosses represent data points from two respective classes.

8 R. Dybowski and V. Gant

distribution of the data in the space of input values is multimodal (Wilkins et al.

1994). Furthermore, RBFNs can be trained more quickly than MLPs (Moody &

Darken 1989), but the number of basis functions required can grow exponentially

with the number of input nodes (Hartman et al. 1990), and an increase in the

number of basis functions increases the time taken, and amount of data required,

to train an RBFN adequately.

Under certain conditions (White 1989; Lowe & Webb 1991; Nabney 1999), an

RBFN can act as a classiWer. An advantage of the local nature of RBFNs compared

with MLP classiWers is that a new set of input values that falls outside all the

localized receptor Welds could be Xagged as not belonging to any of the classes

represented. In other words, the set of input values is novel. This is a more

cautious approach than the resolute classiWcation that can occur with MLPs, in

which a set of input values is always assigned to a class, irrespective of the values.

For further details on RBFNs, see Bishop (1995, Chap. 5).

A statistical perspective on radial basis function networks

A simple linear discriminant function (Hand 1981, Chap. 4) has the form

g(x) = w
0
+

d

�
i=1

w
i
x

i
. (1.4)

with x assigned to a class of interest if g(x) is greater than a predeWned constant.

This provides a planar decision surface and is functionally equivalent to the

McCulloch–Pitts neuron. Equation (1.4) can be generalized to a linear function of

functions, namely a generalized linear discriminant function

g(x) = w0 +
m

�
i=1

wi f (x), (1.5)
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9 Introduction

which permits the construction of non-linear decision surfaces. If we represent an

RBFN by the expression

g(x) = w
0
+

m

�
i=1

w
i
�

i
( � x − x[i] � ), (1.6)

where � x − x[i] � denotes the distance (usually Euclidean) between input vector x

and the ‘centre’ x[i] of the i-th basis function �i, comparison of Eq. (1.5) with Eq.

(1.6) shows that an RBFN can be regarded as a type of generalized linear

discriminant function.

Multilayer perceptrons and RBFNs are trained by supervised learning. This

means that an ANN is presented with a set of examples, each example being a pair

(x, t), where x is a vector of input values for the ANN, and t is the corresponding

target value, for example a label denoting the class to which x belongs. The training

algorithm adjusts the parameters of the ANN so as to minimize the discrepancy

between the target values and the outputs produced by the network.

In contrast to MLPs and RBFNs,the ANNs in the next two sections are based on

unsupervised learning. In unsupervised learning, there are no target values avail-

able, only input values, and the ANN attempts to categorize the inputs into classes.

This is usually done by some form of clustering operation.

Kohonen feature maps

Many parts of the brain are organized in such a way that diVerent sensory inputs

are mapped to spatially localized regions within the brain. Furthermore, these

regions are represented by topologically ordered maps. This means that the greater

the similarity between two stimuli, the closer the location of their corresponding

excitation regions. For example, visual, tactile and auditory stimuli are mapped

onto diVerent areas of the cerebral cortex in a topologically ordered manner

(Hubel & Wiesel 1977; Kaas et al. 1983; Suga 1985). Kohonen (1982) was one of a

group of people (others include Willshaw & von der Malsburg (1976)) who

devised computational models of this phenomenon.

The aim of Kohonen’s (1982) self-organizing feature maps (SOFMs) is to map an

input vector to one of a set of neurons arranged in a lattice, and to do so in such a

way that positions in input space are topologically ordered with locations on the

lattice. This is done using a training set of input vectors �(1), . . ., �(m) and a set of

prototype vectors w(1), . . ., w(n) in input space. Each prototype vector w(i) is

associated with a location S(i) on (typically) a lattice (Figure 1.5).

As the SOFM algorithm presents each input vector � to the set of prototype

vectors, the vector w(i*) nearest to � is moved towards � according to a learning
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Figure 1.5. A graphical depiction of Kohonen’s self-organizing feature map. See pp. 9–10 for an

explanation. The lattice is two-dimensional, whereas data point (input vector) � and proto-

type vectors w(i*) and w(h) reside in a higher-dimensional (input) space.

10 R. Dybowski and V. Gant

rule. In doing so, the algorithm also ‘drags’ towards � (but to a lesser extent) those

prototype vectors whose associated locations on the lattice are closest to S(i*),

where S(i*) is the lattice location associated with w(i*). For example, w(h) in

Figure 1.5 is dragged along with w(i*) towards �. Hertz et al. (1991) likened this

process to an elastic net, existing in input space, which wants to come as close as

possible to �(1), . . ., �(m). The coordinates of the intersections of the elastic net

are deWned by the prototype vectors w(1), . . ., w(n). If successful, two locations

S(j) and S(k) on the lattice will be closer to each other the closer their associated

prototype vectors w(j) and w(k) are positioned in input space.

The SOFM algorithm provides a means of visualizing the distribution of data

points in input space, but, as pointed out by Bishop (1995), this can be weak if the

data do not lie within a two-dimensional subspace of the higher-dimensional

space containing the data. Another problem with SOFM is that the ‘elastic net’

could twist as it moves towards the training set, resulting in a distorted visualiz-

ation of the data (e.g. Hagan et al. 1996).

For those wishing to know more about SOFMs, we recommend the book

Neural Computation and Self-Organizing Maps by Ritter et al. (1992).

Adaptive resonance theory networks

A feature of cognitive systems is that they can be receptive to new patterns

(described as plasticity) but remain unchanged to others (described as stability).
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