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Turbulent combustion: The state of the art

1.1 What Is Specific about Turbulence with Combustion?

In recent years, nothing seems to have inspired researchers in the combustion
community so much as the unresolved problems in turbulent combustion. Tur-
bulence in itself is far from being fully understood; it is probably the most
significant unresolved problem in classical physics. Since the flow is turbulent
in nearly all engineering applications, the urgent need to resolve engineer-
ing problems has led to preliminary solutions called turbulence models. These
models use systematic mathematical derivations based on the Navier—Stokes
equations up to a certain point, but then they introduce closure hypotheses that
rely on dimensional arguments and require empirical input. This semiempirical
nature of turbulence models puts them into the category of an art rather than a
science.

For high Reynolds number flows the so-called eddy cascade hypothesis forms
the basis for closure of turbulence models. Large eddies break up into smaller
eddies, which in turn break up into even smaller ones, until the smallest eddies
disappear due to viscous forces. This leads to scale invariance of energy transfer
in the inertial subrange of turbulence. We will denote this as inertial range
invariance in this book. It is the most important hypothesis for large Reynolds
number turbulent flows and has been built into all classical turbulence models,
which thereby satisfy the requirement of Reynolds number independence in the
large Reynolds number limit. Viscous effects are of importance in the vicinity
of solid walls only, a region of minor importance for combustion.

The apparent success of turbulence models in solving engineering problems
has encouraged similar approaches for turbulent combustion, which conse-
quently led to the formulation of turbulent combustion models. This is, however,
where problems arise.
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2 1. Turbulent combustion: The state of the art

Combustion requires that fuel and oxidizer be mixed at the molecular level.
How this takes place in turbulent combustion depends on the turbulent mixing
process. The general view is that once a range of different size eddies has deve-
loped, strain and shear at the interface between the eddies enhance the mixing.
During the eddy break-up process and the formation of smaller eddies, strain
and shear will increase and thereby steepen the concentration gradients at the
interface between reactants, which in turn enhances their molecular interdiffu-
sion. Molecular mixing of fuel and oxidizer, as a prerequisite of combustion,
therefore takes place at the interface between small eddies. Similar considera-
tions apply, once a flame has developed, to the conduction of heat and the
diffusion of radicals out of the reaction zone at the interface.

While this picture follows standard ideas about turbulent mixing, it is less
clear how combustion modifies these processes. Chemical reactions consume
the fuel and the oxidizer at the interface and will thereby steepen their gradients
even further. To what extent this will modify the interfacial diffusion process
still needs to be understood.

This could lead to the conclusion that the interaction between turbulence
and combustion invalidates classical scaling laws known from nonreacting tur-
bulent flows, such as the Reynolds number independence of free shear flows
in the large Reynolds number limit. To complicate the picture further, one has
to realize that combustion involves a large number of elementary chemical
reactions that occur on different time scales. If all these scales would inter-
act with all the time scales within the inertial range, no simple scaling laws
could be found. Important empirical evidence, however, does not confirm such
pessimism:

e The difference between the turbulent and the laminar burning velocity, nor-
malized by the turbulence intensity, is independent of the Reynolds number.
It is Damkohler number independent for large scale turbulence, but it be-
comes proportional to the square root of the Damkohler number for small
scale turbulence (cf. Section 2.10).

e The flame length of a nonbuoyant turbulent jet diffusion flame, for instance,
is Reynolds number and Damkohler number independent (cf. Section 3.9).

e The NO emission index of hydrogen—air diffusion flames is independent of
the Reynolds number but proportional to the square root of the Damkohler
number (cf. Section 3.14).

e The lift-off height in lifted jet diffusion flames is independent of the noz-

zle diameter and increases nearly linearly with the jet exit velocity (cf.
Section 4.6).
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1.1 What is specific about turbulence with combustion? 3

Power law Damkohler number scaling laws may be the exception rather
than the rule, but they indicate that there are circumstances where only a few
chemical and turbulent time scales are involved. As far as Reynolds number in-
dependence is concerned, it should be noted that the Reynolds number in many
laboratory experiments is not large enough to approach the large Reynolds
number limit. A remaining Reynolds number dependence of the turbulent mix-
ing process would then show up in the combustion data. Apart from these
experimental limitations (which become more serious owing to the increase of
viscosity with temperature) it is not plausible that there would be a Reynolds
number dependence introduced by combustion, because chemical reactions in-
troduce additional time scales but no viscous effects. Even if chemical time
scales interact with turbulent time scales in the inertial subrange of turbulence,
these interactions cannot introduce the viscosity as a parameter for dimensional
scaling, because it has disappeared as a parameter in that range. This does not
preclude that ratios of molecular transport properties, Prandtl or Lewis num-
bers, for instance, would not appear in scaling laws in combustion. As we have
restricted the content of this book to low speed combustion, the Mach number
will not appear in the analysis.

There remains, however, the issue of to what extent we can expect an in-
teraction between chemical and turbulent scales in the inertial subrange. Here,
we must realize that combustion differs from isothermal mixing in chemically
reacting flows by two specific features:

e heat release by combustion induces an increase of temperature, which in
turn

e accelerates combustion chemistry. Because of the competition between chain
branching and chain breaking reactions this process is very sensitive to
temperature changes.

Heat release combined with temperature sensitive chemistry leads to typical
combustion phenomena, such as ignition and extinction. This is illustrated in
Figure 1.1 where the maximum temperature in a homogeneous flow combustor
is plotted as a function of the Damkohler number, which here represents the
ratio of the residence time to the chemical time. This is called the S-shaped
curve in the combustion literature. The lower branch of this curve corresponds
to a slowly reacting state of the combustor prior to ignition, where the short
residence times prevent a thermal runaway. If the residence time is increased
by lowering the flow velocity, for example, the Damkohler number increases
until the ignition point / is reached. For values larger than Da; thermal runaway
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4 1. Turbulent combustion: The state of the art
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Figure 1.1. The S-shaped curve showing the maximum temperature in a well-stirred
reactor as a function of the Damkohler number.

leads to a rapid unsteady transition to the upper close-to-equilibrium branch. If
one starts on that branch and decreases the Damkohler number, thereby moving
to the left in Figure 1.1, one reaches the point Q where extinction occurs. This is
equivalent to a rapid transition to the lower branch. The middle branch between
the point / and Q is unstable.

In the range of Damkohler numbers between Dag and Da;, where two sta-
ble branches exist, any initial state with a temperature in the range between the
lower and the upper branch is rapidly driven to either one of them. Owing to the
temperature sensitivity of combustion reactions the two stable branches repre-
sent strong attractors. Therefore, only regions close to chemical equilibrium or
close to the nonreacting state are frequently accessed. In an analytic study of
stochastic Damkohler number variations Oberlack et al. (2000) have recently
shown that the probability of finding realizations apart from these two steady
state solutions is indeed very small.

Chemical reactions that take place at the high temperatures on the upper
branch of Figure 1.1 are nearly always fast compared to all turbulent time scales
and, with the support of molecular diffusion, they concentrate in thin layers of
a width that is typically smaller than the Kolmogorov scale. Except for density
changes these layers cannot exert a feedback on the flow. Therefore they cannot
influence the inertial range scaling. If these layers extinguish as the result of
excessive heat loss, the temperature decreases such that chemistry becomes
very slow and mixing can also be described by classical inertial range scaling.

In both situations, fast and slow chemistry, time and length scales of com-
bustion are separated from those of turbulence in the inertial subrange. This
scale separation is a specific feature of most practical applications of turbulent
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1.2 Statistical description of turbulent flows 5

combustion.! It makes the mixing process in the inertial range independent of
chemistry and simplifies modeling significantly. Almost all turbulent combus-
tion models explicitly or implicitly assume scale separation.

As a general theme of this chapter, we will investigate whether the turbulence
models to be discussed are based on the postulate of scale separation between
turbulent and chemical time scales. In addition, it will be pointed out if a com-
bustion model does not satisfy the postulate of Reynolds number independence
in the large Reynolds number limit.

1.2 Statistical Description of Turbulent Flows

The aim of stochastic methods in turbulence is to describe the fluctuating ve-
locity and scalar fields in terms of their statistical distributions. A convenient
starting point for this description is the distribution function of a single variable,
the velocity component u, for instance. The distribution function F,(U) of u is
defined by the probability p of finding a value of u < U':

F,(U) = pu < U), (1.1)

where U is the so-called sample space variable associated with the random
stochastic variable u. The sample space of the random stochastic variable u
consists of all possible realizations of u. The probability of finding a value of
u in a certain interval U_ < u < U, is given by

pU- <u < Us) = F,(Uy) — F(U-). (1.2)
The probability density function (pdf) of u is now defined as
dF,(U)
du -

It follows that P,(U)dU is the probability of finding u in the range U < u <
U + dU. If the possible realizations of u range from —oo to 400, it follows
that

pP,U) = (1.3)

+00
/ P,(U)dU =1, (1.4)

o]

which states that the probability of finding the value u between —oo and +o00
is certain (i.e., it has the probability unity). It also serves as a normalizing
condition for P,.

A potential exception is the situation prior to ignition, where chemistry is neither slow enough
nor fast enough to be separated from the turbulent time scales. We will discuss this situation in
detail in Chapter 3, Section 3.12.
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6 1. Turbulent combustion: The state of the art

In turbulent flows the pdf of any stochastic variable depends, in principle,
on the position x and on time ¢. These functional dependencies are expressed
by the following notation:

P,(U;x,t). (1.5)

The semicolon used here indicates that P, is a probability density in U-space
and is a function of x and ¢. In stationary turbulent flows it does not depend on ¢
and in homogeneous turbulent fields it does not depend on x. In the following,
for simplicity of notation, we will not distinguish between the random stochastic
variable u and the sample space variable U, dropping the index and writing the

pdf as
P(u;x,1). (1.6)
Once the pdf of a variable is known one may define its moments by
. +00
ulx, 1) = / u"P(u;x,t)du. (1.7)
—00

Here the overbar denotes the average or mean value, sometimes also called
expectation, of u#". The first moment (n = 1) is called the mean of u:

+00
iax,t) = / u P(u;x,t)du. (1.8)
—00
Similarly, the mean value of a function g(u) can be calculated from
400
g(x,1) =/ gw)P(u;x,t)du. (1.9)
Central moments are defined by
+00
[u(x,t) —u(x, )" = / (u—a)"P(u;x,t)du, (1.10)
—00
where the second central moment
+00
[u(x, 1) —u(x,H]? = / (u —a)?P(u;x, t)du (1.11)
—00

is called the variance. If we split the random variable u into its mean and the
fluctuations u’ as

u(x,t) =ix,t)+u'(x, 1), (1.12)

where u’ = 0 by definition, the variance is found to be related to the first and
second moment by

u? = (u —a)? = u? —2ui + i® = u? — i’ (1.13)
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1.2 Statistical description of turbulent flows 7

Models for turbulent flows traditionally start from the Navier—Stokes equa-
tions to derive equations for the first and the second moments of the flow
variables using (1.12). Since the three velocity components and the pressure
depend on each other through the solutions of the Navier—Stokes equations
they are correlated. To quantify these correlations it is convenient to introduce
the joint probability density function of the random variables. For instance, the
joint pdf of the velocity components # and v is written as

P(u,v;x,t).

The pdf of u, for instance, may be obtained from the joint pdf by integration
over all possible realizations of v,

+00
Pu) = / P(u,v)dv, (1.14)

oo
and is called the marginal pdf of u in this context. The correlation between u
and v is given by

+00 p+00
u'v' = / / (u—)(v —v)P(u, v)dudv. (1.15)

This can be illustrated by a so-called scatter plot (cf. Figure 1.2). If a series
of instantaneous realizations of u and v are plotted as points in a graph of
u and v, these points will scatter within a certain range. The means # and v
are the average positions of the points in u and v directions, respectively. The
correlation u'v' /(1’2 v'2)!/2 is proportional to the slope of the average straight
line through the data points.

A joint pdf of two variables can always be written as a product of a
conditional pdf of one variable times the marginal pdf of the other, for

=l

Figure 1.2. A scatter plot of two velocity components u and v illustrating the correlation
coefficient.
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8 1. Turbulent combustion: The state of the art

example
P(u,v;x,t) = P(u|v;x,t)P(v;x,t). (1.16)

This is called Bayes’ theorem. In this example the conditional pdf P(u | v; x, t)
describes the probability density of u, conditioned at a fixed value of v. If u
and v are not correlated they are called statistically independent. In that case
the joint pdf is equal to the product of the marginal pdfs:

P(u,v;x,t) = P(u;x,t)P(v;x,t). (1.17)

By using this in (1.15) and integrating, we easily see that u’v’ vanishes, if u
and v are statistically independent. In turbulent shear flows u/v’ is interpreted
as a Reynolds shear stress, which is nonzero in general. The conditional pdf
P(u|v;x,t) can be used to define conditional moments. For example, the
conditional mean of u, conditioned at a fixed value of v, is given by

+00
(u|v) =/ uP(u|v)du. (1.18)

oo
In the following we will use angular brackets for conditional means only.

As a consequence of the nonlinearity of the Navier—Stokes equations sev-
eral closure problems arise. These are not only related to correlations between
velocity components among each other and the pressure, but also to correla-
tions between velocity gradients and correlations between velocity gradients
and pressure fluctuations. These appear in the equations for the second mo-
ments as dissipation terms and pressure—strain correlations, respectively. The
statistical description of gradients requires information from adjacent points in
physical space. Very important aspects in the statistical description of turbulent
flows are therefore related to two-point correlations, which we will introduce
in Section 1.4.

For flows with large density changes as occur in combustion, it is often
convenient to introduce a density-weighted average ii, called the Favre average,
by splitting u(x, t) into ii(x, t) and u”(x, ) as

u(x,r)=ax, 1) +u"(x,1). (1.19)

This averaging procedure is defined by requiring that the average of the product
of u” with the density p (rather than u” itself) vanishes:

ou” = 0. (1.20)

The definition for # may then be derived by multiplying (1.19) by the density
p and averaging:

ou = pii + pu” = pi. (1.21)
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1.2 Statistical description of turbulent flows 9

Here the average of the product pii is equal to the product of the averages p
and #, since i is already an average defined by

ii = pu/p. (1.22)

This density-weighted average can be calculated, if simultaneous measurements
of p and u are available. Then, by taking the average of the product pu and
dividing it by the average of p one obtains ii. While such measurements are often
difficult to obtain, Favre averaging has considerable advantages in simplifying
the formulation of the averaged Navier—Stokes equations in variable density
flows. In the momentum equations, but also in the balance equations for the
temperature and the chemical species, the convective terms are dominant in
high Reynolds number flows. Since these contain products of the dependent
variables and the density, Favre averaging is the method of choice. For instance,
the average of the product of the density p with the velocity components u and
v would lead with conventional averages to four terms,

UV =p i v+ puv + p'u'v + pv'ia + p'u'v. (1.23)
Using Favre averages one writes

puv = p(i +u")(v 4 v")
= piid + pu”" v + pv"ii + pu’v”. (1.24)

Here fluctuations of the density do not appear. Taking the average leads to two
terms only,

Duv = i + pu'v’. (1.25)

This expression is much simpler than (1.23) and has formally the same structure
as the conventional average of uv for constant density flows:

wv =i+ u'v'. (1.26)
Difficulties arising with Favre averaging in the viscous and diffusive transport
terms are of less importance since these terms are usually neglected in high
Reynolds number turbulence.

The introduction of density-weighted averages requires the knowledge of
the correlation between the density and the other variable of interest. A Favre
pdf of u can be derived from the joint pdf P(p, u) as

Pmax

~ pmmx
ﬁP(u)=/ pP(p,u)d,O=/ pP(plu)P(u)dp = (p|u)P(u).
P Pmin

min

(1.27)
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10 1. Turbulent combustion: The state of the art

Multiplying both sides with u and integrating yields

too +0o0
,6] uP)du =/ (p|u)uP(u)du, (1.28)

oo —0o0
which is equivalent to pi = pu. The Favre mean value of u therefore is defined
as

+00
a:/ uPu)du. (1.29)

oo

1.3 Navier-Stokes Equations and Turbulence Models

In the following we will first describe the classical approach to model turbulent
flows. It is based on single point averages of the Navier—Stokes equations. These
are commonly called Reynolds averaged Navier—Stokes equations (RANS). We
will formally extend this formulation to nonconstant density by introducing
Favre averages. In addition we will present the most simple model for turbulent
flows, the k—e model. Even though it certainly is the best compromise for
engineering design using RANS, the predictive power of the k— model is,
except for simple shear flows, often found to be disappointing. We will present
it here, mainly to help us define turbulent length and time scales.

For nonconstant density flows the Navier—Stokes equations are written in
conservative form:

Continuity
a
a_/;+v.(pv)=o, (1.30)
Momentum
apv
?-i-v-(pvv):—Vp—i-V-’r—i-pg. (1.31)

In (1.31) the two terms on the left-hand side (1.h.s.) represent the local rate of
change and convection of momentum, respectively, while the first term on the
right-hand side (r.h.s.) is the pressure gradient and the second term on the r.h.s.
represents molecular transport due to viscosity. Here 7 is the viscous stress

tensor
2
TIMI:ZS— §6V~vi| (1.32)
and
1
S = E(vwr vo') (1.33)
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