
1

Introduction

Computational group theory (CGT) is a subfield of symbolic algebra; it deals
with the design, analysis, and implementation of algorithms for manipulating
groups. It is an interdisciplinary area between mathematics and computer sci-
ence. The major areas of CGT are the algorithms for finitely presented groups,
polycyclic and finite solvable groups, permutation groups, matrix groups, and
representation theory.

The topic of this book is the third of these areas. Permutation groups are
the oldest type of representations of groups; in fact, the work of Galois on
permutation groups, which is generally considered as the start of group theory
as a separate branch of mathematics, preceded the abstract definition of groups
by about a half a century. Algorithmic questions permeated permutation group
theory from its inception. Galois group computations, and the related problem
of determining all transitive permutation groups of a given degree, are still
active areas of research (see [Hulpke, 1996]). Mathieu’s constructions of his
simple groups also involved serious computations.

Nowadays, permutation group algorithms are among the best developed parts
of CGT, and we can handle groups of degree in the hundreds of thousands. The
basic ideas for handling permutation groups appeared in [Sims, 1970, 1971a];
even today, Sims’s methods are at the heart of most of the algorithms.

At first glance, the efficiency of permutation group algorithmsmaybe surpris-
ing. The input consists of a list of generators. On one hand, this representation
is very efficient, since a few permutations in Sn can describe an object of size up
to n!. On the other hand, the succinctness of such a representation G = 〈S〉 ne-
cessitates nontrivial algorithms to answer even such basic questions as finding
the order of G or testing membership of a given permutation in G.

Initially, it is not even clear how toprove in polynomial time in the input length
that a certain permutation g is in G, because writing g as a product of the given
generators S for G may require an exponentially long word. Sims’s seminal

1

© Cambridge University Press www.cambridge.org

Cambridge University Press
052166103X - Permutation Group Algorithms
Akos Seress
Excerpt
More information

http://www.cambridge.org/052166103X
http://www.cambridge.org
http://www.cambridge.org

2 Introduction

idea was to introduce the notions of base and strong generating set. This data
structure enables us to decide membership in G constructively, by writing any
given element of G as a short product of the strong generators. The technique
for constructing a strong generating set can also be applied to other tasks such
as computing normal closures of subgroups and handling homomorphisms of
groups. Therefore, a significant part of this book is devoted to the description
of variants and applications of Sims’s method.

A second generation of algorithms uses divide-and-conquer techniques by
utilizing the orbit structure and imprimitivity block structure of the input group,
thereby reducing the problems to primitive groups. Although every abstract
group has a faithful transitive permutation representation, the structure of prim-
itive groups is quite restricted. This extra information, partly obtained as a
consequence of the classification of finite simple groups, can be exploited in
the design of algorithms.

We shall also describe some of the latest algorithms, which use an even finer
divide-and-conquer technique. A tower of normal subgroups is constructed
such that the factor groups between two consecutive normal subgroups are the
products of isomorphic simple groups. Abelian factors are handled by linear al-
gebra, whereas the simple groups occurring in nonabelian factors are identified
with standard copies of these groups, and the problems are solved in the stan-
dard copies. This identification process works in the more general black-box
group setting, when we do not use the fact that the input group is represented
by permutations: The algorithms only exploit the facts that we can multiply
and invert group elements and decide whether two group elements are equal.
This generality enables us to use the same algorithms for matrix group inputs.
Computations with matrix groups is currently the most active area of CGT.

Dealing with permutation groups is the area of CGT where the complexity
analysis of algorithms is the most developed. The initial reason for interest
in complexity analysis was the connection of permutation group algorithms
with the celebrated graph isomorphism problem. The decisive result in estab-
lishing the connection is the polynomial-time algorithm in [Luks, 1982] for
testing isomorphism of graphs with bounded valence, where the isomorphism
problem is reduced to finding setwise stabilizers of subsets in the permutation
domain of groups with composition factors of bounded size. This paper not
only established a link between complexity theory and CGT but provided new
methodology for permutation group algorithms.

Up until the end of the 1980s, permutation group algorithms were devel-
oped in two different contexts. In one of these, the primary goal was efficient
implementation, to handle the groups occurring in applications. In the other
context, the main goal was the rigorous asymptotic analysis of algorithms.

© Cambridge University Press www.cambridge.org

Cambridge University Press
052166103X - Permutation Group Algorithms
Akos Seress
Excerpt
More information

http://www.cambridge.org/052166103X
http://www.cambridge.org
http://www.cambridge.org

Introduction 3

Algorithms for numerous tasks were developed separately in the two con-
texts, and the two previous books on permutation group algorithms reflect
this division: [Butler, 1991] deals mostly with the practical approach, whereas
[Hoffmann, 1982] concentrates on the asymptotic analysis. In the past decade,
a remarkable convergence of the approaches occurred, and algorithms with fast
asymptotic running times that are suitable for implementation were developed.
The main purpose of this book is to describe this new development. We con-
sider the interaction of theory and implementation to be of great importance
to each side: Symbolic algebra can benefit considerably by the influx of ideas
of algorithmic complexity theory and rigorous asymptotic analysis; conversely,
the implementations help demonstrate the power of the asymptotic paradigm,
which is at the foundation of the theory of computing.

The major theme of this book is the description of nearly linear-time algo-
rithms. These are the algorithms representing the convergence of theoretical
and practical considerations. Their running time is O(n|S| logc |G|) for input
groups G = 〈S〉 ≤ Sn; in particular, in the important subcase of small-base
groups, when log |G| is bounded from above by a polylogarithmic function of
n, the running time is a nearly linear, O(N logc N), function of the input length
N = n|S|. The category of small-base groups includes all permutation repre-
sentations of finite simple groups except the alternating ones and all primitive
groups that do not have alternating composition factors in their socle. Most
practical computations are performed with small-base input groups.

Quite different methods give the asymptotically fastest solutions for com-
putational problems in large-base groups, where log |G| is bounded only by
log n!. Most of these algorithms have not yet been implemented. We shall also
describe backtrack methods, which are the practical algorithms for problems
with no known polynomial-time solutions. For small-base input groups, back-
track methods may be practical in groups of degree in the tens of thousands.

Our main goal is to present the mathematics behind permutation group algo-
rithms, and implementation details will be mostly omitted.We shall give details
only in the cases where the implemented version differs significantly from the
one described by the theoretical result or when the reason for the fast asymptotic
running time is a nontrivial data structure. Most of the algorithms described in
this book have been implemented in theGAP system [GAP, 2000], which, along
with its source code, is freely available. GAP code is written in a high-level,
Pascal-like language, and it can be read as easily as the customary pseudocode
in other books and articles on computational group theory. The addresses of ftp
servers for GAP can be obtained from the World Wide Web page

http://www-gap.dcs.st-and.ac.uk/~gap.

© Cambridge University Press www.cambridge.org

Cambridge University Press
052166103X - Permutation Group Algorithms
Akos Seress
Excerpt
More information

http://www.cambridge.org/052166103X
http://www.cambridge.org
http://www.cambridge.org

4 Introduction

The other large computer algebra system particularly suitable for computations
with groups is Magma (see [Bosma et al., 1997]). The World Wide Web page

http://www.maths.usyd.edu.au:8000/u/magma

describes how to access Magma on a subscription basis.

Acknowledgments

Thewriting of this book began in 1993, on the suggestion of JoachimNeubüser,
who envisioned a series of books covering the major areas of computational
group theory. The fact that the writing is finished in less than a decade is in no
small part the consequence of my wife Sherry’s continuous encouragement. I
am thankful to both of them and to the editors of Cambridge University Press
for their patience. During this period, I was partially supported by the National
Science Foundation.

Alexander Hulpke, William Kantor, Joachim Neubüser, Cheryl Praeger,
Charles Sims, and Leonard Soicher read parts of the manuscript, and their
comments improved the presentation significantly. I am especially indebted to
William Kantor and Joachim Neubüser for their help.

1.1. A List of Algorithms

In this book, most algorithms are described in the proofs of theorems or just
in the narrative, without any display or pseudocode. Whenever it is possible,
algorithms given in the narrative are preceded by a centered paragraph header.
The following list serves as a reference guide; it is organized roughly along
the lines of the lists in Sections 3.1 and 3.3. The input is a permutation group
G ≤ Sym(�).

� Orbit of some α ∈ �: Section 2.1.1; in particular, Theorem 2.1.1
� Blocks of imprimitivity
(i) A minimal nontrivial block: Section 5.5.1 (algorithm MinimalBlock)
(ii) The minimal block containing a given subset of �: Section 5.5.2

� Shallow Schreier tree construction
(i) Deterministic: Lemma 4.4.2, Remark 4.4.3, Lemma 4.4.8
(ii) Las Vegas: Theorem 4.4.6, Remark 4.4.7

� Strong generating set construction
(i) Deterministic: Section 4.2 (Schreier–Sims algorithm), Theorem 5.2.3

(with known base), Section 7.1 (for solvable groups), Theorem 10.1.3
(stored in a labeled branching)

(ii) Monte Carlo: Section 4.5, Theorems 5.2.5 and 5.2.6, Lemma 5.4.1,
Section 10.3

© Cambridge University Press www.cambridge.org

Cambridge University Press
052166103X - Permutation Group Algorithms
Akos Seress
Excerpt
More information

http://www.cambridge.org/052166103X
http://www.cambridge.org
http://www.cambridge.org

1.1 A List of Algorithms 5

(iii) Heuristic: Section 4.3 (random Schreier–Sims algorithm)
(iv) GAP implementation: Section 4.5.1, Remark 5.2.7

� Strong generating set verification
(i) Deterministic: Section 8.1 (Schreier–Todd–Coxeter–Sims algorithm),

Section 8.2 (Verify routine)
(ii) Monte Carlo: Lemma 4.5.6
(iii) Las Vegas: Theorem 8.3.1

� Membership test (sifting): Section 4.1
� Reduction of the size of generating sets
(i) Strong generators, deterministic: Lemma 4.4.8, Exercise 4.7
(ii) Arbitrary generators, Monte Carlo: Lemma 2.3.4, Theorem 2.3.6

� Random element generation
(i) With an SGS: Section 2.2, first paragraph
(ii) Without an SGS: Section 2.2 (random walk on a Cayley graph, product

replacement algorithm)
(iii) In alternating and symmetric groups: Exercises 2.1 and 2.2

� Isomorphism with other representations
(i) With a black-box group: Section 5.3
(ii) Solvable groups, with a power-commutator presentation: Section 7.2
(iii) An and Sn , with natural action: Theorem 10.2.4
(iv) PSLd (q), with the action on projective points: Section 5.3

� Operations with base images and with words in generators: Lemmas 5.2.1,
5.2.2, and 5.3.1

� Base change (transposing and conjugating base points, deterministic and Las
Vegas algorithms): Section 5.4, Exercise 5.5

� Presentations: Section 7.2 (for solvable groups), Section 8.1, Exercise 5.2,
Theorem 8.4.1

� Pointwise stabilizer of a subset of �: Section 5.1.1
� Handling of homomorphisms (kernel, image, preimage)
(i) Transitive constituent and block homomorphisms: Section 5.1.3
(ii) General case: Section 5.1.2

� Closure for G-action, normal closure
(i) With membership test in substructures, deterministic: Sections 2.1.2 and

5.1.4, Lemma 6.1.1
(ii) Without membership test, Monte Carlo: Theorems 2.3.9 and 2.4.5

� Commutator subgroup computation, derived series, lower central series
(i) With membership test in substructures, deterministic: Sections 2.1.2

and 5.1.4
(ii) Without membership test, Monte Carlo: Theorems 2.3.12 and 2.4.8

� Upper central series in nilpotent groups: Section 7.4.2
� Solvability test: Sections 2.1.2, 5.1.4, and 7.1

© Cambridge University Press www.cambridge.org

Cambridge University Press
052166103X - Permutation Group Algorithms
Akos Seress
Excerpt
More information

http://www.cambridge.org/052166103X
http://www.cambridge.org
http://www.cambridge.org

6 Introduction

� Nilpotency test: Sections 2.1.2, 5.1.4, and 7.4.1
� Subnormality test: Section 2.1.2
� Commutativity test (Monte Carlo): Lemma 2.3.14
� Regularity test: Exercises 5.12–5.15
� Center: Section 6.1.3
� Permutation representation with a normal subgroup N in the kernel: Lem-
mas 6.2.2 and 6.2.4, Theorem 6.3.1 (if N is abelian)

� Composition series
(i) Reduction to the primitive group case: Section 6.2.1
(ii) Finding normal subgroups in various types of primitive groups (Monte

Carlo): Sections 6.2.3 and 6.2.4
(iii) Verification of composition series, if SGS is known: Section 6.2.6
(iv) GAP implementation: Section 6.2.5
(v) Composition series without the classification of finite simple groups:

Section 6.2.6
� Chief series: Section 6.2.7
� Sylow subgroups and Hall subgroups in solvable groups: Section 7.3.1, Ex-
ercise 7.5 (Theorem 7.3.3 for conjugating Sylow subgroups)

� Core of a subnormal subgroup: Section 6.1.5
� p-core and solvable radical: Section 6.3.1
� Backtrack, general description: Section 9.1 (traditional), Section 9.2 (partition
backtrack)

� Setwise stabilizer of a subset of �: Section 9.1.2, Example 2
� Centralizer

(i) In the full symmetric group: Section 6.1.2
(ii) Of a normal subgroup: Section 6.1.4
(iii) General case: Section 9.1.2, Example 1

� Intersection of groups: Corollary 6.1.3 (if one of the groups normalizes the
other), Section 9.1.2, Example 3 (general case)

� Conjugating element: Section 9.1.2, Example 4
� Conjugacy classes: Section 7.3.2 (in solvable groups), Section 9.4 (general
case)

� Normalizer: Section 9.3

1.2. Notation and Terminology

We assume that the reader is familiar with basic notions concerning groups
covered in introductory graduate courses and with elementary probability the-
ory. A background area with which we do not suppose reader familiarity is
the detailed properties of finite simple groups, and the occasional references to

© Cambridge University Press www.cambridge.org

Cambridge University Press
052166103X - Permutation Group Algorithms
Akos Seress
Excerpt
More information

http://www.cambridge.org/052166103X
http://www.cambridge.org
http://www.cambridge.org

1.2 Notation and Terminology 7

these properties can be ignored without impeding understanding of the subse-
quent material. However, readers interested in further research in permutation
group algorithms are strongly advised to acquire knowledge of groups of Lie
type. One of the current largest obstacles, both in the permutation group and
matrix group setting, is our inability to exploit algorithmically properties of
exceptional groups of Lie type.

The required (minimal) background material about permutation groups
can be found for example in the first chapter of the recent books [Dixon and
Mortimer, 1996] and [Cameron, 1999]. Here we only summarize our notation
and terminology. In this book, all groups are finite.

All statements (i.e., theorems, lemmas, propositions, corollaries, and re-
marks) are numbered in a common system. For example, Theorem X.Y.Z de-
notes the Zth statement in Chapter X, Section Y, if this statement happens to
be a theorem. Definitions are just part of the text and are not displayed with a
number. Any unknown items (hopefully) can be found in the index. In the index,
boldface type is used for the page number where an item or notation is defined.
There are exercises at the end of some chapters, numbered as Exercise X.Y in
Chapter X. A third numbering system is used for the displayed formulas, in the
form (X.Y) in Chapter X.

1.2.1. Groups

If G is a group and S⊆G then we denote by 〈S〉 the subgroup generated by S.
Wewrite H ≤ G to indicate that H is a subgroup ofG and H � G if H ≤ G and
H 	= G. If H is isomorphic to a subgroupofG thenwewrite H �G. The symbol
|G : H | denotes the number |G|/|H |, and H �G denotes that H is normal in
G. A subgroup H ≤ G is subnormal in G, in notation H ��G, if there exists a
chain of subgroups H = H0 � H1 � · · · � Hk = G. If N �G and H ≤ G such
that N ∩ H = 1 and G= NH then we call H a complement of N in G.

The group of automorphisms, outer automorphisms, and inner automor-
phisms of G are denoted by Aut(G),Out(G), and Inn(G), respectively. We say
that G acts on a group H if a homomorphism ϕ :G → Aut(H) is given. If ϕ is
clear from the context, for g ∈G and h ∈ H we sometimes denote ϕ(g)(h), the
image of h under the automorphism ϕ(g), by hg . If G acts on H and U ⊆ H
then UG := {Ug | g ∈G} is the orbit of U under the G-action, and 〈UG〉 is
the G-closure of U . In the special case H =G, the group 〈UG〉 is called the
normal closure of U . For U ≤ H,CG(U) := {g ∈ G | (∀u ∈ U)(ug = u)} is
the centralizer of U in G and NG(U) := {g ∈ G |Ug = U } is the normalizer
of U in G. In particular, Z (G) := CG(G) is the center of G.

© Cambridge University Press www.cambridge.org

Cambridge University Press
052166103X - Permutation Group Algorithms
Akos Seress
Excerpt
More information

http://www.cambridge.org/052166103X
http://www.cambridge.org
http://www.cambridge.org

8 Introduction

The commutator of a, b ∈ G is [a, b] := a−1b−1ab and the conjugate of a
by b is ab := b−1ab. For H, K ≤ G, the commutator of H and K is defined
as [H, K] := 〈[h, k] | h ∈ H, k ∈ K 〉. In particular, [G,G], also called the
derived subgroup of G, is denoted by G ′. A group G is perfect if G = G ′. The
derived series of G is the sequence D0 ≥ D1 ≥ · · · of subgroups of G, defined
recursively by the rules D0 := G and Di+1 := D′

i for i ≥ 0. The lower central
series L0 ≥ L1 ≥ · · · of G is defined as L0 := G and Li+1 := [Li ,G] for
i ≥ 0. The upper central series Z0 ≤ Z1 ≤ · · · of G is defined as Z0 := 1 and
Zi+1 is the preimage of Z (G/Zi) in G for i ≥ 0. A group G is called solvable
if Dm = 1 for some m, and it is called nilpotent if Lm = 1 or Zm = G for
some m.

The direct product of groups A1, . . . , Am is denoted by A1 ×· · ·× Am or by
∏m
i=1 Ai . For i = 1, 2, . . . ,m, the projection function πi : A1 ×· · ·× Am → Ai

is defined by the rule πi : (a1, . . . , am) �→ ai . A group H ≤ A1 × · · · × Am is
a subdirect product of the Ai if all functions πi restricted to H are surjective,
i.e., {πi (h) | h ∈ H} = Ai .

For H ≤ G, a transversal G mod H is a set of representatives from the right
cosets of H in G. For a fixed transversal T and g ∈G, we denote by ḡ the coset
representative in T such that g ∈ Hḡ. Unless stated explicitly otherwise, cosets
always mean right cosets.

If
 is any collection of simple groups, O
(G) denotes the largest normal
subgroup of G such that each composition factor of O
(G) is isomorphic to
a member of
, and O
(G) denotes the smallest normal subgroup of G such
that each composition factor of G/O
(G) is isomorphic to a member of
. In
particular, if
 consists of a single groupof primeorder p thenO
(G) is denoted
by Op(G); this is the largest normal p-subgroup, the p-core, of G. When

consists of all cyclic simple groups, O
(G) is denoted by O∞(G); this is the
largest solvable normal subgroup, the solvable radical of G. Similarly, O∞(G)
denotes the smallest normal subgroup of G with solvable factor group and it is
called the solvable residual of G. For H ≤ G,CoreG(H) := ⋂{Hg | g ∈ G}
is the largest normal subgroup of G contained in H ; it is the kernel of the
permutation representation of G on the (right) cosets of H . The socle of G
is the subgroup of G generated by all minimal normal subgroups of G and is
denoted by Soc(G).

The cyclic group of order n is denoted by Cn . The group of invertible d × d
matrices over the q-element field GF(q) is denoted by GLd (q). Similar notation
is used for the other classical matrix groups of Lie type and for their projective
factor groups: SLd (q),PSLd (q), and soon.Theunitary groupsGUd (q),SUd (q),
and PSUd (q) are defined over GF(q2). For exceptional groups of Lie type, we

© Cambridge University Press www.cambridge.org

Cambridge University Press
052166103X - Permutation Group Algorithms
Akos Seress
Excerpt
More information

http://www.cambridge.org/052166103X
http://www.cambridge.org
http://www.cambridge.org

1.2 Notation and Terminology 9

use the Lie-theoretic notation 2B2(q), 2G2(q), and so on. As mentioned earlier,
no detailed knowledge of the groups of Lie type is required in this book.

1.2.2. Permutation Groups

We shall use the cycle notation for permutations, and the identity permuta-
tion is denoted by (). The group of all permutations of an n-element set � is
denoted Sym(�), or Sn if the specific set is inessential. Subgroups of Sn are
the permutation groups of degree n. We use lowercase Greek letters to denote
elements of �; lower- and uppercase italics denote elements and subgroups
of Sn , respectively. For α ∈ � and g ∈Sym(�), we write αg for the image of
α under the permutation g. The alternating group on � is denoted by Alt(�)
(or An). The support of g ∈Sym(�), denoted by supp(g), consists of those el-
ements of � that are actually displaced by g: supp(g) = {ω ∈ � | ωg 	= ω}.
The set of fixed points of g is defined as fix(g) := �\supp(g). The degree of g
is deg(g) = |supp(g)|.

We say that a group G acts on � if a homomorphism ϕ :G → Sym(�) is
given (by specifying the image of a generator set of G). This action is faithful if
its kernel ker(ϕ) is the identity. The image ϕ(G) ≤ Sym(�) is also denoted by
G�. In the special case when G ≤ Sym(�), � ⊆ � is fixed by G, and ϕ is the
restriction of permutations to�, we also denoteG� byG|�. The orbit ofω ∈ �

under G ≤Sym(�) is the set of images ωG := {ωg | g ∈ G}. For � ⊆ � and
g ∈Sym(�), �g := {δg | δ ∈ �}. A group G ≤Sym(�) is transitive on � if it
has only one orbit, and G is t-transitive if the action of G induced on the set of
ordered t-tuples of distinct elements of � is transitive (t ≤ n). The maximum
such t is the degree of transitivity of G.

If G ≤ Sym(�) is transitive and � ⊆ �, then � is called a block of imprimi-
tivity forG if for all g ∈ G either�g = � or�g ∩ � = ∅. The groupG is called
primitive if all blocks have 0, 1, or |�| elements. If � is a block then the set of
images of� is a partition of�, which is called a block system, and an action ofG
is induced on the block system. A block is calledminimal if it has more than one
element and its proper subsets of size at least two are not blocks.Ablock is called
maximal if the only block properly containing it is�. A block system ismaximal
if it consists of minimal blocks, whereas a block system isminimal if it consists
of maximal blocks. The action of G on a minimal block system is primitive.

For � ⊆ � and G ≤ Sym(�),G(�) denotes the pointwise stabilizer of �,
namely, G(�) = {g ∈G | (∀δ ∈ �)(δg = δ)}. If � has only one or two elements,
we often drop the set braces and parentheses from the notation; in particular,
Gδ denotes the stabilizer of δ ∈ �. The setwise stabilizer of � is denoted

© Cambridge University Press www.cambridge.org

Cambridge University Press
052166103X - Permutation Group Algorithms
Akos Seress
Excerpt
More information

http://www.cambridge.org/052166103X
http://www.cambridge.org
http://www.cambridge.org

10 Introduction

by G� (i.e., G� = {g ∈G | �g = �}). If � = (δ1, . . . , δm) is a sequence of
elements of � then G� denotes the pointwise stabilizer of that sequence (i.e.,
G� =G({δ1,...,δm })).

A group G ≤ Sym(�) is semiregular if Gδ = 1 for all δ ∈ �, whereas G
is regular if it is transitive and semiregular. A Frobenius group is a transitive
group G ≤ Sym(�) that is not regular but for which Gαβ = 1 for all distinct
α, β ∈ �.

If g ∈ Sym(�) then a bijection ϕ :� → � naturally defines a permutation
ϕ̄(g) ∈ Sym(�) by the rule ϕ(ω)ϕ̄(g) := ϕ(ωg) for all ω ∈ �. We say that
G ≤ Sym(�) and H ≤ Sym(�) are permutation isomorphic, H ∼ G, if there
is a bijection ϕ:� → � such that ϕ̄(G) := {ϕ̄(g) | g ∈ G} = H .

Let G be an arbitrary group and let H ≤ Sk be a transitive permutation
group. The wreath product G � H consists of the sequences (g1, . . . , gk ; h)
where gi ∈ G for i = 1, . . . , k and h ∈ H . The product of (g1, . . . , gk ; h) and
(ḡ1, . . . , ḡk ; h̄) is defined as (g1ḡ1h . . . , gk ḡkh ; hh̄).

1.2.3. Algorithmic Concepts

Groups in algorithms will always be input and output by specifying a list of
generators.

Given G = 〈S〉, a straight-line program of length m reaching some g ∈ G
is a sequence of expressions (w1, . . . , wm) such that, for each i, wi is a symbol
for some element of S, or wi = (w j , −1) for some j < i , or wi = (w j , wk)
for some j, k < i , such that if the expressions are evaluated in G the obvious
way then the value of wm is g. Namely, the evaluated value of a symbol for a
generator is the generator itself; the evaluated value of wi = (w j , −1) is the
inverse of the evaluated value of w j ; and the evaluated value of wi = (w j , wk)
is the product of the evaluated values of w j and wk . Hence a straight-line
program is an encoding of a sequence of group elements (g1, . . . , gm) such that
gm = g and for each i one of the following holds: gi ∈ S, or gi = g−1

j for some
j < i , or gi = g j gk for some j, k < i . However, the more abstract definition as
a sequence of expressions not only requires less memory but also enables us to
construct a straight-line program in one representation of G and evaluate it in
another, which is an important feature of some algorithms.

The symbols Z, N, and R denote the set of integers, nonnegative integers,
and real numbers, respectively. Let

F := { f : N → R | (∃n0 ∈ N)(∀n > n0)(f (n) > 0)}

(i.e., functions that take positive values with finitely many exceptions). For

© Cambridge University Press www.cambridge.org

Cambridge University Press
052166103X - Permutation Group Algorithms
Akos Seress
Excerpt
More information

http://www.cambridge.org/052166103X
http://www.cambridge.org
http://www.cambridge.org

