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1. BASIC INEQUALITIES

The arsenal of an analyst is stocked with inequalities. In this chapter we
present briefly some of the simplest and most useful of these. It is an
indication of the size of the subject that, although our aims are very
modest, this chapter is rather long.

Perhaps the most basic inequality in analysis concerns the arithmetic
and geometric means; it is sometimes called the AM-GM inequality.
The arithmetic mean of a sequence a = (ay,...,a,) of n reals is

1 n
AW == Y g,
n
i=1
if each q; is non-negative then the geometric mean is
n 1i/n
Gla) = (H ai) ,
i=1

where the non-negative nth root is taken.

Theorem 1. The geometric mean of n non-negative reals does not

exceed their arithmetic mean: if a = (a4,...,4,) then
Gla) < Ala). (1)
Equality holds iff a; = --- = a,,.

Proof. This inequality has many simple proofs; the witty proof we shall
present was given by Augustin-Louis Cauchy in his Cours d’Analyse
(1821). (See Exercise 1 for another proof.) Let us note first that the
theorem holds for n = 2. Indeed,

(a,—a,)* = af —2a1a,+a} = 0;

1
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2 Chapter 1: Basic inequalities

SO
(a1+a,)* = 4ajay,
with equality iff a; = a,.
Suppose now that the theorem holds for n = m. We shall show that
it holds for n = 2m. Let ay,...,a,,,by,...,b,, be non-negative reals.
Then

(@y-..auby...b, )" = {(ay...a,,) V"™ (b;...b,,) /™12

< Y(a;...a,)V™+(by...b,) ™}

< 1<a1+...+am +b1+...+bm)
2 m m
_at...ta,+bi+...+b,
a 2m )
If equality holds then, by the induction hypothesis, we have a; =
- =a, =b; =---=b,. This implies that the theorem holds when-

ever n is a power of 2.
Finally, suppose n is an arbitrary integer. Let

n<2k=N and a=%2ai.

SO

with equality iff @; = --- = ay, in other words iff a; = --- = gq,,. O

In 1906 Jensen obtained some considerable extensions of the AM-GM
inequality. These extensions were based on the theory of convex func-
tions, founded by Jensen himself.

A subset D of a real vector space is convex if every convex linear
combination of a pair of points of D is in D, i.e. if x,y € D and
0<t<1 imply that x+(1—-f)y € D. Note that if D is convex,
XX, €D, 4,...,0,>0 and 3 4 =1 then 3" 4 €D.
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Chapter 1: Basic inequalities 3

Indeed, assuming that a convex linear combination of n—1 points of D
is in D, we find that

n

, L
Xy = z 1_t1x,« eD
i=2

and so
n
E t,-xi = t1x1+(1_t1)Xé c D
i=1

Given a convex subset D of a real vector space, a function f: D — R
is said to be convex if

flex+(1=0y) < tf () + (1= f(y) 2

whenever x,y € D and 0 <t < 1. We call f strictly convex if it is con-
vex and, moreover, f(&x+(1—-0y) = tfx)+(1-0f(y) and 0 <1< 1
imply that x = y. Thus f is strictly convex if strict inequality holds in
(2) whenever x # y and 0 <t < 1. A function f is concave if —f is
convex and it is strictly concave if —f is strictly convex. Clearly, f is
convex iff the set {(x,y) € DxR:y = f(x)} is convex.

Furthermore, a function f: D — R is convex (concave, ...) iff its res-
triction to every interval [a,b] = {ta+(1-0)b:0<t¢t=<1}in D is con-
vex (concave, ...). Rolle’s theorem implies that if f: (a,b) — R is dif-
ferentiable then f is convex iff f’ is increasing and f is concave iff f' is
decreasing. In particular, if f is twice differentiable and f” = 0 then f is
convex, while if f" < 0 then f is concave. Also, if f” > 0 then f is
strictly convex and if f” < 0 then f is strictly concave.

The following simple result is often called Jensen’s theorem; in spite
of its straightforward proof, the result has a great many applications.

Theorem 2. Let f: D — R be a concave function. Then
> Lfly) < f(E fixt) 3)
i=1 i=1

whenever x;,...,x, € D, t,...,t, € (0,1) and X" 1 =1. Further-

more, if f is strictly concave then equality holds in (3) iff x; = --- = x,,.

Proof. Let us apply induction on n. As for n = 1 there is nothing to
prove and for n = 2 the assertions are immediate from the definitions,
let us assume that n = 3 and the assertions hold for smaller values of n.
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4 Chapter 1: Basic inequalities

Suppose first that f is concave, and let
n
xl,...,x,,ED, tl,...,t,,E(O,l) with E tizl.
i=1

For i=2,...,n, set tf =4/(1—t), so that 3" & =1. Then, by
applying the induction hypothesis twice, first for n—1 and then for 2, we
find that

3 6ft) = 6ftx) + (-1) 3 ifGx)
< £ f(xy) +(1_t1)f(_§2 tt{xi>
< f(tlx1 +(1-14) i t,fx,-)

i=2

=f <§1 tixi)~

If f is strictly concave, n = 3 and not all x; are equal then we may
assume that not all of x,,...,x, are equal. But then

n n
1-1) 3 6flx) < (l—tl)f(E tfx,);
i=2 i=2
so the inequality in (3) is strict. O

It is very easy to recover the AM-GM inequality from Jensen’s
theorem: logx is a strictly concave function from (0,%) to R, so for
ai,...,a, > 0 we have

R

i
s

rlz i loga; < log i
i=1 i=1

which is equivalent to (1). In fact, if ¢;,...,¢, > 0 and E:; & = 1then

S

n
tlogx; <log X t4ix;, @)

i=1

IS

1

with equality iff x; = --- = x,, giving the following extension of
Theorem 1.

Theorem 3. Let a,...,a, =0 and py,...,p, >0 with 3" p; =1
Then
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Chapter 1: Basic inequalities 5
n n
afli < 3 pia, S)
i=1 i=1
with equality iffa; = -+ = a,.

Proof. The assertion is trivial if some ga; is 0; if each a; is positive, the
assertion follows from (4). O

The two sides of (5) can be viewed as two different means of the
sequence day,...,d,: the left-hand side is a generalized geometric mean
and the right-hand side is a generalized arithmetic mean, with the vari-
ous terms and factors taken with different weights. In fact, it is rather
natural to define a further extension of these notions.

Let us fix py,...,p, > 0 with X7 | p; = 1: the p; will play the role of
weights or probabilities. Given a continuous and strictly monotonic
function ¢: (0,0) = R, the ¢-mean of a sequence a = (aj,...,a,)
(a; > 0) is defined as

M) = ¢ _l(é p.~¢>(a,~)>~

Note that M, need not be rearrangement invariant: for a permutation
the ¢-mean of a sequence ay,...,a, need not equal the ¢-mean of the
SEQUENCE Ay ,.-.,0n(,- Of course, if py = -+ = p, = 1/n then every
¢-mean is rearrangement invariant.
It is clear that
min a; < M,(a) < max g;.

1<i=n I<si<n

In particular, the mean of a constant sequence (ay,...,a) is precisely
ag.

For which pairs ¢ and ¢ are the means M, and M, comparable?
More precisely, for which pairs ¢ and ¢ is it true that M (a) < M,(a)
for every sequence a = (aj,...,a,) (a; > 0)? It may seem a little
surprising that Jensen’s theorem enables us to give an exact answer to
these questions (see Exercise 31).

Theorem 4. Let py,...,p, > 0 be fixed weights with 3" p; = 1 and let
@, (0,2) = R be continuous and strictly monotone functions, such
that ¢y ! is concave if ¢ is increasing and convex if ¢ is decreasing.
Then

M, (a) < M(a)
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6 Chapter 1: Basic inequalities
for every sequence a = (aq,...,a,) (a; > 0). If ey~ is strictly concave
(respectively, strictly convex) then equality holds iff a; = --- = q,,.

Proof. Suppose that ¢ is increasing and oy is concave. Set b; = y(a;)
and note that, by Jensen’s theorem,

M, (@) = w(i piso(a,»)) - «fl(il p,-<<p¢—1><bi>)
i=1 i=
w3 )
= (//‘1(4%1 pi«/f(ai)) = My(a).

If oy~ 1is strictly concave and not all a; are equal then the inequality
above is strict since not all b; are equal.
The case when ¢ is decreasing and <pd/"1 is convex is proved analo-

gously. O
When studying the various means of positive sequences, it is con-
venient to use the convention that a stands for a sequence (ay,...,q,),
b for a sequence (b{,...,b,) and so on; furthermore,
_ 1 _ _
al===(@'. . .,a,Y, a+x=(a+x,...,a,+x) (x € RY),
a
ab = (a;by,...,a,b,), abc = (a1bycq,...,a,b,c,),
and so on.

If o(t) = 1" (—» <r <, r # 0) then one usually writes M, for M,.
For r > 0 we define the mean M, for all non-negative sequences: if
a=(a,...,a,) (a; = 0) then

n 1/r
M,(a) = (2 Piai') :
i=1

Note that if p; = --- = p, = 1/n then M, is the usual arithmetic mean
A, M, is the quadratic mean and M _ is the harmonic mean. As an
immediate consequence of Theorem 4, we shall see that M, is a continu-
ous monotone increasing function of r.

In fact, M,(a) has a natural extension from (—,0)U(0,o) to the
whole of the extended real line [—o,«] such that M,(a) is a continuous
monotone increasing function. To be precise, put
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Chapter 1: Basic inequalities 7

M_(a) = max a;, M_.(a) = min a;, My(a) = [] af.
1<i=n I<i<n i=1
Thus My(a) is the weighted geometric mean of the ag;. It is easily
checked that we have M,(a) = {M_,(a 1)} ' for all r (- < r < ).

Theorem 5. Let a = (aq,...,4a,) be a sequence of positive numbers, not
all equal. Then M,(a) is a continuous and strictly increasing function of
r on the extended real line —o < r < «,

Proof. It is clear that M,(a) is continuous on (—,0)U(0,«). To
show that it is strictly increasing on this set, let us fix r and s, with
—o<r<s<ow r#0and s# 0. If 0<r then ¢ is an increasing
function of £ > 0, and #"/° is a concave function, and if r < 0 then ¢” is
decreasing and /s is convex. Hence, by Theorem 4, we have
M, (a) < My(a).

Let us write A(a) and G(a) for the weighted arithmetic and geometric
means of a = (ay,...,a,), i.e. set

Ala) = M(a) = 5‘, Dia; and Gla) = Myla) = ﬁ af.
i=1 i=1

To complete the proof of the theorem, all we have to do is to show
that

M.(a) = lim M, (a), M_.(a) = lir{l M. (a), Gla) = lin}) M, (a).

The proofs of the first two assertions are straightforward. Indeed, let
1 < m < n be such that a,, = M.(a). Then for r > 0 we have

M(@) = (pmas)Y" = pal ap;

so liminf,_,, M,(a) = a,, = M.(a). Since M,(a) < My(a) for every r,
we have lim,_,, M,(a) = M,(a), as required. Also,

M_ (@) = MoaH} 1= {limMa D} != lir{l M, (a).

The final assertion, G(a) = lim,_,4 M,(a), requires a little care. In
keeping with our conventions, for —o <r < (r# 0) let us write
a” = (a{,...,a,;). Then, clearly,

M, (a) = A@a"".

Also, it is immediate that

© Cambridge University Press www.cambridge.org



http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/0521655773

Cambridge University Press
0521655773 - Linear Analysis: An Introductory Course - Bela Bollobas

Excerpt
More information
8 Chapter 1: Basic inequalities
: 1 r__ _ ﬁ_ rloga; _
11_{1(1) r(a,- 1= are = logaq;
r=0
and so
lin(l) %{A(a’) -1} = log G(a). 6)
r—>
Since
logt < t-1

for every t > 0, if r > 0 then
1 1
log G(a) = %log Gla") = ;logA(a’) < ;{A(a')—l}.

Letting r — 0, we see from (6) that the right-hand side tends to log G(a)

and so
,E%L log M,(a) = r£%1+ %IogA(a’) = log G(a),
implying
r!i%l+ M,(a) = G(a).
Finally,

lirgl_ M, (a) = 1_igx+ M@ H =Gl H! = G). O

The most frequently used inequalities in functional analysis are
due to Holder, Minkowski, Cauchy and Schwarz. Recall that a
hermitian form on a complex vector space V is a function ¢ : VXV — C
such that e(Ax+puy,z) = Aex,z) +pe(y,z) and ¢(y,x) = ¢(x,y) for all
x,y,z € Vand A,u € C. (Thus ¢(x,Ay+puz) = Ae(x,y) +Ze(x,z).) A
hermitian form ¢ is said to be positive if ¢(x, x) is a positive real number

forallx € V (x # 0).
Let ¢(-, -) be a positive hermitian form on a complex vector space V.

Then, given x,y € V, the value
PAx+y,Ax+y) = |A|%(x,x) +2Re(Ao(x, ) + (¥, y)

is real and non-negative for all A € C. For x # 0, setting A =
—p(x,y) /e(x,x), we find that

lo(x, )| < o(x,x) @(y,)

and the same inequality holds, trivially, for x = 0 as well. This is the
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Chapter 1: Basic inequalities 9

Cauchy-Schwarz inequality. In particular, as
n

(P(x’.))) = 2 xi.)—"i

i=1
is a positive hermitian form on C”,

n

n 1/2/ 1/2
$ sl = (5 i) (5 0]
i=1 i=1 i=1
and so
n n 1/2/ 1/2 n Y2/ 1/2
$ o) < (3 mP) (5 08) - (3 mr) (31
i=1 i=1 i=1 i=1 i=1
(7)
Our next aim is to prove an extension of (7), namely Hélder’s ine-
quality.
Theorem 6. Suppose
1 1
,q>1 and -+-=1
P4 P 4
Then for complex numbers ay,...,4a,,b;,...,b, we have
n n b/ n 1/q
5 ann| (S o) (3 16ele) ®
k=1 k=1 k=1

with equality iff all a; are 0 or |by|? = t|a,|P and a;b; = e*|a.b; | for
all k£ and some ¢t and 6.
Proof. Given non-negative reals a and b, set x; = a®, x, = b9,
p1 = 1/p and p, = 1/q. Then, by Theorem 3,

a? b4

ab = x{'xf* < pyx;+pyx; = r + ik ®

with equality iff a? = b9.
Holder’s inequality is a short step away from here. Indeed, if

(£ al)( 2 1ou1) #0

then by homogeneity we may assume that
n n
Y fal? = 2 [bel? = 1.
k=1 k=1

But then, by (9),
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10 Chapter 1: Basic inequalities
i 2 o [lal? 1bel?) _ 11
> oagbi| = Y |agby| < (—L—+—>=—+—=1.
k=1 Kok k=1 Kok kzl q P 49

Furthermore, if equality holds then

n

2 a; by

k=1

laklp = |be|? and

= kE::l lagby |,

implying a, b, = ¢'®|a,b,|. Conversely, it is immediate that under these
conditions we have equality in (8). |

Note that if M, denotes the rth mean with weights p; = n~!

(¢=1,...,n) and for a = (ay,...,a,) and b = (by,...,b,) we put
ab = (ayby,...,a,b,), la| = (lat],...,|a,]) and |b| = (|by],...,|b,]),
then Holder’s inequality states that if p '+¢~! = 1 with p,g > 1, then

Mi(lab]) < M,([a|) M, (|b]).

A minor change in the second half of the proof implies that (8) can be
extended to an inequality concerning the means M;, M, and M, with
arbitrary weights (see Exercise 8).

The numbers p and g appearing in Hoélder’s inequality are said to be
conjugate exponents (or conjugate indices). It is worth remembering that
the condition p "1+¢~! = 1 is the same as

(p-D@-1 =1, (p-lg=p or (g-Dp=gq.
Note that 2 is the only exponent which is its own conjugate. As we
remarked earlier, the special case p = g = 2 of Hoélder’s inequality is

called the Cauchy—Schwarz inequality.
In fact, one calls 1 and « conjugate exponents as well. Holder’s ine-

quality is essentially trivial for the pair (1, «):

Mi(lab|) < My(Ja|) M(|b]),
with equality iff there is a 6 such that |b,| = M.(|b]) and a;b; =
e'’|a, by | whenever a; # 0.

The next result, Minkowski’s inequality, is also of fundamental
importance: in chapter 2 we shall use it to define the classical /, spaces.

Theorem 7. Suppose 1 <p < and ay,...,qa,,b,...,b, are complex
numbers. Then

n 1/p n 1/p n 1/p
T R oY B ST T
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