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L NORMED LINEAR SPACE STRUCTURE AND
EXAMPLES

Everyday Euclidean space which underlies most of our mathematical activity,
possesses some remarkable abstract structures which provide a rewarding study in their
own right. In particular we could isolate the linear space structure and the metric space
structure and the one which is a significantly rich mixture of these two, the normed linear
space structure. To study such an abstract structure is profitable for two reasons: the study
can be undertaken in a systematic and deductive fashion and there are many diverse
mathematical situations which exhibit the same structure to which the developed theory can
be applied.

Moreover, the study of normed linear spaces has an intriguing interest which is quite
distinct from that of metric spaces. Just as the study of Euclidean space gives rise to matrix
theory so the linear structure of normed linear spaces enables us to propagate more normed
linear spaces from the continuous linear mappings between them and this is the origin of
operator theory.

§1. BASIC PROPERTIES OF NORMED LINEAR SPACES

We begin with a review of the defining structure of normed linear spaces, of the
fundamental properties of continuous linear mappings and of the notions of basis in
normed linear spaces. Our theory is developed from a knowledge of these and we will use
them in our discussion of examples and our subsequent construction of associated normed
linear spaces in Chapter II.

1.1 Definition. Given a linear space X over € (or R), a mapping I: X 5> R is a

norm for X if it satisfies the following properties:

For all x € X,

@ Ixh=o0,

(ii)) I xN=0ifandonlyif x=0,

i) WA xN=1A1Hxll for all scalar A,

and for all x, y €X,
(iv) lix+yI<Bxii+ylH
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2 Normed linear space structure

(The norm is said to assign a "length" to each vector in X.) The pair (X, Hi-1) is called a
normed linear space. Different norms can be assigned to the same linear space giving rise
to different normed linear spaces.

1.2 Remarks. The norm generates a special metric on the linear space. Given a normed
linear space (X, [I1}), a function d: X X X — R defined by
dix,y) =l x-yll
is a metric for X and is called the metric generated by the norm.
This metric is an invariant metric for X; that is, for any givenz € X,
d(x+z, y+z) = d(x,y) for all x,y e X.
So given x € X and r > 0, the ball
B(x;n)={yeX:lly=xli<r}=x+{zeX:llzll<r}=x+B(0;r),
is the translate by x of the ball B(0; r).
Furthermore, property (iii) implies that given r > 0, the ball centred at the origin with
radius r,
B(O;nD=r{yeX:llyll<t}=rB(@;1),
is an r-multiple of the unit ball.
Properties (iii) and (iv) tell us that the norm is a convex function on X; that is,
for any x,y € X we have | Ax+(1-L)y I SAUx Il + (1-A) Ny liforall 0S A< 1.
This implies that the ball B(0; 1) is a convex set in X; that is,
for any x,y € B(0; 1) we have Ax + (1-A)y e B(0; 1) forall0<A <.
But (iii) also tells us that the ball B(0; 1) is symmetric; that is,
for any x € B(0; 1), we have — x € B(0; 1). 0O

Since a normed linear space has both algebra and analysis structures, the relationship
between these two quite different aspects of the space is a matter of special interest. The
fruitfulness of the relationship follows from the way the linear space operations are linked
to the norm.

1.3 Remark. Given a normed linear space (X, II-Il), from properties (iii) and (iv) we can
derive the important norm inequality
[nxt-uynl <tx—yl forallxyeX

which implies that the norm is a continuous function on X.
Properties (iii) and (iv) actually relate addition of vectors and multiplication of a vector by a
scalar to the norm and imply that these algebraic operations have a continuity property
which we call joint continuity :
if x = xg and y = yq then x + y = Xq + yg, and if A = A then Ax — Agxg.
This can be deduced simply from the inequalities:

I (x+y) - (Xg+yg) B <t x—xo Il + N y-yu Hl,
and Jl Ax—Agxq Il S 1 Ax=Axg ll + 1l Axg—Agxg Il STA N x—xg I + 1 A~Ag LIl xq Il O
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§1. Basic properties 3

A normed linear space is a generalisation of Euclidean space.

1.4 Example. Euclidean n-space and Unitary n-space. The real (complex) linear space
of ordered n-tuples of real numbers R" (of complex numbers C" ), where for
x= (A, Ag ..., Ay) we define the norm

n
Hxll, = /ZIAklz
k=1

in the real case is called Euclidean n-space and is denoted by (R", Il-li,) and in the complex
case is called Unitary n-space and is denoted by (C", Il-1l,). The n-dimensional complex
linear space C" is a 2n-dimensional real linear space C*(IR) and it is clear that the norm
calculation is not affected by the space being considered as over R or €. An elegant proof

that the norm satisfies the triangle inequality (property (iv)) follows from an exploration of
the inner product structure of the space; (see Example 2.2.10 below). 0

Other normed linear spaces are formed by taking different norms on the same
underlying linear space R" (or C"). The advantage of these norms which at first offend

our Euclidean intuition, is that they are often more convenient for computation.

1.5 Examples.
G (R", 1), (or (€, IH.)).
Forx=(Ap, Ay, - .., Ay) € R" (or €") we define the norm
Ix oo =max{ IAI:ke{l,2,...,n}}.
Gi) (R, 11y), (or (T, 111p)).
Forx=(A;, Ay, ..., Ay) € R (or €") we define the norm

n
Hxlly= X Ay
k=1
In both cases it is much simpler than in the Euclidean case to verify that these norms satisfy
the norm properties (i)—(iv). 0

Several example spaces can be considered as different forms of a general function

space.

1.6 Examples. For any nonempty set X, the set B (X) of bounded real (complex)
functions on X is a linear space under pointwise definition of the linear operations and is a
normed linear space with norm defined by

Il fllo=sup {If(x)|:xeX}.
(i) When X ={1,2,...,n) then B(X) is the linear space R"(or C") and for
x=(Ap Ao, ) eR(or €Y,

Il xlloo =max {iAgl:ke{l,2,...,n}}.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521653756
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-65375-6 - Introduction to the Analysis of Normed Linear Spaces
J. R. Giles

Excerpt

More information

4 Normied linear space structure

(i) When X =N the set of natural numbers, then B(N) is the linear space m (or £.) of
bounded sequences of scalars and for x ={A;, Ay, ..., Ap, ...} €m,
Ixlloo=sup {IA1:keN} .
(ii) When X = {a,b] the bounded closed interval, then #[a,b] is the linear space of
bounded scalar functions on [a,b] and for f € B[a,b],
I fllo=sup {I f(x)|:x e[ab]}. 0

1.7 Definition. A normed linear space which is complete as a metric space with its metric
generated by the norm, is called a Banach space.

Using the completeness of the scalar field we establish the completeness of the
general example given in Example 1.6. This also illustrates the general method used to
prove completeness in other examples.

1.8 Theorem. For any nonempty set X, the normed linear space (B (X), Ill.) is a

Banach space.

Proof. Consider a Cauchy sequence (f,} in (B(X), Illo); then given € > O there exists
av e N such that
Hfg—fp Voo <e forallmn>v;

that is, sup{l (f,~f)(X)1: x€X} <¢ forallmn>v.
But then for each x € X,

() - fr(x) | <e forallmn>v;
that is, for each x € X, {f,(x)} is a Cauchy sequence of scalars. Since the scalar field is
complete, for each x € X we can define a function f on X by

f(x) = lim f(x).

n—)eco
We need to show that f € B(X).
Since {f,} is Cauchy it is bounded in (B (X), Ill.); that is, there exists a K > 0 such that
iIf,llo<K forallneN,

which implies that Ifix)l<K forallxeXandallneN.
Therefore, | f(x) | < K for all x € X, and so f € B(X).
Then we need to show that {f,} actually converges to f in (B(X), ll-lloo).
We had for each x € X,

[fo(x)-f(x)I<e forallmn>v.
Fix n and let m — oo; then we have for each x € X,

1 (x)-f(x)| <e foralln>v.
So I f,~flloo = sup{l fo(x) - f(x) | : x€X} <& foralln>v;
that is, {f,} converges to f in (B(X), I1Mls). 0
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§1. Basic properties 5

1.9 Remarks. So the normed linear spaces (R", llll,), or (C°, Ille), (m, N-llee) and
(B[a,b], I} are Banach spaces. Of course, Euclidean n-space (R", Il-ll,) and Unitary

n-space (C", Illl;) are both complete, but a proof of this will be deduced from the
completeness of (R", ill,), (or (€", ll-lles) by Corollary 2.1.5. O

We will see, as we develop the fundamental theorems in our theory, that
completeness plays a strategically important role.

A linear subspace in a normed linear space derives norm structure from the parent

space in a natural way.

1.10 Definition. Given a normed linear space (X, lI-I) and a linear subspace Y of X, it
is clear that the restriction of the norm Il-ll to Y is also a norm for Y. The restriction is

denoted II-lly and (Y, Illy) is a normed linear subspace of (X, IIll).

The following examples are significant linear subspaces of the example spaces so far
introduced.

1.11 Examples. In m the linear space of bounded sequences, where for each
x={A, Ay ..., Ay, ...} there exists an M, > O such that | A1 <M, forallneN,
we have the following linear subspaces.

¢ the linear subspace of convergent sequences, where for each

x={A;, Ay, ..., Ap, .. .} there exists a scalar A such that A; &> A asn o oo,

co the linear subspace of sequences which converge to zero,

4, the linear subspace of sequences x = {A;, Ay, ..., Ay, ...} where T 14,12 < oo,

2, the linear subspace of sequences x = {Aj, As,. .., Ay, ...} where T 1A, | < oo, and

E, the linear subspace of sequences with only a finite number of nonzero entries, where for
each x = {&;, Ay,. . ., Ay, .. .}, A, = O for all except a finite number of elements in N.
That £, and £, are linear subspaces will be verified in Example 2.2.11 and 2.3.6.

Now all of these are normed linear subspaces of (m, I1l.). 0

1.12 Examples. For a metric space (X, d), consider B (X, d) the linear space of
bounded functions on (X, d).

We have the important linear subspace 8 G(X, d) of bounded continuous functions on
(X, d). When (X, d) is compact, then all continuous functions on (X, d) are bounded so
B T(X, d) = B(X, d) the linear subspace of continuous functions on (X, d).

When X = [a,b], we could also consider the linear subspace ®,[a,b] of B[a,b] which
consists of the Riemann integrable functions on [a,b]. Of course, Cfab] is a linear
subspace of ®,[a,b].
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6 Normed linear space structure

We could consider the linear subspace T ![a,b) of T[a,b] which consists of those functions
with a continuous first derivative on [a,b] and T°[a,b] which consists of functions which
are infinitely often differentiable on [a,b].
We could also form linear subspaces of B(X, d) of the form

{fe B(X, d) : f(xg) =0} for a given xy € X.
So we would have B[0,1] the linear subspace {f € B[0,1] : f(0) =0}.

We would also have Tg[0,1] the linear subspace {f € €[0,1] : f(0) = 0}.
Again all of these are normed linear subspaces of the appropriate bounded function space
with the supremum norm Il-ll. 0

Often the simplest way to examine a normed linear space for completeness is to use
the following metric space link between completeness and closedness, (see AMS §4).

1.13 Proposition. Consider a metric space (X, d) and a subset Y.
WIfY,d | vy )is complete then Y is a closed subset of (X, d).
(i) If (X, d) is complete and Y is a closed subset of (X, d) then (Y, d | v)

is complete.

1.14 Example. Given a metric space (X, d), the normed linear space (B T(X, d), Illo,)

is complete.

Proof. We show that B T (X, d) is a closed subset of (B(X, d), Illl.,) and apply
Proposition 1.13.

Given a cluster point f of B G(X, d) in (B(X, d), Illles) we show that f is continuous:
Now there exists a sequence {f,} in BT(X, d) convergent to f ; that is, given € > 0

there exists a v € N such that
If,—fll,<e whenn>v.
Consider x, € X. Since f,, is continuous at x, there exists a d > 0 such that
1y (X)—f,,1(Xp) 1 <€ when d(x,xg) < 8.
Therefore,
LE(x)-f(xg) | S HR(X)— £y () 14 Ty () 1 (X) |+ Hpp () —f(xg) |

S 2N £y = lhop + 1 fyp (X)~Fyy  (X0) |

< 3e when d(x,xg) < &;
that is, f is continuous at xg. 0

When (X, d) is compact, the Banach space T(X, d) has a particularly rich structure,
(see AMS §9).

We often encounter situations where we have a linear space with a real function
which has all the norm properties except (ii).
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§ 1. Basic properties 7

1.15 Definition. Given a linear space X over C(or R), a mapping p: X > R is a
seminorm for X if it satisfies all the norm properties except (ii) and instead of (ii) satisfies
(i1)' p(x)=0 if x=0.

The pair (X,p) is called a seminormed linear space.

So a seminorm allows the possibility that there exists some x # 0 for which p(x) = 0.

1.16 Remark. A seminorm p on a linear space X generates a semimetric € on X defined
by
e(x,y) = p(x-y).
As with the norm properties noted in Remarks 1.2, property (iii) implies that the set
{x € X : p(x) < 1} has the properties that, givenr >0
{yeX:ply-x)<r}=x+r{zeX:pz)<1}
and is convex and symmetric.

However, if p is not a norm then ker p is a nontrivial linear subspace and is a subset of
{xeX:p(x) <1} 0

Given a linear space and a proper linear subspace, another linear space can be

generated in a natural way as a quotient space.

1.17 Definition. Given a linear space X and a proper linear subspace M of X, the
quotient space (or factor space) X/M is the linear space of cosets [x] = x + M, with
addition and multiplication by a scalar defined by

[X]+[yl=(x+ M)+ (y+M)=(x+y)+ M= [x+y] forall [x],[y] eX/M
and Alx1=A(x+M)=Ax + M =[Ax] for all [x] € X/M and scalar A.

A seminormed linear space can be transformed into a normed linear space as a

quotient space.

1.18 Definition. Given a seminormed linear space (X, p), the associated normed linear
space is the quotient space X/ker p whose elements are the cosets {x] = x+ker p, with norm
It [x] I = p(x) for any x € [x].

1.19 Example. Consider ® [a,b] the linear space of Riemann integrable functions on
[a,b). Now the function p;: ®,[a,b] — R defined by
b

p (D= I ()1 dt

is a seminorm on ®.[a,b].
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8 Normed linear space structure

On the quotient space ®,[a,b)/ker p; of cosets [f] = f+ker p,, we have the associated norm
Wif1 Il =py(f) for any f e[f]. 0

When a quotient space is generated from a normed linear space by a proper closed
linear subspace then the quotient space has an associated quotient norm.

1.20 Definition. Given a normed linear space (X, IIf), and a proper closed linear
subspace M of (X, II-I), the quotient norm II|l is defined on the quotient space X/M by
Il [x] I = d(0, x+M) = inf{ ll x+m i : m e M }.

1.21 Remark. It is routine to verify the norm properties (i)—(iv) for the quotient norm.
But we note that we need the linear subspace M to be closed to establish that the norm is

not just a seminorm; that is, we need to show that d(0, x+M) = 0 implies that x + M =M so
that Il [x] Il = 0 implies that [x] = 0. O

It is instructive to see how such a quotient space inherits completeness from the

parent space.

1.22 Theorem. Given a Banach space (X, II-Il} and a proper closed linear subspace M
then the quotient space (X/M, ) is also complete.

Proof. Consider a Cauchy sequence {x,+M} in (X/M, I-1). Then for each k € N there
exists a v(k) € N such that
Il (xq + M) = (X + M) I < % for all m,n > v(k).

Consider a subsequence of the form (x,,+ M} where for eachk € N, n(k) > v(k).
1
Then Il (Xn(k) +M)- (Xn(k+|) +M)li< .2—k .

For each k € N choose xy € xp(xy + M such that

i Xk — Xk+1 <=

2k’
The sequence {xy} in (X, -l has the property that
I X=X P S W xg—Xpp W4+ WXy —x  form>k
<%k forallk e N,

so {xy} is a Cauchy sequence in (X, IlI). But (X, IIll) is complete so there exists an
x € X such that {x,} is convergent to x. Then

Il (Xpqey+M) — (x+M) Il = 1l (xg+M) = (x+M) T < 1T x—x I
and so (xn(k)+M] is convergent to x + M in (X/M, I1ll).
However, {xn)*M] is a convergent subsequence of the original Cauchy sequence
{x,+M}, so {x,+M} is also convergent in (X/M, II-ll). 0
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§1. Basic properties 9

1.23 Example. Consider R.[a,b] the linear space of Riemann integrable functions on
[a,b] with norm

Il f N = supf{l f(t) | : t e [a,b]}.
Now (®,[a,b], ll-ll,,) is a Banach space, (see AMS §4).

Furthermore, ker p; where
b
pH= I 1f(t) 1 dt
a

is a closed linear subspace of (R [a,b], Illl.). On the quotient space R, [a,bl/ker p,
whose elements are cosets, [f] = f + ker p;, we have the norm

Il [f] oo = d(O, f+ker p;) = inf{ i f+g llo : g ekerp,} .
From Theorem 1.22, the quotient space (®, [a,b)/ker py, I1ll,) is a Banach space. 0

124 Continuous linear mappings

The algebraic study of linear spaces finds its full development in an examination of
the homomorphisms or structure preserving mappings between such spaces. As we might
expect, these linear mappings are of similar significance in the development of the analysis
of normed linear spaces. However, interest in this case is focused on the continuous linear
mappings which preserve the topological and norm structure along with the linear structure.

The following characterisation theorem provides an essential tool for discussing these

mappings.

1.24.1 Theorem. Given normed linear spaces (X, I} and (Y, III'), a linear mapping
T:X->Y
(i)  is continuous if and only if there exists an M > 0 such that
NTxW<Mlixll forallxeX,
(ii) has a continuous inverse on T(X) if and only if there exists an m > O such that
mlix§<HTxII' forallxeX.

Proof.
(i) If the condition holds then clearly T is continuous at O and the linearity of T implies
that T is continuous on X.
Conversely, suppose that the condition does not hold; that is, for each n € N there
exists x,, € X such that
I Tx, >nllxy .

Then "nllxnll =5 —>0asn— e
but IIT(l—“—x )II>1 forallneN;
nllx, |l

that is, T is not continuous at 0.
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10 Normed linear space structure

(i) If there exists an m > 0 such that
mixI<HTxII for all x e X.

then ker T = {0} so T is one-to-one and T-! exists on T(X) and is clearly linear. Writing
x =T-ly for y € T(X) we have

mIT-ly NSITT'y) I =Nyl
S0 T tyli< IE Nyl for all y € T(X);

that is, from (i) T-! is continuous on T(X).
Conversely, if T-! is a continuous linear mapping on T(X) then, from (i) there exists

an M > O such that
NT-'yl<Miyll for all y e T(X).
Since y = Tx, IT-YTx) I<MUITxII
1 .
and so MIIxIISII TxHl for all x € X. 0O

1.24.2 Remark. From linearity it follows that a linear mapping T is continuous on a
normed linear space (X, |I-l) if and only if T is continuous at any one point of X. It

follows that a linear mapping T is either continuous at every point of X or continuous at no
point of X. 0O

Two of the most commonly occurring linear mappings are as follows.

1.24.3 Examples.
Consider the normed linear spaces (T{0,1], l-ll,,) and (T1[0,1], l-ll.).

(i) Consider the linear mapping I: T[0,1] > ©'[0,1] defined by

X

H = [fdt  forall xe[0,1].
0

Now IO ILTX T o for all x €[0,1]
and I1 I(F) oo = max {1 I(H)(x) | : x € [0,1]} < Il f ll, for all f € T[O,1],
so I is continuous.
(ii)) Consider the linear mapping D: ©![0,1] > B[0,1] defined by
D(f)(x) = f'(x) for all x € [0,1].
For the sequence {f,,} in B![0,1] where f(x) = % sin nnx we have I} f; lloo = % — 0 but

I D(f,,) lloo =1 for all n e N, so D is not continuous. 0

1.24.4 Definitions. Consider normed linear spaces (X, Il-ll) and (Y, Il-I') and a linear
mapping T: X - Y.

(i) T is said to be a topological isomorphism (or a linear homeomorphism) if T is also a
homeomorphism; that is, T is linear, continuous, invertible and has a continuous inverse on
T(X).

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521653756
http://www.cambridge.org
http://www.cambridge.org

