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1

Turbulent combustion: The state of the art

1.1 What Is Specific about Turbulence with Combustion?

In recent years, nothing seems to have inspired researchers in the combustion
community so much as the unresolved problems in turbulent combustion. Tur-
bulence in itself is far from being fully understood; it is probably the most
significant unresolved problem in classical physics. Since the flow is turbulent
in nearly all engineering applications, the urgent need to resolve engineer-
ing problems has led to preliminary solutions called turbulence models. These
models use systematic mathematical derivations based on the Navier–Stokes
equations up to a certain point, but then they introduce closure hypotheses that
rely on dimensional arguments and require empirical input. This semiempirical
nature of turbulence models puts them into the category of an art rather than a
science.

For high Reynolds number flows the so-called eddy cascade hypothesis forms
the basis for closure of turbulence models. Large eddies break up into smaller
eddies, which in turn break up into even smaller ones, until the smallest eddies
disappear due to viscous forces. This leads to scale invariance of energy transfer
in the inertial subrange of turbulence. We will denote this as inertial range
invariance in this book. It is the most important hypothesis for large Reynolds
number turbulent flows and has been built into all classical turbulence models,
which thereby satisfy the requirement of Reynolds number independence in the
large Reynolds number limit. Viscous effects are of importance in the vicinity
of solid walls only, a region of minor importance for combustion.

The apparent success of turbulence models in solving engineering problems
has encouraged similar approaches for turbulent combustion, which conse-
quently led to the formulation of turbulent combustion models. This is, however,
where problems arise.

1



2 1. Turbulent combustion: The state of the art

Combustion requires that fuel and oxidizer be mixed at the molecular level.
How this takes place in turbulent combustion depends on the turbulent mixing
process. The general view is that once a range of different size eddies has deve-
loped, strain and shear at the interface between the eddies enhance the mixing.
During the eddy break-up process and the formation of smaller eddies, strain
and shear will increase and thereby steepen the concentration gradients at the
interface between reactants, which in turn enhances their molecular interdiffu-
sion. Molecular mixing of fuel and oxidizer, as a prerequisite of combustion,
therefore takes place at the interface between small eddies. Similar considera-
tions apply, once a flame has developed, to the conduction of heat and the
diffusion of radicals out of the reaction zone at the interface.

While this picture follows standard ideas about turbulent mixing, it is less
clear how combustion modifies these processes. Chemical reactions consume
the fuel and the oxidizer at the interface and will thereby steepen their gradients
even further. To what extent this will modify the interfacial diffusion process
still needs to be understood.

This could lead to the conclusion that the interaction between turbulence
and combustion invalidates classical scaling laws known from nonreacting tur-
bulent flows, such as the Reynolds number independence of free shear flows
in the large Reynolds number limit. To complicate the picture further, one has
to realize that combustion involves a large number of elementary chemical
reactions that occur on different time scales. If all these scales would inter-
act with all the time scales within the inertial range, no simple scaling laws
could be found. Important empirical evidence, however, does not confirm such
pessimism:

• The difference between the turbulent and the laminar burning velocity, nor-
malized by the turbulence intensity, is independent of the Reynolds number.
It is Damköhler number independent for large scale turbulence, but it be-
comes proportional to the square root of the Damköhler number for small
scale turbulence (cf. Section 2.10).

• The flame length of a nonbuoyant turbulent jet diffusion flame, for instance,
is Reynolds number and Damköhler number independent (cf. Section 3.9).

• The NO emission index of hydrogen–air diffusion flames is independent of
the Reynolds number but proportional to the square root of the Damköhler
number (cf. Section 3.14).

• The lift-off height in lifted jet diffusion flames is independent of the noz-
zle diameter and increases nearly linearly with the jet exit velocity (cf.
Section 4.6).
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Power law Damköhler number scaling laws may be the exception rather
than the rule, but they indicate that there are circumstances where only a few
chemical and turbulent time scales are involved. As far as Reynolds number in-
dependence is concerned, it should be noted that the Reynolds number in many
laboratory experiments is not large enough to approach the large Reynolds
number limit. A remaining Reynolds number dependence of the turbulent mix-
ing process would then show up in the combustion data. Apart from these
experimental limitations (which become more serious owing to the increase of
viscosity with temperature) it is not plausible that there would be a Reynolds
number dependence introduced by combustion, because chemical reactions in-
troduce additional time scales but no viscous effects. Even if chemical time
scales interact with turbulent time scales in the inertial subrange of turbulence,
these interactions cannot introduce the viscosity as a parameter for dimensional
scaling, because it has disappeared as a parameter in that range. This does not
preclude that ratios of molecular transport properties, Prandtl or Lewis num-
bers, for instance, would not appear in scaling laws in combustion. As we have
restricted the content of this book to low speed combustion, the Mach number
will not appear in the analysis.

There remains, however, the issue of to what extent we can expect an in-
teraction between chemical and turbulent scales in the inertial subrange. Here,
we must realize that combustion differs from isothermal mixing in chemically
reacting flows by two specific features:

• heat release by combustion induces an increase of temperature, which in
turn

• accelerates combustion chemistry. Because of the competition between chain
branching and chain breaking reactions this process is very sensitive to
temperature changes.

Heat release combined with temperature sensitive chemistry leads to typical
combustion phenomena, such as ignition and extinction. This is illustrated in
Figure 1.1 where the maximum temperature in a homogeneous flow combustor
is plotted as a function of the Damköhler number, which here represents the
ratio of the residence time to the chemical time. This is called the S-shaped
curve in the combustion literature. The lower branch of this curve corresponds
to a slowly reacting state of the combustor prior to ignition, where the short
residence times prevent a thermal runaway. If the residence time is increased
by lowering the flow velocity, for example, the Damköhler number increases
until the ignition point I is reached. For values larger than DaI thermal runaway
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Figure 1.1. The S-shaped curve showing the maximum temperature in a well-stirred
reactor as a function of the Damköhler number.

leads to a rapid unsteady transition to the upper close-to-equilibrium branch. If
one starts on that branch and decreases the Damköhler number, thereby moving
to the left in Figure 1.1, one reaches the point Q where extinction occurs. This is
equivalent to a rapid transition to the lower branch. The middle branch between
the point I and Q is unstable.

In the range of Damköhler numbers between DaQ and DaI , where two sta-
ble branches exist, any initial state with a temperature in the range between the
lower and the upper branch is rapidly driven to either one of them. Owing to the
temperature sensitivity of combustion reactions the two stable branches repre-
sent strong attractors. Therefore, only regions close to chemical equilibrium or
close to the nonreacting state are frequently accessed. In an analytic study of
stochastic Damköhler number variations Oberlack et al. (2000) have recently
shown that the probability of finding realizations apart from these two steady
state solutions is indeed very small.

Chemical reactions that take place at the high temperatures on the upper
branch of Figure 1.1 are nearly always fast compared to all turbulent time scales
and, with the support of molecular diffusion, they concentrate in thin layers of
a width that is typically smaller than the Kolmogorov scale. Except for density
changes these layers cannot exert a feedback on the flow. Therefore they cannot
influence the inertial range scaling. If these layers extinguish as the result of
excessive heat loss, the temperature decreases such that chemistry becomes
very slow and mixing can also be described by classical inertial range scaling.

In both situations, fast and slow chemistry, time and length scales of com-
bustion are separated from those of turbulence in the inertial subrange. This
scale separation is a specific feature of most practical applications of turbulent
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combustion.† It makes the mixing process in the inertial range independent of
chemistry and simplifies modeling significantly. Almost all turbulent combus-
tion models explicitly or implicitly assume scale separation.

As a general theme of this chapter, we will investigate whether the turbulence
models to be discussed are based on the postulate of scale separation between
turbulent and chemical time scales. In addition, it will be pointed out if a com-
bustion model does not satisfy the postulate of Reynolds number independence
in the large Reynolds number limit.

1.2 Statistical Description of Turbulent Flows

The aim of stochastic methods in turbulence is to describe the fluctuating ve-
locity and scalar fields in terms of their statistical distributions. A convenient
starting point for this description is the distribution function of a single variable,
the velocity component u, for instance. The distribution function Fu(U ) of u is
defined by the probability p of finding a value of u < U :

Fu(U ) = p(u < U ), (1.1)

where U is the so-called sample space variable associated with the random
stochastic variable u. The sample space of the random stochastic variable u
consists of all possible realizations of u. The probability of finding a value of
u in a certain interval U− ≤ u < U+ is given by

p(U− ≤ u < U+) = Fu(U+) − Fu(U−). (1.2)

The probability density function (pdf) of u is now defined as

Pu(U ) = d Fu(U )

dU
. (1.3)

It follows that Pu(U )dU is the probability of finding u in the range U ≤ u <

U + dU . If the possible realizations of u range from −∞ to +∞, it follows
that ∫ +∞

−∞
Pu(U ) dU = 1, (1.4)

which states that the probability of finding the value u between −∞ and +∞
is certain (i.e., it has the probability unity). It also serves as a normalizing
condition for Pu .

† A potential exception is the situation prior to ignition, where chemistry is neither slow enough
nor fast enough to be separated from the turbulent time scales. We will discuss this situation in
detail in Chapter 3, Section 3.12.
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In turbulent flows the pdf of any stochastic variable depends, in principle,
on the position x and on time t . These functional dependencies are expressed
by the following notation:

Pu(U ; x, t). (1.5)

The semicolon used here indicates that Pu is a probability density in U -space
and is a function of x and t . In stationary turbulent flows it does not depend on t
and in homogeneous turbulent fields it does not depend on x. In the following,
for simplicity of notation, we will not distinguish between the random stochastic
variable u and the sample space variable U , dropping the index and writing the
pdf as

P(u; x, t). (1.6)

Once the pdf of a variable is known one may define its moments by

u(x, t)n =
∫ +∞

−∞
un P(u; x, t) du. (1.7)

Here the overbar denotes the average or mean value, sometimes also called
expectation, of un . The first moment (n = 1) is called the mean of u:

ū(x, t) =
∫ +∞

−∞
u P(u; x, t) du. (1.8)

Similarly, the mean value of a function g(u) can be calculated from

ḡ(x, t) =
∫ +∞

−∞
g(u)P(u; x, t) du. (1.9)

Central moments are defined by

[u(x, t) − u(x, t)]n =
∫ +∞

−∞
(u − ū)n P(u; x, t) du, (1.10)

where the second central moment

[u(x, t) − u(x, t)]2 =
∫ +∞

−∞
(u − ū)2 P(u; x, t) du (1.11)

is called the variance. If we split the random variable u into its mean and the
fluctuations u′ as

u(x, t) = ū(x, t) + u′(x, t), (1.12)

where u′ = 0 by definition, the variance is found to be related to the first and
second moment by

u′2 = (u − ū)2 = u2 − 2uū + ū2 = u2 − ū2. (1.13)
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Models for turbulent flows traditionally start from the Navier–Stokes equa-
tions to derive equations for the first and the second moments of the flow
variables using (1.12). Since the three velocity components and the pressure
depend on each other through the solutions of the Navier–Stokes equations
they are correlated. To quantify these correlations it is convenient to introduce
the joint probability density function of the random variables. For instance, the
joint pdf of the velocity components u and v is written as

P(u, v; x, t).

The pdf of u, for instance, may be obtained from the joint pdf by integration
over all possible realizations of v,

P(u) =
∫ +∞

−∞
P(u, v) dv, (1.14)

and is called the marginal pdf of u in this context. The correlation between u
and v is given by

u′v′ =
∫ +∞

−∞

∫ +∞

−∞
(u − ū)(v − v̄)P(u, v) dudv. (1.15)

This can be illustrated by a so-called scatter plot (cf. Figure 1.2). If a series
of instantaneous realizations of u and v are plotted as points in a graph of
u and v, these points will scatter within a certain range. The means ū and v̄

are the average positions of the points in u and v directions, respectively. The
correlation u′v′/(u ′2 v

′2)1/2 is proportional to the slope of the average straight
line through the data points.

A joint pdf of two variables can always be written as a product of a
conditional pdf of one variable times the marginal pdf of the other, for

v

v

uu

Figure 1.2. A scatter plot of two velocity components u and v illustrating the correlation
coefficient.
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example

P(u, v; x, t) = P(u | v; x, t)P(v; x, t). (1.16)

This is called Bayes’ theorem. In this example the conditional pdf P(u | v; x, t)
describes the probability density of u, conditioned at a fixed value of v. If u
and v are not correlated they are called statistically independent. In that case
the joint pdf is equal to the product of the marginal pdfs:

P(u, v; x, t) = P(u; x, t)P(v; x, t). (1.17)

By using this in (1.15) and integrating, we easily see that u′v′ vanishes, if u
and v are statistically independent. In turbulent shear flows u′v′ is interpreted
as a Reynolds shear stress, which is nonzero in general. The conditional pdf
P(u | v; x, t) can be used to define conditional moments. For example, the
conditional mean of u, conditioned at a fixed value of v, is given by

〈u | v〉 =
∫ +∞

−∞
u P(u | v) du. (1.18)

In the following we will use angular brackets for conditional means only.
As a consequence of the nonlinearity of the Navier–Stokes equations sev-

eral closure problems arise. These are not only related to correlations between
velocity components among each other and the pressure, but also to correla-
tions between velocity gradients and correlations between velocity gradients
and pressure fluctuations. These appear in the equations for the second mo-
ments as dissipation terms and pressure–strain correlations, respectively. The
statistical description of gradients requires information from adjacent points in
physical space. Very important aspects in the statistical description of turbulent
flows are therefore related to two-point correlations, which we will introduce
in Section 1.4.

For flows with large density changes as occur in combustion, it is often
convenient to introduce a density-weighted average ũ, called the Favre average,
by splitting u(x, t) into ũ(x, t) and u′′(x, t) as

u(x, t) = ũ(x, t) + u′′(x, t). (1.19)

This averaging procedure is defined by requiring that the average of the product
of u′′ with the density ρ (rather than u′′ itself) vanishes:

ρu′′ = 0. (1.20)

The definition for ũ may then be derived by multiplying (1.19) by the density
ρ and averaging:

ρu = ρũ + ρu′′ = ρ̄ũ. (1.21)
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Here the average of the product ρũ is equal to the product of the averages ρ̄

and ũ, since ũ is already an average defined by

ũ = ρu/ρ̄. (1.22)

This density-weighted average can be calculated, if simultaneous measurements
of ρ and u are available. Then, by taking the average of the product ρu and
dividing it by the average of ρ one obtains ũ. While such measurements are often
difficult to obtain, Favre averaging has considerable advantages in simplifying
the formulation of the averaged Navier–Stokes equations in variable density
flows. In the momentum equations, but also in the balance equations for the
temperature and the chemical species, the convective terms are dominant in
high Reynolds number flows. Since these contain products of the dependent
variables and the density, Favre averaging is the method of choice. For instance,
the average of the product of the density ρ with the velocity components u and
v would lead with conventional averages to four terms,

ρuv = ρ̄ ū v̄ + ρ̄u′v′ + ρ ′u′v̄ + ρ ′v′ū + ρ ′u′v′. (1.23)

Using Favre averages one writes

ρuv = ρ(ũ + u′′)(ṽ + v′′)
= ρũṽ + ρu′′ṽ + ρv′′ũ + ρu′′v′′. (1.24)

Here fluctuations of the density do not appear. Taking the average leads to two
terms only,

ρuv = ρ̄ũṽ + ρ̄ũ′′v′′. (1.25)

This expression is much simpler than (1.23) and has formally the same structure
as the conventional average of uv for constant density flows:

uv = ūv̄ + u′v′. (1.26)

Difficulties arising with Favre averaging in the viscous and diffusive transport
terms are of less importance since these terms are usually neglected in high
Reynolds number turbulence.

The introduction of density-weighted averages requires the knowledge of
the correlation between the density and the other variable of interest. A Favre
pdf of u can be derived from the joint pdf P(ρ, u) as

ρ̄ P̃(u) =
∫ ρmax

ρmin

ρ P(ρ, u) dρ =
∫ ρmax

ρmin

ρ P(ρ | u)P(u) dρ = 〈ρ | u〉P(u).

(1.27)
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Multiplying both sides with u and integrating yields

ρ̄

∫ +∞

−∞
u P̃(u) du =

∫ +∞

−∞
〈ρ | u〉u P(u) du, (1.28)

which is equivalent to ρ̄ũ = ρu. The Favre mean value of u therefore is defined
as

ũ =
∫ +∞

−∞
u P̃(u) du. (1.29)

1.3 Navier–Stokes Equations and Turbulence Models

In the following we will first describe the classical approach to model turbulent
flows. It is based on single point averages of the Navier–Stokes equations. These
are commonly called Reynolds averaged Navier–Stokes equations (RANS). We
will formally extend this formulation to nonconstant density by introducing
Favre averages. In addition we will present the most simple model for turbulent
flows, the k–ε model. Even though it certainly is the best compromise for
engineering design using RANS, the predictive power of the k–ε model is,
except for simple shear flows, often found to be disappointing. We will present
it here, mainly to help us define turbulent length and time scales.

For nonconstant density flows the Navier–Stokes equations are written in
conservative form:

Continuity

∂ρ

∂t
+ ∇ · (ρv) = 0, (1.30)

Momentum

∂ρv

∂t
+ ∇ · (ρvv) = −∇ p + ∇ · τ + ρg. (1.31)

In (1.31) the two terms on the left-hand side (l.h.s.) represent the local rate of
change and convection of momentum, respectively, while the first term on the
right-hand side (r.h.s.) is the pressure gradient and the second term on the r.h.s.
represents molecular transport due to viscosity. Here τ is the viscous stress
tensor

τ = µ

[
2 S − 2

3
δ∇ · v

]
(1.32)

and

S = 1

2
(∇v+ ∇vT ) (1.33)
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is the rate of strain tensor, where ∇vT is the transpose of the velocity gradient
and µ is the dynamic viscosity. It is related to the kinematic viscosity ν as
µ = ρν. The last term in (1.31) represents forces due to buoyancy.

Using Favre averaging on (1.30) and (1.31) one obtains

∂ρ̄

∂t
+ ∇ · (ρ̄ṽ) = 0, (1.34)

∂ρ̄ṽ

∂t
+ ∇ · (ρ̄ṽṽ) = −∇ p̄ + ∇ · τ̄ − ∇ · (ρ̄ṽ′′v′′) + ρ̄g. (1.35)

This equation is similar to (1.31) except for the third term on the l.h.s. containing
the correlation −ρ̄ṽ′′v′′, which is called the Reynolds stress tensor.

The Reynolds stress tensor is unknown and represents the first closure prob-
lem for turbulence modeling. It is possible to derive equations for the six com-
ponents of the Reynolds stress tensor. In these equations several terms appear
that again are unclosed. Those so-called Reynolds stress models have been pre-
sented for nonconstant density flows, for example, by Jones (1994) and Jones
and Kakhi (1996).

Although Reynolds stress models contain a more complete description of the
physics, they are not yet widely used in turbulent combustion. Many industrial
codes still rely on the k–ε model, which, by using an eddy viscosity, introduces
the assumption of isotropy. It is known that turbulence becomes isotropic at the
small scales, but this does not necessarily apply to the large scales at which the
averaged quantities are defined. The k–ε model is based on equations where
the turbulent transport is diffusive and therefore is more easily handled by
numerical methods than the Reynolds stress equations. This is probably the
most important reason for its wide use in many industrial codes.

An important simplification is obtained by introducing the eddy viscosity
νt , which leads to the following expression for the Reynolds stress tensor:

−ρ̄ ṽ′′v′′ = ρ̄νt

[
2S̃ − 2

3
δ∇ · ṽ

]
− 2

3
δρ̄ k̃. (1.36)

Here δ is the tensorial Kronecker symbol δi j (δi j = 1 for i = j and δi j = 0
for i �= j) and νt is the kinematic eddy viscosity, which is related to the Favre
average turbulent kinetic energy

k̃ = 1

2
ṽ′′ · v′′ (1.37)

and its dissipation ε̃ by

νt = cµ

k̃2

ε̃
, cµ = 0.09. (1.38)
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The introduction of the Favre averaged variables k̃ and ε̃ requires that mod-
eled equations are available for these quantities. These equations are given here
in their most simple form:

Turbulent kinetic energy

ρ̄
∂ k̃

∂t
+ ρ̄ṽ · ∇ k̃ = ∇ ·

(
ρ̄νt

σk
∇ k̃

)
− ρ̄ṽ′′v′′ : ∇ṽ− ρ̄ε̃, (1.39)

Turbulent dissipation

ρ̄
∂ε̃

∂t
+ ρ̄ṽ · ∇ ε̃ = ∇ ·

(
ρ̄

νt

σε

∇ ε̃

)
− cε1ρ̄

ε̃

k̃
ṽ′′v′′ : ∇ṽ− cε2ρ̄

ε̃2

k̃
. (1.40)

In these equations the two terms on the l.h.s. represent the local rate of change
and convection, respectively. The first term on the r.h.s. represents the turbu-
lent transport, the second one turbulent production, and the third one turbulent
dissipation. As in the standard k–ε model, the constants σk = 1.0, σε = 1.3,
cε1 = 1.44, and cε2 = 1.92 are generally used. A more detailed discussion con-
cerning additional terms in the Favre averaged turbulent kinetic energy equation
may be found in Libby and Williams (1994).

It should be noted that for constant density flows the k-equation can be
derived with few modeling assumptions quite systematically from the Navier–
Stokes equations. From this derivation follows the definition of the viscous
dissipation as

ε = ν[∇v′ + ∇v′T ] : ∇v′. (1.41)

The ε-equation, however, cannot be derived in a systematic manner. The basis
for the modeling of that equation are the equations for two-point correlations.
Rotta (1972) has shown that by integrating the two-point correlation equa-
tions over the correlation coordinate r one can derive an equation for the
integral length scale �, which will be defined below. This leads to a k–�-
model. The �-equation has been applied, for example, by Rodi and Spald-
ing (1970) to turbulent jet flows. It is easily shown that from this model and
from the algebraic relation between �, k, and ε a balance equation for ε can
be derived. A similar approach has recently been used by Oberlack (1997) to
derive an equation for the dissipation tensor that is needed in Reynolds stress
models.

The dissipation ε plays a fundamental role in turbulence theory, as will be
shown in the next section. The eddy cascade hypothesis states that it is equal to
the energy transfer rate from the large eddies to the smaller eddies and therefore
is invariant within the inertial subrange of turbulence. By using this property for
ε in the k-equation and by determining ε from an equation like (1.40) rather than
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from its definition (1.41) one obtains Reynolds number independent solutions
for free shear flows where, owing to the absence of walls, the viscous stress
tensor can be neglected compared to the Reynolds stress tensor. This is how
inertial range invariance is built into turbulence models.

It may be counterintuitive to model dissipation, which is active at the small
scales, by an equation that contains only quantities that are defined at the large
integral scales (cf. Figure 1.5 below). However, it is only because inertial range
invariance has been built into turbulence models that they reproduce the scaling
laws that are experimentally observed. Based on the postulate formulated at
the end of Section 1.1 the same must be claimed for turbulent combustion
models in the large Reynolds number limit. Since combustion takes place at the
small scales, inertial range invariant quantities must relate properties defined
at the small scales to those defined at the large scales, at which the models are
formulated.

1.4 Two-Point Velocity Correlations and Turbulent Scales

A characteristic feature of turbulent flows is the occurrence of eddies of dif-
ferent length scales. If a turbulent jet shown in Figure 1.3 enters with a high
velocity into initially quiescent surroundings, the large velocity difference be-
tween the jet and the surroundings generates a shear layer instability, which,
after a transition, becomes turbulent further downstream from the nozzle exit.
The two shear layers merge into a fully developed turbulent jet. In order to
characterize the distribution of eddy length scales at any position within the jet,
one measures at point x and time t the axial velocity u(x, t), and simultaneously
at a second point (x + r , t) with distance r apart from the first one, the velocity
u(x + r , t). Then the correlation between these two velocities is defined by the

* *

air

air

fuel

unstable
shear
layer

transition
to 

turbulence

fully developed
turbulent jet

(x)
(x+ r)

r

Figure 1.3. Schematic presentation of two-point correlation measurements in a turbu-
lent jet.
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Figure 1.4. The normalized two-point velocity correlation for homogeneous isotropic
turbulence as a function of the distance r between the two points.

average

R(x, r , t) = u′(x, t)u′(x + r , t). (1.42)

For homogeneous isotropic turbulence the location x is arbitrary and r may be
replaced by its absolute value r = | r |. For this case the normalized correlation

f (r, t) = R(r, t)/u′2(t) (1.43)

is plotted schematically in Figure 1.4. It approaches unity for r → 0 and
decays slowly when the two points are only a very small distance r apart. With
increasing distance it decreases continuously and may even take negative values.
Very large eddies corresponding to large distances between the two points are
rather seldom and therefore do not contribute much to the correlation.

Kolmogorov’s 1941 theory for homogeneous isotropic turbulence assumes
that there is a steady transfer of kinetic energy from the large scales to the small
scales and that this energy is being consumed at the small scales by viscous
dissipation. This is the eddy cascade hypothesis. By equating the energy transfer
rate (kinetic energy per eddy turnover time) with the dissipation ε it follows that
this quantity is independent of the size of the eddies within the inertial range.
For the inertial subrange, extending from the integral scale � to the Kolmogorov
scale η, ε is the only dimensional quantity apart from the correlation coordinate
r that is available for the scaling of f (r, t). Since ε has the dimension [m2/s3],
the second-order structure function defined by

F2(r, t) = (u′(x, t) − u′(x + r, t))2 = 2 u′2(t)(1 − f (r, t)) (1.44)

with the dimension [m2/s2] must therefore scale as

F2(r, t) = C(ε r )2/3, (1.45)
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where C is a universal constant called the Kolmogorov constant. In the case of
homogeneous isotropic turbulence the velocity fluctuations in the three coordi-
nate directions are equal to each other. The turbulent kinetic energy

k = 1

2
v′ · v′ (1.46)

is then equal to k = 3u′2/2. Using this one obtains from (1.44) and (1.45)

f (r, t) = 1 − 3

4

C

k
(ε r )2/3, (1.47)

which is also plotted in Figure 1.4.
There are eddies of a characteristic size containing most of the kinetic energy.

At these eddies there remains a relatively large correlation f (r, t) before it
decays to zero. The length scale of these eddies is called the integral length
scale � and is defined by

�(t) =
∫ ∞

0
f (r, t) dr. (1.48)

The integral length scale is also shown in Figure 1.4.
We denote the root-mean-square (r.m.s.) velocity fluctuation by

v′ =
√

2 k/3, (1.49)

which represents the turnover velocity of integral scale eddies. The turnover
time �/v′ of these eddies is then proportional to the integral time scale

τ = k

ε
. (1.50)

For very small values of r only very small eddies fit into the distance between
x and x + r . The motion of these small eddies is influenced by viscosity, which
provides an additional dimensional quantity for scaling. Dimensional analysis
then yields the Kolmogorov length scale

η =
(

ν3

ε

)1/4

, (1.51)

which is also shown in Figure 1.4.
The range of length scales between the integral scale and the Kolmogorov

scale is called the inertial range. In addition to η a Kolmogorov time and a
velocity scale may be defined as

tη =
(ν

ε

)1/2
, vη = (νε)1/4. (1.52)
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The Taylor length scale λ is an intermediate scale between the integral and
the Kolmogorov scale. It is defined by replacing the average gradient in the
definition of the dissipation (1.41) by v′/λ. This leads to the definition

ε = 15ν
v′2

λ2
. (1.53)

Here the factor 15 originates from considerations for isotropic homogeneous
turbulence. Using (1.52) we see that λ is proportional to the product of the
turnover velocity of the integral scale eddies and the Kolmogorov time:

λ = (15ν v′2/ε)1/2 ∼ v′tη. (1.54)

Therefore λ may be interpreted as the distance that a large eddy convects a
Kolmogorov eddy during its turnover time tη. As a somewhat artificially defined
intermediate scale it has no direct physical significance in turbulence or in
turbulent combustion. We will see, however, that similar Taylor scales may be
defined for nonreactive scalar fields, which are useful for the interpretation of
mixing processes.

According to Kolmogorov’s 1941 theory the energy transfer from the large
eddies of size � is equal to the dissipation of energy at the Kolmogorov scale η.
Therefore we will relate ε directly to the turnover velocity and the length scale
of the integral scale eddies,

ε ∼ v′3

�
. (1.55)

We now define a discrete sequence of eddies within the inertial subrange by

�n = �

2n
≥ η, n = 1, 2, . . . . (1.56)

Since ε is constant within the inertial subrange, dimensional analysis relates
the turnover time tn and the velocity difference vn across the eddy �n to ε in
that range as

ε ∼ v2
n

tn
∼ v3

n

�n
∼ �2

n

t3
n

. (1.57)

This relation includes the integral scales and also holds for the Kolmogorov
scales as

ε = v2
η

tη
= v3

η

η
. (1.58)

A Fourier transform of the isotropic two-point correlation function leads to a
definition of the kinetic energy spectrum E(k), which is the density of kinetic
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energy per unit wavenumber k. Here, rather than presenting a formal derivation,
we relate the wavenumber k to the inverse of the eddy size �n as

k = �−1
n . (1.59)

The kinetic energy v2
n at scale �n is then

v2
n ∼ (ε �n)2/3 = ε2/3k−2/3 (1.60)

and its density in wavenumber space is proportional to

E(k) = dv2
n

dk
∼ ε2/3k−5/3. (1.61)

This is the well-known k−5/3 law for the kinetic energy spectrum in the inertial
subrange.

If the energy spectrum is measured in the entire wavenumber range one
obtains the behavior shown schematically in a log–log plot in Figure 1.5. For
small wavenumbers corresponding to large scale eddies the energy per unit
wavenumber increases with a power law between k2 and k4. This range is
not universal and is determined by large scale instabilities, which depend on
the boundary conditions of the flow. The spectrum attains a maximum at a
wavenumber that corresponds to the integral scale, since eddies of that scale
contain most of the kinetic energy. For larger wavenumbers corresponding to the
inertial subrange the energy spectrum decreases following the k−5/3 law. There
is a cutoff at the Kolmogorov scale η. Beyond this cutoff, in the range called

Figure 1.5. Schematic representation of the turbulent kinetic energy spectrum as a
function of the wavenumber k.
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the viscous subrange, the energy per unit wavenumber decreases exponentially
owing to viscous effects.

In one-point averages the energy containing eddies at the integral length
scale contribute the most to the kinetic energy. Therefore RANS averaged mean
quantities essentially represent averages over regions in physical space that are
of the order of the integral scale. This was meant by the statement at the end
of Section 1.3 that RANS averages are defined at the large scales. In Large
Eddy Simulations (LES), to be discussed in Section 1.14, filtering over smaller
regions than the integral length scale leads to different mean values and, in
particular, to smaller variances.

1.5 Balance Equations for Reactive Scalars

Combustion is the conversion of chemical bond energy contained in fossil fuels
into heat by chemical reactions. The basis for any combustion model is the
continuum formulation of the balance equations for energy and the chemical
species. We will not derive these equations here but refer to Williams (1985a)
for more details. We consider a mixture of n chemically reacting species and
start with the balance equations for the mass fraction of species i ,

ρ
∂Yi

∂t
+ ρv · ∇Yi = −∇ · j i + ωi , (1.62)

where i = 1, 2, . . . , n. In these equations the terms on the l.h.s. represent the
local rate of change and convection. The diffusive flux in the first term on the
r.h.s. is denoted by j i and the last term ωi is the chemical source term.

The molecular transport processes that cause the diffusive fluxes are quite
complicated. A full description may be found in Williams (1985a). Since in
models of turbulent combustion molecular transport is less important than tur-
bulent transport, it is useful to consider simplified versions of the diffusive
fluxes; the most elementary is the binary flux approximation

j i = −ρDi∇Yi , (1.63)

where Di is the binary diffusion coefficient, or mass diffusivity, of species i with
respect to an abundant species, for instance N2. It should be noted, however, that
in a multicomponent system this approximation violates mass conservation, if
nonequal diffusivities Di are used, since the sum of all n fluxes has to vanish and
the sum of all mass fractions is unity. Equation (1.63) is introduced here mainly
for the ease of notation, but it must not be used in laminar flame calculations.
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For simplicity it will also be assumed that all mass diffusivities Di are
proportional to the thermal diffusivity denoted by

D = λ/ρ cp (1.64)

such that the Lewis numbers

Lei = λ/(ρ cp Di ) = D/Di (1.65)

are constant. In these equations λ is the thermal conductivity and cp is the heat
capacity at constant pressure of the mixture.

Before going into the definition of the chemical source term ωi to be pre-
sented in the next section, we want to consider the energy balance in a chemi-
cally reacting system. The enthalpy h is the mass-weighted sum of the specific
enthalpies hi of species i :

h =
n∑

i=1

Yi hi . (1.66)

For an ideal gas hi depends only on the temperature T :

hi = hi,ref +
∫ T

Tref

cpi (T ) dT . (1.67)

Here cpi is the specific heat capacity of species i at constant pressure and T is
the temperature in Kelvins. The chemical bond energy is essentially contained
in the reference enthalpies hi,ref. Reference enthalpies of H2, O2, N2, and solid
carbon are in general chosen as zero, while those of combustion products such
as CO2 and H2O are negative. These values as well as polynomial fits for the
temperature dependence of cpi are documented, for instance, for many species
used in combustion calculations in Burcat (1984). Finally the specific heat
capacity at constant pressure of the mixture is

cp =
n∑

i=1

Yi cpi . (1.68)

A balance equation for the enthalpy can be derived from the first law of ther-
modynamics as (cf. Williams, 1985a)

ρ
∂h

∂t
+ ρv · ∇h = ∂p

∂t
+ v · ∇ p − ∇ · jq + qR . (1.69)

Here the terms on the l.h.s. represent the local rate of change and convection of
enthalpy. We have neglected the term that describes frictional heating because
it is small for low speed flows. The local and convective change of pressure is
important for acoustic interactions and pressure waves. We will not consider the
term v · ∇ p any further since we are interested in the small Mach number limit
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only. The transient pressure term ∂p/∂t must be retained in applications for
reciprocating engines but can be neglected in open flames where the pressure
is approximately constant and equal to the static pressure. The heat flux jq

includes the effect of enthalpy transport by the diffusive fluxes j i :

jq = −λ∇T +
n∑

i=1

hi j i . (1.70)

Finally, the last term in (1.69) represents heat transfer due to radiation and
must be retained in furnace combustion and whenever strongly temperature
dependent processes, such as NOx formation, are to be considered.

The static pressure is obtained from the thermal equation of state for a
mixture of ideal gases

p = ρ
RT

W
. (1.71)

Here R is the universal gas constant and W is the mean molecular weight given
by

W =
(

n∑
i=1

Yi

Wi

)−1

. (1.72)

The molecular weight of species i is denoted by Wi . For completeness we note
that mole fractions Xi can be converted into mass fractions Yi via

Yi = Wi

W
Xi . (1.73)

We now want to simplify the enthalpy equation. Differentiating (1.66) one
obtains

dh = cpdT +
n∑

i=1

hi dYi , (1.74)

where (1.67) and (1.68) have been used. If (1.70), (1.74), and (1.63) are inserted
into the enthalpy equation (1.69) with the term v · ∇ p removed, it takes the
form

ρ
∂h

∂t
+ ρv · ∇h = ∂p

∂t
+ ∇ ·

(
λ

cp
∇h

)
+ qR

−
n∑

i=1

hi∇ ·
[(

λ

cp
− ρDi

)
∇Yi

]
. (1.75)

It is immediately seen that the last term disappears, if all Lewis numbers are
assumed equal to unity. If, in addition, unsteady pressure changes and radiation
heat transfer can be neglected, the enthalpy equation contains no source terms.




