

acceleration amplitude, 7, 10	centular automaton models, 14–13, 110–120
accommodation function, 196, 199	coupled continuum equations, 148–167
activation energies, 95–96	coupled map lattice model, 133–147
Aeolian sand ripples, 168–174	directed percolation model, 70
aftermath piles, 121–125	self-organised criticality and, 12–13, 115–116
ageing	avalanche size distribution, 14–15, 120–124,
anomalous, 163	126–127, 137–143
shape-dependent, 99–100, 102–103	Type I and Type II, 115–120
amplification, 134, 138, 146	avalanches
amplitude cycling, 90–93	angle of repose and, 1, 63, 72
amplitude equations, 207	bistability of sandpiles and, 1, 69–75
angle of maximal stability, 12, 63, 69, 171, 174	intermittent and continuous, 148–150, 156, 163,
angle of repose	167
athermal requirement for, 52, 63	large avalanche surface effects, 118–131, 142
Bagnold angle and, 17, 65–66	long duration and continuous, 149–150,
crossover length and, 131	156–162
formation history dependence, 12, 66, 74	mass time series, 122–124
pressure profiles and, 248–249	percolative transport and, 39, 70
ripples, 170, 174	in rotating cylinders, 132–135
roughness and, 74, 130–131	snow and rock, 115, 148
sandpile bistability and collapse, 63–71	system-spanning, 128
SOC model and, 115–116	system spanning, 120
angoricity, 3–4, 215	Bagnold angle, 17, 63, 65–66, 69
anisotropic elasticity, 267	Bagnold number, 2, 176
annealed cooling, 97–100	barrier-height-to-temperature ratio, 67
annealed disorder, 119	base extension, bridges, 55, 58
annealed values, Edwards' flatness, 111	BCRE (Bouchaud, Cates, Ravi Prakash, and Edwards)
anomalous ageing, 163	model, 157, 166
anomalous roughening, 74–75, 165–168	Bennett model, 20
anticorrelations, 36, 40, 106, 108–109, 112	Bessell functions, 231, 266
apertures, flow through, 4–5	biaxial tests, 273
apparent mass, overloaded silos, 246–248, 271	bistability
'arching', 245	angle of repose and, 1, 12, 66
asymptotic density, 86–87, 92, 111	in ripples, 171, 174
asymptotic packing fraction, 96–97	in sandpiles, 63, 65–66
asymptotic roughness, 119–129	in tilted sandpiles, 69–78
asymptotic smoothing, 149, 162–163, 165, 167	blocked configurations, 83, 85
athermal system consequences, 19, 52, 63	Boltzmann equations
autocorrelation function, 31, 33	applicability to granular gases, 177–178, 184–185,
avalanche footprints, 72–78	188, 196–197
triangular avalanches, 71–78	applicability to the jammed state, 209, 212–213
uphill avalanches, 71–78, 121, 124	Born–Huang formula, 253, 256
avalanche models	boundary conditions, 196–200, 207, 266, 269

298

Index

boundary layers coarse-graining function, 253 avalanche motion and, 13, 147, 163 'coarsening' process, 107, 178, 180 fast dynamics within, 107 coefficients of restitution, 22, 181, 184-185 grain-inertia simulations, 23 cohesion and segregation, 51 ordering depth and, 101, 113 collapse mechanisms, 181-182, see also bridges; boundary stress, 258 sandniles branch vectors, 256, 258 collision forces, see Bagnold number 'Brazil nut' phenomenon, 47-50 collision laws, granular gases, 184, 196-197 colloids, 16, 97, 112, 229-230 bridge formation, 30, 38, 52-62 column grain size, 137 bridges characteristic descriptors, 55 column models, see also lattice-based models ideal height, 133 collapse and grain anticorrelation, 36, 40, 107 defined, 53 jamming and, 104-105, 110-111, 113-114 linear, 53-56, 58-61 compaction shape and vibrational intensity, 30 bridge collapse and, 53 Brownian motion, 2, 6-7, 52-53, 67-68 irreversible and reversible branches, 90-92, Burgers' equation, 16 97-100 Burnett equations, 183, 187, 189, 195 logarithmic compaction, 84, 86-87, 93, 99, Burnett order, 182-183, 195, 200, 204 modelling, near the jamming limit, 79-93 CA models, see cellular automaton models tapping and the compaction curve, 83-84 Cahn-Hilliard model, 206 compactivity, 3-4 captors, stress, 257 density fluctuations and, 64-65 shaken sand in cylinders, 210, 214-215, 220-221, carbon paper technique, 237-238 222-223 cascade reorientation, 86-90 Case A model, rotating cylinders, 151-156 vibrated beds, 6 Case B model, rotating cylinders, 156-162 complex bridges, 53-54, 56 Case C model, rotating cylinders, 162-167 computer simulations, see simulations CE expansion, see Chapman-Enskog expansion conductivity of graphite, 211 cellular automaton (CA) models, 5, 13-15 configurational entropy, 3, 111-112 grain-inertia regime, 23 configurational memory, 140, 146-147 configurational overlap function, 98-100 with long-range interactions, 105-106 nonequilibrium regimes, 102-103 connected correlation function, 102-103 with orientational rearrangement, 94-96, conservation of momentum, 201 consolidation 118-119 after avalanching, 125 ripples and dunes, 168 sandpile collapse and, 70-78, 94-96, 118-131 by tapping, 40 self-organised criticality and, 11-13, 116-117 CML model and, 133, 135–138, 140 isostatic behaviour and, 230 Type I avalanches, 116-117 Type II avalanches, 118-131 Monte Carlo consolidation, 26, 28-29 contact angles, 36, 234, 240, 261 channels, flow through, 4-5, 23 Chapman-Enskog (ČE) expansion, 185-189, 202, contact forces 204, 206, 208 coarse-graining, 253-261 limitations of, 177, 182, 197 contact angles and, 234, 240, 261 chute flows, 208 deriving stresses from, 253-259 determination of, 209 cluster aggregation model, 112-113 cluster reorganisation, 28, 70 effective medium theory, 259-261 clustering as a hydrodynamic effect, 178-181 exponential distribution of, 232, 242, 245 contact networks, 218 clusters coupling with mobile grains, 148 contact orientation in layers, 240-242 deformation and shaking intensity, 43 continuous avalanching, 149-150, 156-162 instability and continuous avalanching, 161-162 continuum approach intercluster and intracluster relaxation, 169, 174 avalanches in rotating cylinders, 133-135 merger as 'coarsening', 178, 180 Boltzmann equations and, 187 as 'stuck' grains, 151 bridge formation, 57 CML (coupled map lattice) model, 15, 118, 134-141, coupled continuum equations, 148-175 143-146 friction effects and, 203 ripples and dunes, 168, 171, 174 coarse-graining effective medium theory, 259-261 convection processes, 5-11, 50-51 microscopic theory of, 226-230 cooperative dynamics, 27-28, 36, 38, see also angle of stress field data, 253-261 repose; bridge formation

coordination numbers, 20–22	self-diffusion, 42–44
bridge formation and, 55	shaking intensity and, 42
isostatic equilibrium and, 216, 222, 230	dilatancy
random graph models, 80	angle of repose and, 63–66, 69
shaken granular systems, 212, 222	dynamic representations, 17
vibrational intensity and, 29–31	excess volume and, 146
volume fraction and, 33	large avalanches and, 139
correlation, molecular gas kinetics, 184-185	roughness and, 74
correlation functions	sandpile collapse and, 69, 74
autocorrelation function, 31, 33	dilatancy waves, 4–5
cluster aggregation model, 112	dilation phase, 25–27, 54, 86
connected, 102–103	quench phase and, 82–84
coupled continuum equations, 152	directed percolation model, 70, 77–78
EW model, 152–154	discretisation, continuum equations, 157–158
height–height correlation function, 120, 128, 150,	disorder
153	cellular automaton models and, 14
mass–mass correlation function, 127–128	compaction of disordered grains, 79–93
random packings and, 33–36	evolution of, 139
transverse and longitudinal, 35	displacement correlations, 34
two-time, 102–103, 163	dissipation coefficient, 135
zero-temperature dynamics, 108	distinct element method, 24
Cosserat elasticity, 267	distribution functions, <i>see</i> equilibrium; event-size;
Couette flow, 23, 51, 179, 237	force; single-particle; spin distributions
Coulomb friction, 201, 203, 236, 270	divergences, infrared, 157–158, 167
coupled continuum equations, 148–175	dome formation, 58–61
coupled map lattice (CML) model, 15, 118, 134–141,	double Fourier transforms
143–146	Edwards–Wilkinson equation with flow, 152–154
critical aspect ratios, 126	temporal and spatial roughness, 150–151, 158–160
critical phenomena	tilt combined with flowing grains, 164–165
self-organised criticality, 11–13, 115–116	DSMC (direct simulation Monte Carlo) simulations,
size dependence, 140	188
critical slope threshold, 72, 137	dunes, 167–168, 175
crossover behaviour	dynamical arrest, 79
diffusive to asymptotic smoothing, 161–162	dynamical exponent, 150
roughening to asymptotic smoothing, 165–166 crystalline limit, 98	dynamical phase transitions 86, 87, 97
	dynamical phase transitions, 86–87, 97
crystallisation, 44–46, 90	dynamical scaling, 119–120
curve fitting, 41, 220	dynamics, see fast dynamics; slow dynamics
cylinders, see rotating cylinders; shaken cylinders	aguth gualrag 124 125 142 147
domning 12 15 107	earthquakes, 124, 135, 142, 147
damping, 13, 15, 107	Eden model, 19
degrees of freedom	Edwards' compactivity, see compactivity
fast and slow, 79	Edwards' hypothesis, 108–113
quadrons and, 220–221	Edwards' singularity, see infrared divergence
translational and spin, 202, 205	Edwards–Wilkinson (EW) equation, 151–156
density, see also packing densities	effective medium theory, 253, 259–261, 264
asymptotic density, 86–87, 92, 111	effective temperature, 2, 5, 17, 65, 67, see also
of shaken systems, 211	granular temperature
density fluctuations	effective viscosity, 22–23
angle of repose and, 63–66	elasticity, see also inelasticity
bridges and, 59	Cosserat elasticity, 267
clustering theory and, 178–180	effective medium theory, 259–261
compaction near the jamming limit, 84, 87	isostaticity and, 230
kinetic energy density, 186	stress field computation using, 264–268
variation with time, 155–156	elasto-plasticity, 233, 253, 259, 261–262, 273
zero-temperature dynamics and, 106–108	elongated grains, 5
density of states, 220	energy
diffusive behaviour	activation energies, 95–96
crossover to asymptotic, 161–162	external sources, 24–25
linear bridges, 60	energy sink term, 203–204
ripples, 170	Enskog-Boltzmann equation, 184, 200

Enskog correction, 194, 206	spatial distribution, 230–232
Enskog equations, 200, 206, see also	volume fractions and, 215–222
Chapman–Enskog (CE) expansion	formation history, see preparation history
entropy	Fourier transforms, see double Fourier transforms;
configurational entropy, 3, 111–112	single Fourier transforms
Edwards' hypothesis and, 108–113	'Fredholm alternative', 191, 197
force probability distribution and, 245	friction
ground-state entropy, 106	bridge formation and, 30, 54
shaken sand in cylinders, 210, 214, 228	convective motion and, 9
equilibration times	force chains and, 230
Boltzmann solutions and, 183	force probability distribution and, 237
dynamic transitions and, 86	in granular gases, 200–206, 208
for jamming, 92	in silos, 247–248
number of particle collisions, 196–197	in vibrated beds, 6–7
shaken sandpiles, 100–101	intergrain friction, 4
equilibrium distribution functions, 191	internal friction coefficient and angle, 268
equipartition in granular gases, 207–208	response profiles and, 252
equivalent temperatures, see compactivity	friction coefficients, 4, 23, 201
ergodicity breakdowns, 87	granular statics, 234, 237–238, 247, 252, 268, 270
Euler angles, 217	frozen state, 98, 100–102
Euler equations, 187	frustration, 81–84, 91, 106, 228–229
Euler relations, 221, 227, 287	full structure factor, 150
event-driven simulations, <i>see</i> hard-particle simulations	Tuli structure ructor, 150
event size distributions, 126, 137–143	Gamma distributions, 244
EW (Edwards–Wilkinson) equation, 151–156	gases and granular media characteristics, 18, see also
excess volume, see dilatancy	granular gas models
excitations, 113, 220	geometric tensors, 218–219, 228
excitons, 68	glaciers, 168
exit mass sizes, 126–127, 141–142, 145	glasses
0.110 11400 01200, 120 127, 111 112, 110	displacement correlations, 34
fabric tensors, 217	jamming behaviour exhibited by, 52, 92
fast and slow degrees of freedom, 40–42, 63–64	Lenard-Jones glasses, 261
fast dynamics	percolative transport, 39
non-ergodicity and, 87, 97	'glassy' dynamics, 98, 100–102
simple CA model, 94–96	golden mean, 114
SPRT and, 84–86	Grad expansion, 184, 187–188
FCC (face centred cubic) packing, 251	grain anticorrelations, 36, 40, 108–109
Fibonacci numbers, 114	grain inertia
flipping mechanisms, 83, 89, 95, 119	amplification and, 134, 138
flowing grains	cellular automata models, 13–15, 116
Case B model, 156–162	CML models, 137–140, 146–147
Case C model, 162–167	grain-inertia regimes, 2–4, 22–23
coupling with clusters, 148, 174	grain reorientation
diffusion in ripples, 170, 172	avalanches with, 115–131
EW model, 151–156	cluster reorganisation and, 70
molecular dynamics approaches, 22–24	intracluster rearrangement, 137
through wedges, channels and apertures, 4–5	stress–strain curves, 263
fluid mechanics and jamming, 209	grain shapes
fluidisation, 6, 8, 45, 176–178	aspect ratio, disordered sandpiles, 125, 127
fluidised regime characteristics, 99	ground state retrievability and, 114
flux-divergence term, 170	non-spherical grains, 208
force and torque balance, 216–217, 223, 226–227,	orientation modes and, 102–103
230, 234–235	packing simulations, 19, 49
force chains, 57, 229, 236, 272	zero-temperature dynamics and, 106–108
force distribution function, 238–239, 243–244	grains, see also flowing grains
forces, see also contact forces	contacts between rigid grains, 230, 234
contact orientation and, 240–242	weight, in q -model, 243
large-scale treatment of distributions, 245–273	granular gas models, 176–208
microscopic treatment of distributions, 243–245	boundary conditions, 196–200
probability distribution, 237–239, 241, 245, 273	friction effects, 200–206
sandpile force transmission, 216	kinetic theory, 184–196
T	,,

granular temperature, 1//	intermediate phase, 99
as a hydrodynamic field, 201	intermittency, surface layer, 113–114
compactivity and, 3, 64	intermittent avalanching, 149–150, 156, 163
rapid shear regimes and, 3, 22, 177–178	internal friction coefficient and angle, 268
vibrated beds, 6	interparticle percolation, 9–10
graphite, density and conductivity, 211	intrinsic size dependence, 140
gravity	irreducible loops, 230
bridge formation and, 54–55	irreversible branch, compaction curve, 90–92, 97–100
granular gases in outer space, 208	irreversible packing and plasticity, 262–264
packing simulations and, 19, 24	isostaticity
Green function, 229	coordination numbers and, 216, 222, 230–231
Green–Kubo relations, 206–207	force chains, 229
ground states	polydisperse beads, 235
entropy, 106	
excitons, 68	jammed systems
metastability, 179	Boltzmann applicability, 209, 212–213
propagation, 107	bridge formation and, 52, 57
retrievability, 114	configurational probabilities and, 110
zero-temperature dynamics, 106–107, 110	contact network loops and voids, 218
	grain anticorrelation and, 36
hard-particle simulations, 22–24, 28	thermodynamics of, 209–232
of the jammed state, 209	vibrated hourglasses, 4–5
simple CA lattice model and, 98	jamming limit
HCP (hexagonal close packed) packing, 237–238, 251	amplitude cycling model, 90–92
HCS (homogeneous cooling state), 178–180, 187,	displacement correlations and, 34
200, 204–205, 207	entropies near, 111
heap formation, vibrated beds, 7	modelling compaction near, 79–93
heat flux, 183, 187, 192–194, 203–204, 206	shaken sand and grain shapes, 104–114
Heaviside functions, 35, 256, 258	Janssen's model for silos, 233, 246–248, 270–271
height-height correlation function, 120, 128, 150, 153	
history, see preparation history	Kadanoff model, 144
hole radius distribution, 39	kernel function, 213
homogeneous cooling state (HCS), 178–180, 187,	kinetic theory, 183–196
200, 204–205, 207	Knudsen domains, 208
homogenisation, see coarse-graining	Knudsen number, 185–188, 196, 204
hoppers, 4–5, 23, 58, 60	Knudsen orders, 195
hopping between potential wells, 43–44	KPZ (Kardar–Parisi–Zhang) equation, 16
hopping grains in ripples, 169–171	III 2 (Italian Tario) 21ang) equation, 10
	Landay Cinchara madala 206 207
hourglasses, 4–5	Landau–Ginsberg models, 206–207
hydrodynamic regimes, 42–44	Landau's notation, 264
clustering in granular gases, 178–183	large-scale properties of granular materials, 245–273
frictional granular hydrodynamics, 200,	lattice-based models, 13, 23, 79, 85, 104, see also CA
202–208	models; CML model; column models
kinetic theory and, 185-188, 190-191, 195, 197	lattice gas models, 116
hyperbolic equations, 229, 267, 269–273	lattice grain models, 13–14, 116
hypergraphs, 79–80	least squares fit, 40, 42, see also curve fitting
hysteresis	Lenard-Jones glasses, 261
in granular media, 21, 200, 263	linear bridges
in sandpiles, 2, 63, 98	dome formation from, 58–61
in tilted sandpiles, 73–74	formation, 53–54
	size distribution, 55–56
ideal height, column models, 133	link angle, bridge formation, 58
<i>C</i> ,	
impurities (tracer particles), 9–10, 47–49	liquids, granular media compared to, 1, 18
inelasticity, 181–182, 195	logarithmic coarsening law, 107
Boltzmann applicability and, 177, 184,	logarithmic compaction, 84, 86–87, 93, 99, 103
199	logarithmic growth of packing fraction, 97
inertia, see grain inertia; particle inertia	longitudinal correlation functions, 35
infrared divergence, 157–158, 167	loops, 54, 80, 218–221, 226–227, 230
inhomogeneous relaxation, 96	Love stress tensor, 217
integrodifferential equations, 196–197	low-amplitude pinning, 91
intergrain friction, 4	low-temperature dynamics, 113–114

magnetic resonance imaging (MRI), 50–51 magnitude distributions, <i>see</i> avalanche size	orthogonality principle, 42, 191–193 oscillons, 8
distributions	OSL (oriented stress linearity) model, 271–273
main axis, bridges, 55	Oslo rice pile experiments, 127
mass-mass correlation function, 127-128	overlap function, 98–100
maximal angle of stability, 12, 63, 69, 171, 174	overshoot effect
'Maxwell demon effect', 180	inhomogeneous relaxation and, 96–97
MD (molecular dynamics) simulations, 22–25, 30, 55,	in silos, 247–248, 271
57	packing density and, 85, 263
mean angle, 58–61, 72, 125	
mean-field equations, 166–167, 244	packing densities, 3, 21, 30–31, 36, 271, see also
mean-field theory, 79–81, 112	random close packing
mean force, 240	packing fractions
mean free path, 177, 182–185, 187–188, 196–198, 204	annealed cooling and, 97–100
mean free time, 183	bridge formation and, 61–62
mechanical equilibrium, 210, 230, 264, 269, 273	disordered sandpiles, 125
coordination number and, 216	monodisperse spheres, 19, 21
mesoscopicity, 182	orientedness parameter and, 100
metastability	RCP threshold and, 44–46
dense granular systems, 179	shaken sand simulations, 25, 96–97
equilibration of older systems, 99	packing structures, 19–22
finite lattice and mean field, 112	'parking-lot' model, 89
three-spin model requirement, 81–82	partial voids, 39
minimum event size, 134	particle inertia, 15
miscibility theory, 215	particle size, <i>see</i> grain shape; segregation of mixtures
mixtures of grains, see segregation of mixtures	Peclet numbers, 4
mobile grain coupling with clusters, 148	percolation
Mohr–Coulomb yield criteria, 233, 268–272	directed percolation model of avalanching, 70,
molecular chaos (Stosszahlansatz), 184, 212	77–78
molecular dynamics (MD) simulations, 22–25, 30, 55,	interparticle percolation, 9–10
57	segregation of mixtures and, 46–48, 51
molecular gases, 176–177, 184, 186–187, 195	percolation clusters, 57
monodisperse spheres	percolation crusters, 37 percolative transport, 39
Boltzmann equation, 185	perfect packing, 45–46
simulations based on, 19, 21, 39	'phase diagram'
	. •
Monte Carlo simulations, 18–22	avalanche morphologies, 71, 77
compression phase, 28	dynamical phase transitions, 86–87, 97
DSMC simulations, 188	photoelasticity, 236, 250–251
friction and, 54	pinning, low-amplitude mechanical, 91–92
size segregation, 10, 25	plasticity
three-spin model and, 82	elasto-plasticity, 233, 253, 259, 261–262, 273
mutual stabilisation, 53, 55	irreversible packing as, 264
Navior Stales associone 116 192 197 190 105	onset of, 226
Navier–Stokes equations, 116, 182, 187, 189, 195	stress–strain curve, 268
Newton's third law, 217, 226, 254	plug flow, 5–6, 179–180
NMR (nuclear magnetic resonance), 51, 58	Poisson ratio, 260, 262, 265, 267, 271
noise, 25, 88–89, 113, 151, 173	polar histograms, 241–242
white, 59, 64, 157, 162	polydispersity
non-Abelian models, 20–22, 116	granular gases, 208
non-equipartition, 207	response function and, 251–252
non-ergodicity, fast dynamics, 87, 97	statics of polydisperse grains, 234–235, 264,
non-hydrodynamic phenomena, 181–182, 207	273
nonsequential packing simulations, 20–22, 28	polymers and bridge models, 56, 60
nucleation scenarios, 45	polynomials, Sonine, 191
	pore spaces, 39
one-species model, 168	pouring
ordering length, 113–114	Maxwell demon effect, 180
orientation angle, 55, 58, 217	preparation history effects, 12, 19–20
orientation distribution, 36–37, 240	sandpile preparation by, 209, 246–248
oriented stress linearity (OSL) model, 271–273	simulation of, 40
orientedness parameter, 100–102	size segregation and, 50

Index 303

power law behaviour Reynolds dilatancy, see dilatancy avalanche size distribution, 115, 129, 137, 139 rheology, 263 rice pile experiments, 127 density of states, 220 Fourier transforms, 159, 161, 163 ripple formation, 168-174 q-mode force distribution, 245 rotating cylinders power spectrum fluctuations, 88-89, 115-116 avalanches in, 132-146, 149-150 Case A model, 151-156 precursor piles, 121-124 preparation history Case B model, 156-162 angle of repose dependence on, 12, 66, 74 Case C model, 162-167 contact orientation and, 241-242 roughness force probability distribution and, 237 anomalous roughening, 74-75, 165-168 packing density dependence on, 19, 271 asymptotic roughness, 119-129 entropic landscape, 108-113 pressure in jammed systems and, 209-210, 216, 248-252 ripple formation and, 171, 174 stress-strain curves, 263 sand in rotating cylinders, 149-150 sandpile collapse and, 68-69, 74 pressure force distribution function and, 238-239 scaling relations for interfacial roughness, 150-151 localised overloads and, 250-252 silo walls, 247 preparation history and, 209-210, 248-250 Type II avalanches and, 118-119, 126-131 roughness exponents, 150, 163, 165, 167 q-model, 242-245 spatial roughening, 128-130, 158 quadrons, 219-223, 227 surface roughening, 17 quasiperiodicity, 121, 140, 146 temporal roughening, 119 quasistatic flow, 3-5, 23-24, 42-43, 137 saltation, 168-169, 171-172, 174 quench phase, 55, 82-85 quenched disorder, 17, 92 sand dunes, 167-168 quenched systems sand ripples, 168-174 coarse-graining in, 226-230 sandpiles, see also shaken sand stress tensor derivation for, 223 bridge formation in, 52-54 quenched values, Edwards' flatness, 111 cellular automaton models, 13-15, 70-78, 116-117 collapse, 67-69 ramp rates, 90-92, 98 random close packing (RCP) density, 19, 27, 44 coupled continuum equations, 148-175 dynamic transitions and, 87 dip problem, 248, 271 jamming limit entropies near, 111 disorder in, 79-92, 122-124 ramp rates and, 90-93, 98 force transmission in, 216 random deposition in sandpiles, 141-142 in rotating cylinders, 132-135 random graph models, 79-93 random deposition, 141-147 realistic models, 17 cluster aggregation model and, 112 Edwards' hypothesis, 113 shape of critical, 136, 147 three-spin model, 81-82 spatial roughening exponent, 128-130 random transmission coefficients, 243 stresses in, 226, 248-250 random trapping, 67 surface dynamics, 148-175 random walks, 5, 42, 56, 60, 109 theoretical studies of, 15-17 'rattlers', 84-86, 106-107, 110-111, 212 tilting effects on, 71-76 RCP, see random close packing density saturation relaxation events sandpile surfaces, 129, 154-156 avalanches in rotating cylinders, 133-137, saturated interfaces, 151 141-142, 144-145 saturation mass in silos, 247-248, 271 inhomogeneous relaxation, 96 sheared granular systems, 180 ripple formation, 169 scale invariance vibrated powders, 40-41 absence of disorder and, 119, 121, 127 reptating, see hopping Kadanoff model, 144-145 response functions, 246, 250-252, 264, 268 SOC model and, 12-13, 16-17 response theory, 177 spatial and temporal, 17 'reverse Brazil nut' effect, 50 scale separation, 182-183, 185, 188, 195 reversibility scaling behaviour, see also coarse-graining density curve of shaken grains, 211, 215, 230 dynamical scaling, 119-120 irreversibility for sandpiles, 223 *q*-model, 245 reversible branch, compaction curve, 90-92, scaling relations, interfacial roughness, 150-151 97 - 100screening effect, silos, 247-248, 271

segregation of mixtures, 4	Sonine polynomials, 191, 204
cellular automata and, 8-11, 23	spaces and partial voids, 39
processes other than shaking, 50–51	spatial roughening exponent, 128–130, 158
shaking-induced, 25, 46–51	spatial structure factor, 158–159
self-diffusion, 42–44	spin distribution function, 205
self-organised criticality (SOC), 11-13, 115-116	spin models on random graphs, 80
sequential packing simulations, 19–20	spin variable, 201–202
shaken cylinders, 210–211	spontaneous crystallisation, 44–46
shaken sand, see also vibrated beds	SPRT (single-particle relaxation threshold), 84–86, 97
contact network topologies, 32	stabilising angle, 37–38
entropy of, 210	stability criteria, 25
jamming limit effects, 104–114	static equilibrium conditions, 234, see also force and
lattice model with long-range interactions, 104–106	torque balance
segregation of mixtures, 25, 46–51	static properties of granular materials, 233–273
simple lattice model, 94–103	statistical mechanics, 2-4, 211-215
simulations, 24–26, 29–40	steady-state shear, 22
transient response, 40–44	stick–slip motion, 132–147
shape-dependent ageing, 99–100, 102–103	strain tensors, 259, 261, 265
shear modulus, 267	stratification, 51
shear transformation zones, 261	stress fields, 222–230
shear waves, 178–179	coarse-graining and, 226–230
sheared flows, 176–208	elasticity formalism for, 264–268
boundary conditions, 196–200	Mohr–Coulomb computation, 268–270
correlation in, 185	stress indeterminacy, 235
q-model and, 245	stress response problem, 252
response functions, 252	stress–strain relations, 263, 266–268
spin distribution function, 205	stress tensors, 23, 253–256, 259
shock waves, 182	frictional effects and, 203-204
silo geometry, 233, 246–248, 270–272	isostaticity and, 217, 223
simulations, see also Monte Carlo simulations	kinetic theory formulation, 193–195
amplitude cycling, 90–92	Love stress tensor, 217
contact orientation in layers, 240–242	Mohr-Coulomb assumption, 268-269
molecular dynamics simulations, 22–24	stresses
random packing, 19–22	deriving from contact forces, 253-259
shaken sand, 24–26	exponential form, 232
size segregation and, 9	layered granular systems, 251
vibrated powders, 7, 27–29, 40–42	ratio of stress components, 271
single Fourier transforms	scale dependency of, 183
coupled continuum equations, 152	sheared granular systems, 180
mean-field equations, 166	static pilings, 246–252
temporal and spatial roughness, 149-150, 158-159,	'stuck grains', 151, 162, 167, 174
161–162	superconductors, 2
tilt combined with flowing grains, 163–164	'supercooled' behaviour, 45–46
single-particle distribution function, 185–186	supercritical slopes, 117
single-particle relaxation threshold (SPRT), 84–86, 97	supersonic systems, 182
size segregation, see segregation of mixtures	surface roughness, see roughness
slow degrees of freedom, 40-42, 63-64	surface tension, 16
slow dynamics	surface width, sandpile automata, 119-120, 126, 130
as cascade process, 97	sustainability
of granular clusters, 86–87	angle of repose and, 68
simple CA model, 94–96	bridges, friction and, 30, 54
three-spin model requirement, 81–82	symmetry breaking, 6
slow relaxation modes, 63–64	system-spanning avalanches, 128
smoothing	
asymptotic smoothing, 149, 162–163, 165, 167	tapping, 40, 82–84, 211
fixed points, 143–154, 156	temperatures, <i>see</i> effective; granular; low; tensorial
SOC (self-organised criticality), 11–13, 115–116	and zero-temperature
soft-particle simulations, 22, 24	temporal roughening exponent, 119, 158
soil mechanics, 210, 262	temporal structure factor, 159
solidification fronts, 16	tensorial temperature, 215
solids granular media compared to 1 18	texture tensors 241–242 259–260

Index 305

theoretical descriptions, 261-273 thermal averaging, 2 thermodynamics of the jammed state, 209-232 three-spin model, 81-82, 89 threshold driving forces, 134, 137-138 threshold instability, 115 tilting avalanche morphology and, 72-77 combined with flowing grains, 162-167 effects on sandpile stability, 70-78 ripples, 170 rotated cylinder model, 135-136, 162-167 torque, see force and torque balance tracer particles, 9-10, 47-49 transient response, vibrated beds, 40-44 transitions, glassy and fluidised regimes, 99 transmission coefficients, q-model, 243 triangular avalanches, 72-77 triaxial tests, 262, 264 TRUBAL software, 23 two-peak behaviour, 121, 139-141 two-species model, ripples and dunes, 174 two-time correlation function, 102-103, 163 Type I avalanches, 115-117 Type II avalanches, 118-131

unilaterality, contact forces, 234–236 uphill avalanches, 72–77, 121, 124 upward stabilisations, 38

velocity field and spin, 202 vibrated beds, *see also* shaken sand; tapping as non-hydrodynamic, 207

attainable packing fractions, 44-6 convective instabilities in, 5–8 transient response, 40-44 viscosity, see also Bagnold number effective viscosity, 22-23 void loops, 226 voids contact networks, 218 excess void space, 106, 146 lattice model solutions and, 95 nonsequential dynamics and, 31 partial, 39 propagation, 5 volume fractions, 20, see also packing fractions coordination number and, 33 forces in granular systems and, 215-222 vibration intensity and, 29-30, 40-41 volume functions, 213, 215, 217-221, 228 vortices, 51 wave speed, 173-174 wavelength, ripple merger, 173 wedges, flow through, 4-5, 23 weighted particle heights, 9, 47-48 wet sand, 69 white noise, 59, 64, 157, 162

yield criteria, 233, 268–272 Young modulus, 261–263, 265,

zero-temperature dynamics, 106-108