
PART I

Non-perturbative methods in two-dimensional

field theory
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1

From massless free scalar field to conformal
field theories

In this chapter we analyze the simplest field theory, which is the theory of a
free massless scalar field in two space-time dimensions, one space and one time.1

The rich symmetry and algebraic structure of this theory encapsulates the basic
concepts of two-dimensional conformal field theory, which will be the topic of
the next chapter.

1.1 Complex geometry

It is convenient for the discussion of two-dimensional free scalar theory and later
conformal field theories to introduce complex coordinates as follows:2

ξ = x0 + ix1 ξ̄ = x0 − ix1 . (1.1)

We now take x0 and x1 to be in Euclidean space. Correspondingly we define the
derivatives

∂ξ =
1
2
(∂0 − i∂1) ∂ξ̄ =

1
2
(∂0 + i∂1), (1.2)

which is a special case of the decomposition to components of vectors, namely

Aξ = 1
2 (A0 − iA1) Aξ̄ =

1
2
(A0 + iA0)

Aξ = (A0 + iA1) Aξ̄ = (A0 − iA1). (1.3)

The metric of the flat Euclidean space-time ds2 = dx02 + dx12 translates into
ds2 = dξdξ̄, namely

gξξ̄ = gξ̄ξ =
1
2
, gξ ξ̄ = gξ̄ξ = 2, gξξ = gξ̄ ξ̄ = gξξ = gξ̄ ξ̄ = 0. (1.4)

With this metric at hand the scalar product of two vectors takes the form

AµBµ = AξBξ + Aξ̄Bξ̄ =
1
2
(AξBξ̄ + Aξ̄Bξ ). (1.5)

Complex components of higher-order tensors relate in a similar manner to
the real components, in particular for a symmetric two-tensor (like the

1 The content of this chapter comprises the basics of massless scalar fields in two dimensions.
This is covered in many textbooks.

2 The use of complex coordinates in the context of the bosonic string theory is described by
Polyakov in [177].
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4 From massless free scalar field to conformal field theories
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Fig. 1.1. The map between ξ and z.

energy-momentum tensor),

T ≡ Tξξ =
1
4
(T00 − 2iT10 − T11)

T̄ ≡ Tξ̄ ξ̄ =
1
4
(T00 + 2iT10 − T11)

Tξ̄ξ = Tξξ̄ =
1
4
(T00 + T11). (1.6)

Often, especially in the context of string theory, the space direction is no longer
R, but rather is compactified on S1 so that x1 ≡ x1 + 2π. For such a geometry
it is convenient to introduce the following conformal map:

ξ → z = eξ = ex0 +ix1
,

which maps the cylinder to the complex plane (see Fig. 1.1).
In particular the past x0 = −∞ is mapped into the origin and the future

x0 = ∞ into a circle with an infinite radius. It is clear that the relations between
(ξ, ξ̄) and (x0 , x1) derived above hold also between (z, z̄) and (Real(z), Im(z)).
The holomorphic and anti-holomorphic derivatives with respect to z will be
denoted by ∂ ≡ ∂z and ∂̄ ≡ ∂z̄ .

1.2 Free massless scalar field

The action S of the free massless scalar field X̂(z, z̄) is

S =
∫

d2xL =
1
8π

∫
d2x∂ν X̂∂̄ν X̂

=
1
4π

∫
d2ξ∂ξ X̂∂ξ̄ X̂ =

1
4π

∫
d2z∂X̂∂̄X̂, (1.7)
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1.3 Symmetries of the classical action 5

where L is the Lagrangian density. The factor 1
4π is used to match the normal-

ization of the bosonic string theory (with α′ = 2). In the complex coordinate
notation (ξ, ξ̄) and (z, z̄) the measure of the integral is d2ξ = (i/2)dξ ∧ dξ̄ and
d2z = (i/2)dz ∧ dz̄, respectively. Note that L is a local expression and thus is
the same for the Euclidean plane or for any compact two-surface.

Varying the scalar field X̂(z, z̄) → X̂(z, z̄) + δX̂(z, z̄) induces a variation in
the action of the form

δS = − 1
2π

∫
d2z(∂∂̄X̂)δX̂. (1.8)

The action is thus extremized by configurations that solve the corresponding
equation of motion

∂∂̄X̂ = 0. (1.9)

It is thus clear that ∂X̂ is a holomorphic function and ∂̄X̂ is an anti-holomorphic
function, and the most general solution takes the form

X̂(z, z̄) = [X(z) + X̄(z̄)]. (1.10)

1.3 Symmetries of the classical action

By construction the action is invariant under translations and SO(2) rotations.
Translations in x0 and x1 translate in complex coordinates to

z → z + a; z̄ → z̄ + ā, (1.11)

where a is a constant complex number, and the SO(2) rotations, in infinitesimal
form, to

δz = −iεz; δz̄ = iεz̄, (1.12)

where ε is an infinitesimal real parameter.
When we go back to Minkowski space, the SO(2) rotations turn into SO(1, 1)

transformations. In addition it is easy to realize that a shift of the field by a
constant A,

X̂(z, z̄) → X̂(z, z̄) + A, (1.13)

leaves the Lagrangian invariant. It is a special feature of two dimensions that
the symmetry group of the action is in fact much richer since one can replace
the constant A with A(z) and the constant Ā with Ā(z̄), which are arbitrary
holomorphic and anti-holomorphic functions, respectively,

X̂(z, z̄) → X̂(z, z̄) + A(z); X̂(z, z̄) → X̂(z, z̄) + Ā(z̄). (1.14)

These are the affine current algebra transformations.3

3 Affine Lie algebras describing a physical system were first discussed in [27]. More references
will be given in the next two chapters.
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6 From massless free scalar field to conformal field theories

In a similar manner the space-time translations (1.11) can also be elevated to
holomorphic and anti-holomorphic transformations,

z → f(z); z̄ → f̄(z̄), (1.15)

referred to as two-dimensional conformal transformations. Affine current alge-
bra transformations and conformal transformations will be further discussed in
Sections 1.10 and 1.11

1.4 Mode expansion

The mode expansion of the classical solution depends on the boundary condi-
tions. For the case where the underlying two-dimensional manifold is the infinite
plane, a standard Fourier transform is used:

X̂(x0 , x1) =
∫

dk1
√

2π
√

k0
[a(k1)e−ik ·x + a†(k1)eik ·x ]. (1.16)

If the range of the space coordinate is bounded, one may impose two types of
boundary conditions, associated with closed and open strings. In the case of
closed strings the boundary conditions

X̂(x0 , x1) = X̂(x0 , x1 + 2π) (1.17)

are automatically obeyed by X̂(z, z̄). For this case the mode expansion is
expressed in terms of a Laurent series,

∂X = −i

∞∑
n=−∞

αn

zn+1 ∂̄X̄ = −i

∞∑
n=−∞

ᾱn

z̄n+1 . (1.18)

Integrating this expansion we get

X̂(z, z̄) = X − iP ln(zz̄) + i

∞∑
m=−∞, m �=0

(αm

m
z−m +

ᾱm

m
z̄−m

)
, (1.19)

with X a constant and

P = α0 = ᾱ0 . (1.20)

For open strings the boundary conditions are of Neumann type, namely

∂1X̂(x0 , x1 = 0) = ∂1X̂(x0 , x1 = π) = 0 =⇒ ∂X̂(z, z̄ = z) = ∂̄X̂(z, z̄ = z).

(1.21)

The corresponding mode expansion takes the form

X̂(z, z̄) = X − iP ln(zz̄) + i

∞∑
m=−∞, m �=0

αm

m

(
z−m + z̄−m

)
. (1.22)
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1.6 Canonical quantization 7

1.5 Noether currents and charges

Associated with the symmetries (1.14) and (1.15) are conserved Noether currents
and charges. In the Noether procedure one is instructed to elevate the global
parameters of transformations into local ones and extract the associated currents
from the variation of the action, namely δS ∼ ∫

d2xJµ∂µε. Let us apply this
procedure first to the affine current algebra transformations so that we vary the
action with respect to δX̂(z, z̄) = ε(z, z̄) yielding

δS =
1
4π

∫
d2z[∂ε(z, z̄)∂̄X̂(z, z̄) + ∂̄ε(z, z̄)∂X̂(z, z̄)]. (1.23)

Unlike the situation in more than two dimensions, and due to the fact that the
symmetries (1.14) are in fact not only global ones but rather “half local”, the
currents

J ≡ ∂X; J̄ ≡ ∂̄X̄ (1.24)

are holomorphic and anti-holomorphic conserved,

∂̄J ≡ ∂̄∂X = 0; ∂J̄ ≡ ∂∂̄X̄ = 0. (1.25)

The classical currents are determined up to an overall constant.
A similar situation occurs with respect to the conformal transformation.

Replacing in the infinitesimal version of (1.15) δz → ε(z, z̄) and δz̄ → ε̄(z, z̄) one
finds,

δS =
1
2π

∫
d2z[∂ε̄(z, z̄)∂̄X̂(z, z̄)∂̄X̂(z, z̄) + ∂̄ε(z, z̄)∂X̂(z, z̄)∂X̂(z, z̄)]. (1.26)

The associated holomorphic and anti-holomorphic conserved energy-
momentum tensor components are

T = −1
2
∂X∂X; T̄ = −1

2
∂̄X̄∂̄X̄, (1.27)

where the coefficients were chosen in a way that will turn out to be convenient
when discussing the corresponding quantum generators.

1.6 Canonical quantization

Prior to imposing the canonical quantization condition one has to identify the
time direction. There are several options. Using x0 as the time direction, the
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8 From massless free scalar field to conformal field theories

corresponding conjugate momentum of X̂(z, z̄) is

Π =
δL

δx0X̂
=

1
4π

∂0X̂,

and the standard quantization conditions are

[X̂(x0 , x1),Π(y0 , y1)]x0 =y 0 = iδ(x1 − y1)

[X̂(x0 , x1), X̂(y0 , y1)]x0 =y 0 = 0

[Π(x0 , x1),Π(y0 , y1)]x0 =y 0 = 0. (1.28)

These conditions yield the standard algebra of the creation and annihilation
operators for (1.16),

[a(k1), a†(p1)] = δ(k1 − p1); [a(k1), a(p1)] = [a†(k1), a†(p1)] = 0. (1.29)

Substituting the mode expansion (1.16) into the expressions of the Noether
charges associated with the symmetries of the action (1.7) one finds that
the energy-momentum operators are proportional to a†(k)a(k) + a(k)a†(k) and
hence their vacuum expectation values are proportional to δ(0) ∼ L, where L is
the size of the space direction. It is thus clear that for the infinite Euclidean plane
(or a Minkowski space-time with space R) these expectation values diverge. One
then defines the normal ordered operators:

: O : ≡ O − <0|O|0> . (1.30)

For free fields this is equivalent to ordering annihilation operators to the right
of creation operators, and sufficient to make : O : finite.

Using the algebra of the creation and annihilation operators and the normal
ordered Hamiltonian, the construction of the Fock space is standard. One defines
the vacuum state |0> such that

a(k1)|0>= 0. (1.31)

The states in the Fock space are∏
i

a†(ki)ni |0>, (1.32)

and their energies, by applying the Hamiltonian,

H|
∏

a†(ki)ni |0>=
∑

i

(k0
j )ni(ki)

∏
a†(ki)ni |0> . (1.33)

The canonical quantization for the scalar field on a compact space direction,
with the boundary conditions of open or closed string, (1.21) and (1.17), respec-
tively, follows very similar steps. Imposing the quantization conditions (1.28)
above implies the following algebra for the αn operators of the open string and
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1.7 Radial quantization 9

for the αn and ᾱn operators for the closed string:

[αm , αn ] = mδm+n

[ᾱm , ᾱn ] = mδm+n

[αm , ᾱn ] = 0. (1.34)

It is thus clear that αn operators are related to the a(k) operators as

αm =
√

ma(m),m > 0; α−m =
√

ma†(m),m > 0. (1.35)

1.7 Radial quantization

For the case of a cylinder-like two-dimensional manifold, namely, where the space
direction is compactified so that x1 ≡ x1 + 2π, it is natural to use the z = ex0 +ix1

coordinates. Space translations x1 → x1 + a take the form of multiplying by
a phase factor z → eiaz, and time translations x0 → x0 + a turn into dilata-
tions z → eaz. Rotations (x0 + ix1) → (c + is)(x0 + ix1), go into z → z(c+is) ,
with (c + is) = eiθ , θ the rotation angle. Correspondingly the generators of these
transformations change their geometrical operation. For instance the Hamilto-
nian obviously goes into the dilatation generator. Moreover, generators which
are Noether charges transform into contour integrals. Recall that the Noether
charge is Q =

∫
dx1J0(x1) which in the new coordinates reads Q =

∫
dθJr (θ) so

that we can write,

Q =
1

2πi

∮
[dzJ(z) + dz̄J̄(z̄)], (1.36)

where the contour integral is performed at some radius and the sign convention
we adopt is that both the dz and dz̄ integral are taken to be positive for the
counter-clockwise sense.

The infinitesimal transformation of an operator generated by the Noether
charge Q is given by:

δε,ε̄O =
1

2πi

∮
[dzJ(z)ε(z),O(w, w̄)] + dz̄[J̄(z̄)ε̄(z̄),O(w, w̄)]. (1.37)

Define a product R of two operators A(z)B(w) as taken radially, namely4

R(A(z)B(w)) = A(z)B(w), |z| > |w|; B(w)A(z), |w| > |z|. (1.38)

In Fig. 1.2 we show the two contour integrals that lead to a contour integral
around w, the location of the operator O, so that the infinitesimal transformation
is given by,

δε,ε̄O =
1

2πi

∮
[dzε(z)R(J(z)O(w, w̄)) + dz̄ε̄(z̄)R(J(z̄)O(w, w̄))]. (1.39)

4 The notion of radial quantization was introduced in [104]. This construction was used in the
context of complex geometry in [93].
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10 From massless free scalar field to conformal field theories

z z

w

w w

z

Fig. 1.2. A contour around w from the commutator.

We now apply this formulation to the symmetry generators (discussed in Sec-
tion 2.1):

(i) The infinitesimal affine current algebra transformation X̂(z, z̄) → X̂(z, z̄) −
ε(z) is generated by the holomorphic current J(z) = ∂X via

δεX̂(w, w̄) =
1

2πi

∮
dzε(z)R(∂X(z)X̂(w, w̄))

=
1

2πi

∮
dz

−1
z − w

ε(z) = −ε(w), (1.40)

where we have used for the product of operators,

R(X(z)X(w)) = − log(z − w) + finite terms. (1.41)

This is an example of the concept of operator product expansion, which is
addressed in the next section.

(ii) In a similar manner we can compute the transformation of ∂X generated by
the energy momentum tensor T

δε∂X(w) =
1

2πi

∮
dzε(z)R

(
−1

2
: ∂X(z)∂X(z) : ∂X(w)

)
=

1
2πi

∮
dz

1
(z − w)2 ∂X(z)ε(z) = ∂ε(w)∂X(w) + ε(w)∂2X(w), (1.42)

which is indeed the infinitesimal transformation of the holomorphic current
J = ∂X(z). The generator T is normal ordered using the following expression:

T (w) = −1
2

: ∂X(z)∂X(w) :≡ −1
2

limz→w

[
∂X(z)∂X(w) +

1
(z − w)2

]
. (1.43)
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1.8 Operator product expansion 11

1.8 Operator product expansion

In computing the contour integrals associated with infinitesimal transformations
we have made use of the operator product expansions of pairs of operators.5 The
singularities that occur when the points are taken to approach one another are
captured in the notion of operator product expansion (OPE),

Oi(x)Oj (y) =
∑

k

ck
ij (x − y)Ok (y), (1.44)

where ck
ij (x − y) are the coefficient functions which are singular in the limit of

x → y. Such expansions were proven to hold in renormalizable field theories. The
OPEs are an essential tool in exploring quantum field theories. Recall that all of
the information on the QFT is encoded into the values of all possible correlation
functions of the complete set of local

operators Oi(x), namely, < O1(x1)...On (xn ) >. In particular, one is interested
in the behavior of these correlation functions when two or more points approach
each other, which is encapsulated in the OPEs. For all applications discussed here
the OPEs are treated as asymptotic expansions and only their singular terms
will be specified. For the present case of two-dimensional free massless scalar
field theory the OPE converges and in fact, as will be discussed in Section 3.7.2,
a similar situation occurs in all 2d CFTs.

The OPEs of the free massless scalar can be deduced from its propagator,
which can be evaluated from the solution. It takes the form:

< X̂(zz̄)X̂(ww̄) >= −log|z − w|2 . (1.45)

In terms of the separation of the solution into holomorphic and anti-holomorphic
parts the two propagators read:

< X(z)X(w) >= − log(z − w); < X̄(z̄)X̄(w̄) >= − log(z̄ − w̄). (1.46)

By differentiating the last relation with respect to z and to w one finds the short
distance expansion of other operators like J(z), T (z) etc. In particular the OPE
of the currents is

J(z)J(w) = ∂X(z)∂X(w) = − 1
(z − w)2 + finite terms, (1.47)

with a similar result for the anti-holomorphic currents.
A different, though equivalent, approach is to write the OPE as a Taylor

expansion in (z − w) and (z̄ − w̄) in the following form:

X̂(z, z̄)X̂(ww̄) = −log|z − w|2 +
∞∑

k=1

1
k!

[(z − w)k : (∂kX̂(w, w̄))X̂(w, w̄) :

+(z̄ − w̄)k : (∂̄k X̂(w, w̄))X̂(w, w̄) :]. (1.48)

5 Wilson introduced for the first time the concept of an operator product expansion [219]. It
was used for two-dimensional conformal field theories in [33].
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