Index

N-Acetylcysteine
 acidic dissociation constant, 14
 affecting homocysteine levels, 334–335

N-Acetyl-lysine reaction with homocysteine thiolactone, 28

Acidic dissociation constants for thiols, 14

Adenosine
 analogs as inhibitors of S-adenosylhomocysteine hydrolase, 82–84
 and methionine metabolism, 63, 92

Adenosine-5'-carboxaldehyde as inhibitor of S-adenosylhomocysteine hydrolase, 83

Adenosine deaminase deficiency, S-adenosylhomocysteine hydrolase levels in, 80

Adenosine triphosphate in S-adenosylmethionine formation, 47

Adenosylcobalamin, 289
 deficiency, 248–249
 methylcobalamin deficiency with, 249–250

S-Adenosylhomocysteine (AdoHcy), 41
 abnormalities in homocysteine-related disorders, 190–193
 in cystathionine β-synthase deficiency, 234, 235, 236
 inhibiting methyltransferase enzymes, 184
 intracellular levels related to plasma total homocysteine, 63, 73
 kinetic properties in methionine metabolism, 95–97
 metabolic relationship to S-adenosylmethionine, 63
 and methyltransferase inhibition, 42, 64
 susceptibility of specific methyltransferases, 70–73
 nitrous oxide affecting, 188
 ratio to AdoMet
 AdoHcy hydrolase inhibitors affecting, 85, 86
 in renal failure, 64, 80, 324
 in regulation of methionine metabolism, 96
 tissue distribution, 169–170
 transport and uptake, 170–171
 S-Adenosylhomocysteine hydrolase, 63, 79–87
 activity in methionine metabolism
 age affecting, 94
 dietary protein affecting, 95
 hormones affecting, 95
 activity modulation, 80
 elevated levels in plasma and tissue, 80
 forms, 79–80
 genes, 80–81
 inhibitors, 79, 82–87
 antiparasitic effects, 85
 antiviral effects, 84
 apoptotic effects, 85–86
 and cellular differentiation, 84–85
 and gene expression activation, 85
 inhibiting phospholipid methylation, 85
 resistance to, 86–87
 and sodium transport, 86
 reaction mechanism, 79
 structure, 81–82
 tissue distribution, 163
 S-Adenosylmethionine (AdoMet), 41
 abnormalities in homocysteine-related disorders, 190–193
 binding by methionine synthase, 108
 in brain, 184
 in cerebrospinal fluid and plasma, in cystathionine β-synthase deficiency, 185–186
 clinical uses in liver disease, 55–57
 and cystathionine β-synthase activity, 156, 225
 in cystathionine β-synthase deficiency, 185–186, 234, 235
 decarboxylation of, 119
 deficiency of, in neurologic disorders, 183
 dependent methyltransferases, 63–74

© Cambridge University Press www.cambridge.org
492

S-Adenosylmethionine (continued)
formation of, 47–48, 92, 119
inhibition by S-
adenosylhomocysteine, 43
intracellular levels related to plasma
total homocysteine, 73
metabolic relationship to S-
adenosylhomocysteine, 63
in methylation reactions,
119–120
nitric oxide affecting, 188
ratio to S-adenosylhomocysteine
AdoHcy hydrolase inhibitors
affecting, 85, 86
in neurologic disorders, 188,
293
in renal failure, 64, 80, 324
in regulation of methionine
metabolism, 96–97
switch activation, 96
tissue distribution, 169–170
transport and uptake, 170–171
AdoMet synthetase. See Methionine
adenosyltransferase (MAT)
Adrenal glands, AdoMet and AdoHcy
in, 169
Age
and cobalamin levels, 279,
295–296, 298–299
and cystathionine β-synthase
deficiency detection, 228
and enzyme activities in rat liver, 94
and folate deficiency, 279
and homocysteine levels, 12, 186,
349
and methionine loading test results,
214
and risk of vascular disease, 359
and vitamin B_{12} deficiency, 313
Albumin
as carrier of homocysteine, 16
plasma levels, 39
reaction with homocysteine
thiolactone, 28
Albumin thiolate anion, 16
Alcaligenes faecalis, S-
adenosylhomocysteine
hydrolase in, 79
Alcohol intake
and folate deficiency, 278
and homocysteine levels, 345–346,
359–360, 366–367
and vitamin B_{12} deficiency, 314
Alcoholic liver disease
AdoMet synthetase activity in, 52,
55–56
hypermethioninemia in, 55
Alloxan, and enzyme activities in
methionine metabolism, 95,
96
Alzheimer disease
abnormalities of AdoMet and
AdoHcy in, 192–193
cobalamin deficiency in, 293
homocysteine levels in, 4–5, 186,
188, 299
Amino acids
noncognate, rejection by aminoacyl-
trNA synthetases, 22
renal metabolism of, 176–178
Aminoacyl-tRNA synthetases in
homocysteine thiolactone
formation, 21–22
Aminothiol
chemical properties, 13–18
nomenclature, 10–12
reductase status in plasma, 12–13
structure, 9–10
Aminotrophic fluid
homocysteine in, 457
methionine in, 454, 457
Anemia
megablastic, 244, 247, 250, 251
in cobalamin deficiency, 292
in folate deficiency, 274–275
and folate levels in liver, 271
microcytic, in vitamin B_{12} deficiency,
313
pernicious, and cobalamin
deficiency, 294–295, 472
sideroblastic, and vitamin B_{12}
deficiency, 314
Anesthesia paresthetica from nitrous
oxide, 138
Animal models of
hyperhomocysteinemia,
425–426, 441–444
Annexin II, homocysteine affecting,
421, 436
Antibiotics affecting folate levels, 278
Anticoagulants
affecting homocysteine
measurements, 201
natural, homocysteine affecting,
418–420
Anticonvulsants
affecting folate levels, 278
affecting homocysteine levels, 333
Antithrombin III system, homocysteine
affecting, 418–419
Apoptosis, S-adenosylhomocysteine
hydrolase inhibitors
affecting, 85–86
Arabidopsis thaliana, AdoMet
synthetase in, 47, 49
Arginine levels in humans and rats,
177
Aristeromycin as inhibitor of S-
adenosylhomocysteine
hydrolase, 82
Arsenite methyltransferase, 67, 69
Arterial disease. See also Vascular
diseases
cerebral. See Cerebrovascular
disease
coronary. See Coronary artery
disease
peripheral, homocysteine levels in,
393–399
Arthritis, rheumatoid,
hyperhomocysteinemia in,
332
Atherosclerosis
coronary. See Coronary artery
disease
in cystathionine β-synthase
deficiency, 228
homocysteine levels in, 32,
365–366
and severity of peripheral arterial
disease, 397–398
homocysteine pathogenesis in,
425–437, 443–444
early studies, 425–426
endothelial cell dysfunction in,
427–431
forms of homocysteine in,
426–427
molecular target hypothesis,
436–437
oxidative stress hypothesis,
434–436
smooth muscle cell dysfunction in,
432–434
pathophysiology, 33–34
and protective effect of
homocysteine thiolactonase,
29–30
Atherosclerosis Risk In Communities
(ARIC), 362, 364, 365, 367,
373, 376, 377, 380
Autooxidation
of homocysteine, 434–435, 445
hydrogen peroxide production in,
33, 427
of thiols, 10, 14–15, 33, 435
6-Azaauridine affecting homocysteine
levels, 335
Betaine
conservation of three methyl
groups, 93
and homocysteine metabolism, 12
prophylactic use
in methotrexate therapy, 333
in nitrous oxide anesthesia, 334
and remethylation of homocysteine,
145–151
therapy with, 2, 473
INDEX

in coronary artery disease, 378
in cystathionine β-synthase deficiency, 238
in methylenetetrahydrofolate reductase deficiency, 246
Betaine aldehyde in choline oxidation pathway, 145–146
Betaine:homocysteine methyltransferase (BHMT), 93, 122, 467
activity in methionine metabolism, 119
age affecting, 94
diet affecting, 93, 149–150
hormones affecting, 95
amino acid sequence, 148
in choline oxidation pathway, 145–147
gene structure, 148–149
isozymes, 148
in kidney and liver of humans and rats, 180
kinetic properties, 95, 96, 147
Michaelis constants, 148
physical properties, 147
tissue distribution, 94–95, 147–148
zinc affecting, 148, 467
Blood samples
incorrect handling of, 358–359
stability of homocysteine in, 200–201
storage affecting homocysteine levels in, 358
timing of, 386–387
Bovine S-adenosylhomocysteine hydrolase in liver, 79
homocysteine thiolactonase activity in, 30
Brain S-adenosylhomocysteine hydrolase accumulation in epileptic mice, 80
AdoMet and AdoHcy in, 169
in cystathionine β-synthase deficiency, 236
demyelination in hepatic AdoMet synthetase deficiency, 54–55
folate metabolism, 183
homocysteine levels, 165
homocysteine metabolism, 183–184
genetic defects in, 185–186
subcellular distribution of folates, 118
Breast cancer cells, homocysteine thiolactone synthesis in, 24
British Regional Heart Study, 358, 362, 363, 387
British United Provident Association (BUPA), 363, 364
Caephilly Cohort Study, 359, 363, 364
Cameron, See Neoplasia
capillary electrophoresis, 208
Capillary gas chromatography, 202
Carbamazepine affecting
homocysteine levels, 333
β-carbonic-2-N-methyltransferase, 67, 69
susceptibility to inhibition by S-adenosylhomocysteine, 72
Cardiovascular effects of homocysteine, 441–447. See also Heart; Vascular disorders
animal studies, 441–444
and endothelial function, 444–446
Carotid artery thickening and stenosis, homocysteine levels in, 365–366, 387
Catabolism of homocysteine, 184
inborn errors in, 183–186
Catalase protecting endothelial cells from homocysteine, 33
Catechol O-methyltransferase, 67, 69
susceptibility to inhibition by S-adenosylhomocysteine, 72
Celiac disease folate deficiency in, 278
vitamin B6 deficiency in, 313
Cell cultures, homocysteine thiolactone metabolism in, 25–26
Cellular differentiation, S-adenosylhomocysteine hydrolase inhibitors affecting, 84–85
Cerebrospinal fluid S-adenosylhomocysteine in, 169
in homocysteine-related disorders, 190–193
S-adenosylmethionine in, 169
in homocysteine-related disorders, 190–193
homocysteine levels in, 164, 168
in cystathionine β-synthase deficiency, 185–186
S-methyltetrahydrofolate in, 183
Cerebrovascular disease. See also Strokes; Vascular disorders in cystathionine β-synthase deficiency, 228
homocysteine levels in, 372, 384–389
and carotid artery stenosis, 365–366, 387
as risk factor for stroke, 384–386
vitamin therapy affecting, 388–389
methyltetrahydrofolate reductase variant in, 262
Ceruloplasmin levels in cystathionine β-synthase deficiency, 234
Chemical properties of aminothiols, 13–18
Chickens, homocysteine thiolactone toxicity in, 29
Cholesterol, and homocysteine levels related to vascular disease, 375–376, 443–444
Cholestyramine affecting homocysteine levels, 334
Choline conversion to glycine, 122
deficiency, 467
and homocysteine metabolism, 93
oxidation pathway, 146–147
therapy in coronary artery disease, 378
Chromatography gas, capillary, for homocysteine in plasma, 202
liquid and electrospray tandem mass spectrometry, 203
high-performance assays, 203–204
Cirrhosis and AdoMet synthetase activity, 52, 55–56
hypermethioninemia in, 55
vitamin B6 deficiency in, 313
Cistinyl-bis(diglycine) formation, 15
Citrate synthase lyase N-methyltransferase, 68, 70
Citrulline plasma levels in humans and rats, 177
renal metabolism of, 177
Claudication, intermittent, and homocysteine levels, 395
Clearance of homocysteine after oral L-homocysteine, 166–167
after oral methionine, 215–216
Clinical studies of homocysteine associations cerebral vascular disease, 384–389
coronary artery disease, 371–381
case-control studies, 371–373
prospective studies, 373–375
effects of vitamin supplements in, 477–482
Clinical studies of homocysteine associations (continued)
peripheral arterial disease, 393–399
vascular and thrombotic disease, 357–367
case-control studies, 357–358
prospective studies, 358–359, 361–363
venous disease, 401–410
Coagulation cascade, homocysteine affecting, 417–418
Cobalamin
absorption and excretion, 290
absorption test, 247, 335
in amniotic cavity, 454
binding by methionine synthase, 108
cellular uptake, 290
chemical structure, 289
cutoff point between abnormal and normal levels, 291, 298–299
defective transport by enterocytes, 247
deficiency, 290–300, 467
abnormalities of AdoMet and AdoHcy in, 190
age factors in, 279
causes of, 293–295
compared to folate deficiency, 276
consequences of, 292–293
cystathionine levels in, 300
cysteine levels in, 300
deoxoyuridine suppression test in, 291, 293
desirable homocysteine concentrations in, 486–487
diagnostic findings, 292
in dietary disorders, 294
effects of folic acid in, 296–297
electrophysiologic neurological changes in, 293, 296
folate deficiency in, 115
in gastrointestinal disorders, 294–295
hematological changes in, 292
homocysteine levels in, 297–300
in malabsorption, 293
metabolic changes in, 293
methionine levels in, 300
and methionine synthase activity, 115, 469
methylmalonic acid levels in, 293, 297
mild or preclinical, 291
neurological disorders in, 184–185, 292–293
nitrous oxide side effects in, 138, 295, 333–334
normal cobalamin levels in, 297–299
progression, 293–294
treatment, 296–297
food-cobalamin malabsorption, 293, 295, 296
in foods, 289
inborn errors
absorption and transport, 246–248
metabolism, 248–251
intake affecting homocysteine levels, 299, 346
interaction with methionine metabolism, 276
metabolism, 289–290
as methionine synthase cofactor, 136, 138–139, 183, 185, 290
as methylmalonyl CoA mutase cofactor, 185, 290
R binders, 290
deficiency, 247, 295
recommended daily allowance, 289
and remethylation of homocysteine, 1, 12, 93, 135–141
subnormal serum levels, 290–292
in aging, 293–296, 298–299
therapy with, 2
clinical trials, 472, 478–479
in cobalamin deficiency, 296
affecting homocysteine levels, 300
in coronary artery disease, 378
in dialysis patients, 325
folic acid with, 473–474, 481
in hyperhomocysteinemia, 472
and thiol autooxidation, 15
transport and binding proteins, 246–247, 290, 335
Cobinamide, and thiol autooxidation, 15
Coelomic cavity, methionine in, 454
Coenzyme Q synthesis, methyltransferases in, 65, 68
Coffee consumption, and homocysteine levels, 345
Cognitive defects in cobalamin deficiency, 185, 293
in folate deficiency, 185, 276
Collagen
activation of collagen IV gene by AdoHcy hydrolase inhibitors, 85
homocysteine affecting, 42, 433
Colorectal cancer in folate deficiency, 276–277
methylentetrahydrofolate reductase variant in, 263
Contraceptives, oral affecting folate levels, 278
affecting homocysteine levels, 332, 452
and vitamin B₆ deficiency, 314
Copper and low-density lipoprotein oxidation, 34, 35, 36
promoting thiol autooxidation, 33
Coronary artery disease. See also Vascular disorders
folic acid therapy in, 377–380
beneficial effects, 379
clinical studies, 379–380
homocysteine levels in, 365–366, 371–381, 487–488
case-control studies, 371–373
interaction with traditional risk factors, 375–376
prospective studies, 373–375
relation to mortality, 364, 374
methionine loading test in, 216
methyltetrahydrofolate reductase variant in, 261–262, 376
in postmenopausal women, 452
and treatment recommendations for hyperhomocysteinemia, 380–381
Creatine synthesis affected by kidneys, 177–178
Creatinine levels, relation to homocysteine, 321
α-Crystalline reaction with homocysteine thiolactone, 28
Cubilin, 247, 290
receptor defects in cobalamin malabsorption, 295
Cyanocobalamin, 289
and methionine synthase regulation in culture medium, 138–139
Cyclin A, homocysteine affecting, 42
Cyclin mRNA expression affected by homocysteine, 432
Cycloserine as vitamin B₆ antagonist, 314, 335
Cystathionine levels in cobalamin deficiency, 300
in folate deficiency, 282
Cystathionine γ-lyase, 157–158
activity in methionine metabolism age affecting, 94
dietary protein affecting, 95
hormones affecting, 95
kinetic properties, 95, 96
in brain, 184
deficiency, 157–158
in kidney and liver of humans and rats, 180
INDEX

tissue distribution, 93, 158
in transsulfuration pathway, 93
Cystathionine β-synthase (CBS)
active core of, 226
activity in methionine metabolism
age affecting, 94
dietary protein affecting, 95
hormones affecting, 95
kinetic properties, 95, 96
δ-adenosylmethionine affecting,
156, 225
biochemistry, 154–156
in brain, 184
deficiency causing neurologic
disorders, 185–186
deficiency, 1, 226–239
animal models, 236
clinical features, 226–231
connective tissue abnormalities
in, 229, 233–236
determinants of severity, 229
diagnosis, 236–238
confirmation of, 237
neonatal screening, 236–237
prenatal, 237–238
selective screening, 237
differential diagnosis, 237
genetic counseling, 239
homocysteine concentrations in,
233–235, 372, 444
desirable levels, 483–486
homocystinuria in, 401, 408
management, 238–239
metabolic effects of, 233–235
methionine loading test in, 217
molecular mechanisms, 231–233
mortality in, 229, 231
organ involvement, 228–229
outcome and prognosis, 230
pathophysiology, 235–236
in pregnancy, 239
reproduction in, 231
in surgical patients, 239
symptoms and signs, 229
and vascular disease, 376
vitamin B₉ therapy, 238, 468
responsiveness in, 226, 228,
231, 233
unresponsive patients, 239
in endothelial cells, 428
enzyme characteristics, 224–226
evolutionary conservation of,
153–154, 226
gene, 223–224
alternative splicing of pre-mRNA,
223
mutations, 231
polymorphisms, 224
affecting one-carbon
metabolism, 316
promoters, 223–224
heme in, 155, 223–226
in kidney and liver of humans and
rats, 180
knockout mice, 236
pyridoxal 5'-phosphate binding to,
155, 225
recombinant, expression of, 225
redox state affecting, 97
RNA isoforms, 156
tissue distribution, 93, 156, 163,
180
in transsulfuration pathway, 1, 12,
93, 154–156
yeast assay for human CBS protein,
156–157
Cysteaminine affecting homocysteine
levels, 334–335
Cysteine
acidic dissociation constant, 14
in cystathionine β-synthase
deficiency, 234, 235
daily flux, 435
dietary, in cystathionine β-synthase
deficiency, 238
metabolism, 93, 153, 158–159
nomenclature, 10, 12
plasma levels, 9, 39
in cobalamin deficiency, 300
in folate deficiency, 282
promoting low-density lipoprotein
oxidation, 33
protein-bound, 10
redox status in plasma, 12–13
residue 121 affecting AdoMet
synthetase activity, 52,
53–54, 55
structure of, 9–10
switch mechanism in activation of
metallopeptinases, 434, 436
Cysteine-homocysteine
disulfide, 164, 436
in renal failure, 321
plasma levels, 13
methionine challenge load
affecting, 3
Cysteinylglycine
autooxidation of, 15
redox status in plasma, 12–13
Cystine
dietary, affecting homocysteine
metabolism, 97
formation of, 10
interaction with homocysteine
thiolate anion, 17
and low-density lipoprotein
oxidation, 34
nomenclature, 10, 12
renal reabsorption of, 178
Cystatin A, 178–179
Cytochrome b₅ in methionine
synthase reductive activation
pathway, 136–137
Cytochrome c reaction with
homocysteine thiolactone, 28
Cytochrome P₄₅₀
inhibitors affecting folate levels,
278
in methionine synthase reductive
activation pathway,
136–137
structures affecting methionine
synthase activation, 110
Cytosol
folate in, 113
binding proteins in liver, 117
metabolism, 121–122
subcellular pool distribution,
118–119
serine hydroxymethyltransferase in,
121, 122, 125–126
Cytotoxicity of homocysteine, 33,
427–428
3-Deaza-adenosine as inhibitor of
S-adenosylhomocysteine
hydrolase, 82
3-Deaza-aristeromycin as inhibitor of
S-adenosylhomocysteine
hydrolase, 82
3-Deaza-neplanocin as inhibitor of
S-adenosylhomocysteine
hydrolase, 82
Dementia
abnormalities of AdoMet and
AdoHcy in, 192
cobalamin deficiency in, 293
homocysteine levels in, 4–5, 186,
188
Demethylation
of brain, in hepatic AdoMet
synthetase deficiency, 54–55
in cobalamin deficiency, 292–293
5'-Deoxyhydridylate biosynthesis,
folate role in, 113, 119, 122
Deoxouridine suppression test
in cobalamin deficiency, 291, 293
in folate deficiency, 277
Depression
abnormalities of AdoMet and
AdoHcy in, 190
folate levels in, 186–187
Diabetes mellitus
and insulin affecting homocysteine
levels, 333

© Cambridge University Press
www.cambridge.org
Diabetes mellitus (continued)
microalbuminuria and hyperhomocysteinemia in, 386
Dialysis patients. See also Renal failure
folate deficiency in, 279
homocysteine levels in, 321, 323–325, 375, 469
after methionine loading, 215
4′,5′-Didehydro-5′-deoxy-5′-fluoroadenosine as inhibitor of S-adenosylhomocysteine hydrolase, 83
Diet
affecting methionine loading test, 213
and betaine:homocysteine methyltransferase activity, 149–150
choline intake affecting homocysteine remethylation, 146
and cobalamin deficiency, 294
cobalamin sources in, 289–290
in cystathionine β-synthase deficiency, 238
folate deficiency in, 277
folate sources in, 271
follic acid supplements in, 280
and homocysteine levels, 346–348, 358
in homocystinuria treatment, 150–151
omega-3 fatty acids in, 349
protein in
and enzyme activities in methionine metabolism, 94–95
and transsulfuration rate, 94
vitamin B6 sources in, 309
Dietary Folate Equivalents, 271
Dihydrofolate production of, 113, 122
subcellular distribution in rat, 119
Dihydrofolate reductase, 122
drugs inhibiting, 278
inhibition causing hyperhomocysteinemia, 333
Dimethylarginine, asymmetrical, homocysteine affecting, 446
Dimethylglycine dehydrogenase, 122
in choline oxidation pathway, 146
tetrahydrofolate binding to, 128
Diphthine synthase, 66, 70
Discovery of homocysteine, 1, 9
Dissociation constants for thiols, 14
Disulfides, 10, 32
bond complexes, 10
exchange with thiolate, 15–17
formation of, 10, 40
mixed, 10, 32
radial disulfide anion, 33
1,4-Dithioerythritol, acidic dissociation constant for, 14
1,4-Dithiothreitol, acidic dissociation constant for, 14
DNA
(cytosine-5′-)methyltransferase 1, 65, 69
susceptibility to inhibition by S-adenosylhomocysteine, 71
homocysteine affecting synthesis of, 42
strand breaks in megaloblastic anemia, 275
DNase I reaction with homocysteine thiolactone, 28
L-Dopa affecting homocysteine levels, 333
Dopamine
methyltransferases affecting, 69
as vitamin B6 antagonist, 314
Down syndrome, methylentetrahydrofolate reductase variant in, 262, 458
Drug-induced conditions
changes in homocysteine levels, 358
folate deficiency, 278, 333
hyperhomocysteinemia, 332–336
vitamin B6 deficiency, 313–314
Electrophoresis, capillary, 204–205
Elongation factors
EF-1α lysine N-methyltransferase, 68
in endothelial cells, homocysteine affecting, 429–430
Encephalitis in HIV infection, abnormalities of AdoMet and AdoHcy in, 192
Endothelial cells
activation in response to injury, 430–431
cystathionine β-synthase in, 428 dysfunction in hyperhomocysteinemia, 4, 36, 40–41, 42
in nitric oxide deficiency, 40–41
in preeclampsia, 459
gene expression affected by homocysteine, 429–430
homocysteine affecting, 416–417, 421, 427–431, 443, 444–446
homocysteine thiolactone in, 24
from conversion of endogenous and exogenous homocysteine, 26
homocysteine toxicity, 33, 427–428
homocysteine transport in, 166
nitric oxide production affected by homocysteine, 417, 428–429, 432
pathways for low-density lipoprotein oxidation, 34–35
proliferation affected by homocysteine, 429
Epidemiology of vascular disorders related to homocysteine, 357–367
blood sampling and handling in, 338, 359
case-control studies, 357–358
confounders in, 359–360
exposure measurement error in, 359
and four popular hypotheses, 360–367
methodological issues in, 357–360
preexisting diseases in, 358
prolonged follow-up intervals in, 358–359
prospective studies, 358–359, 361–363
single measurements in, 359
Epileptic mice, S-adenosylhomocysteine hydrolase accumulation in brain, 80
Epinephrine, methyltransferases affecting, 69
Erythrocytes
S-adenosylhomocysteine in, 169, 170
S-adenosylmethionine in, 169, 170
causes of macrocytosis, 274
folate content, 273–274
homocysteine in, 164, 168
Escherichia coli
AdoMet synthetase in, 47
enzymes in microbial modeling of human disease, 100–110
methionine synthase, 107–110
methylentetrahydrofolate reductase, 102–107
folypolyglutamate synthetase activity in, 121
homocysteine thiolactone in, 24–25
from conversion of endogenous and exogenous homocysteine, 26
methionine synthase in, 135–136
Estradiol, and enzyme activities in methionine metabolism, 96
Estrogen
affecting homocysteine levels, 332
in postmenopausal women, 452–454
INDEX

and homocysteine-methionine metabolism, 451
in oral contraceptives, 452
Ethanol. See Alcohol intake
Ethnicity
and cobalamin in levels, 291 and folate deficiency, 279–280 and homocysteine thiolactone activity, 29
European Concerted Action Project, 375, 377, 395, 396, 397
Exercise affecting homocysteine levels, 349
Export of intracellular homocysteine, 167–168
Eye disorders in cystathionine β-synthase deficiency, 228, 235

Factor V activity, homocysteine affecting, 418
Fenofibrate affecting homocysteine levels, 334
Fertility. See also Reproduction in cobalamin deficiency, 293 in cystathionine β-synthase deficiency, 231
Fetus, homocysteine affecting, 457 metabolic cycle in, 454
Fibrin acid derivatives affecting homocysteine levels, 334
Fibrinogen reaction with homocysteine thiolactone, 28
Fibrinolysis, homocysteine affecting, 420–422
Fibroblasts
homocysteine in, 167–168
homocysteine thiolactone synthesis in, 24
Fish oil intake affecting homocysteine levels, 349
Flavin adenine dinucleotide in choline oxidation pathway, 146 in homocysteine metabolism, 467 release from methylenetetrahydrofolate reductase affected by folate, 104–105, 128
Flavodoxin interaction with methionine synthase, 109–110
Flavodoxin reductase in methionine synthase reductive activation pathway, 136–137

6-Fluoro-6-bromo-homovinyladenosine as inhibitor of 5-adenosylhomocysteine hydrolase, 83
Polyglycotransferase activity
in human and E. coli cells,
121
Food. See also Diet
fortification with folic acid,
280–281, 378, 389, 468,
469, 471, 488–489
individual items affecting
homocysteine levels,
347–348
Food-cobalamin malabsorption, 293,
295, 296, 335
Formate production
cytosolic, 122
mitochondrial, 123
Formation of homocysteine from S-
adenosylhomocysteine, 63
5-Formiminotetrahydrofolate, 114
Formylmethionine-tRNA, 123
5-Formyltetrahydrofolate, 114
mitochondrial, 123
subcellular distribution in rat,
118–119
10-Formyltetrahydrofolate, 114
cytosolic, 122
mitochondrial, 123
subcellular distribution in rat,
118–119
10-Formyltetrahydrofolate
dehydrogenase
cytosolic, 122, 124
mitochondrial, 123, 124
tetrahydrofolate binding to, 128
10-Formyltetrahydrofolate synthetase
cytosolic, 122
mitochondrial, 123
Framingham studies, 273, 312, 387,
393, 456
Elderly Study, 363
Offspring Cohort, 471
Gas chromatography, capillary, for
homocysteine in plasma, 202
Gastric acidity, and cobalamin levels,
293, 335
Gastrointestinal disorders
cobalamin deficiency in, 294–295
in folate deficiency, 276
Gender
and folate deficiency, 280
and homocysteine levels, 349
and methionine loading test results,
214
and risk of vascular disease, 359,
364–365
Genes
activation by S-adenosylhomocysteine hydrolase inhibitors, 85
S-adenosylhomocysteine hydrolase,
80–81
betaine:homocysteine
methyltransferase gene
structure, 148–149
coding for AdoMet synthetase,
48–49
regulation of expression, 49–52
cystathionine ß-synthese, 223–224
expression in endothelial cells
affected by homocysteine,
429–430
Genetic counseling in cystathionine ß-
synthese deficiency, 239
Genetic factors
in homocysteine levels after
methionine loading, 216
in homocysteine metabolism
disorders, 185–186
in hyperhomocysteinemia, 444,
467–469
in neural tube defects, 455
polymorphisms in. See
Polymorphisms
in venous thromboembolism,
405–410
Gentamicin as vitamin B6 antagonist,
314
ß-Globulin reaction with
homocysteine thiolactone,
28
Glomerular filtration rate, and
homocysteine levels, 321
Glossitis
in cobalamin deficiency, 293
in folate deficiency, 275
Glucagon, and enzyme activities in
methionine metabolism, 95,
96
Glucocorticoids affecting AdoMet
synthetase gene expression,
51
Glutamate formiminotransferase
deficiency, 246
Glutamine levels in humans and rats,
177
Glutathione
acidic dissociation constant, 14
and AdoMet synthetase activity, 52
conversion from cysteine, 158
in cystathionine ß-synthese
deficiency, 235
intracellular levels, 9
oxidized, 10, 33
plasma levels, 39
promoting low-density lipoprotein
oxidation, 35
redox status in plasma, 12–13
structure, 10
turnover rate in tissues, 93
Glutathione peroxidase, homocysteine
affecting, 43, 429, 436
Glycine
metabolism, 119–120
renal, 177
mitochondrial production, 122,
124–127
plasma levels in humans and rats,
177
Glycine methyltransferase, 67, 70,
120
binding to
5-methyltetrahydrofolate,
128
kinetic properties in methionine
metabolism, 95, 96
susceptibility to inhibition by S-
adenosylmethionine, 72
cGMP, intracellular, S-nitrosothiols
affecting, 43
Growth hormone, and enzyme
activities in methionine
metabolism, 96
GRP78 expression affected by
homocysteine, 429–430
Guanylic acid, renal production
of, 177–178
Guanylate cyclase activity
inhibitors
susceptibility to inhibition by S-
adenosylmethionine, 72
Guinea pig tissue distribution of
homocysteine, 165
Haptocorrin. See R binders, cobalamin
Heart
AdoMet and AdoHcy in, 169
homocysteine levels in mice and
rats, 165
transplant recipients
homocysteine levels in, 375
vitamin B6 levels in, 377
Heart Outcomes Prevention
Evaluation-2 Study (HOPE-2), 481
Heat shock proteins Hsp68, Hsp70
and BiP protein lysine N-
metiltransferase, 68, 70
Heme in cystathionine ß-synthese,
155, 225–226
Hemoglobin reaction with
homocysteine thiolactone, 28
Hemostasis affected by homocysteine,
415–422
fibronolysis in, 420–422
natural anticoagulant activity in,
418–420
INDEX

platelet function in, 415–417
procoagulant activity induction in, 417–418
Henderson-Hasselbalch equation, 14
Histamine N-methyltransferase, 67, 69
susceptibility to inhibition by S-adenosylhomocysteine, 72
Histone-lysine N-methyltransferase, 66, 70
susceptibility to inhibition by S-adenosylhomocysteine, 72
Historical overview of homocysteine, 1–5, 9
HIV infection
abnormalities of AdoMet and AdoHcy in, 190, 192
cobalamin levels in, 292
virus affected by S-adenosylhomocysteine hydrolase inhibitors, 83, 84
Homocysteimide-modified proteins, and atherogenesis, 426
Homocysteic acid
in cystathionine β-synthase deficiency, 234, 236
as neurotransmitter, 158
Homocysteine
in cerebrospinal fluid, 164, 168
in cystathionine β-synthase deficiency, 183–186
intracellular, 25
in plasma. See Hyperhomocysteinemias; Plasma levels of homocysteine
tissue distribution, 164–165, 167–169
Homocysteine-cysteine mixed disulfide, 10, 14, 17, 32, 39, 436
plasma levels, 178, 199
follic acid affecting, 469
tissue distribution, 165
transport, 165–166
Homocysteine-glutathione mixed disulfide, 10, 32
Homocysteine and Progression of Atherosclerosis Study, 363, 374
Homocysteine sulfenic acid in cystathionine β-synthase deficiency, 234, 236
Homocysteine thiolactonase
absence in PON1–knockout mice, 29
activity in different ethnic groups, 29
activity in various organisms, 29–30
calcium-dependent, 21, 25
association with high-density lipoprotein, 27–29
protective role in homocysteine thiolactone toxicity, 29–30
purification of, 28
Homocysteine thiolactone, 9, 10, 21–30, 39
and atherogenesis, 426–427
biological formation, 10, 21–26, 93
at active site of methionyl-tRNA synthetase, 22–24
aminoacyl-tRNA synthetases in, 21–22
competition with methionine in, 22
homocysteine levels affecting, 25
in vivo synthesis by methionyl-tRNA synthetase, 24
prevention by nitrosoammonium, 43
chemical synthesis and properties, 21
in cystathionine β-synthase deficiency, 234
and effects of AdoHcy hydrolase inhibitors on cellular differentiation, 84–85
half-life in serum, 26
metabolism in cell cultures and serum, 25–26
molecular targets of, 437
and protein homocysteinylation, 26–27
reaction with low-density lipoprotein, 39
reaction with proteins and other compounds, 28
role in human disease, 30
toxicity of, and protective role of thiolactonase, 29–30
Homocysteinyl–AMP, editing of, 21, 22
Homocysteinylation, protein, 26–27
Homocystine, 14, 32, 39
albumin thiolate anion interaction with, 16
formation of, 10, 14
omenclature, 10, 12
plasma levels, 13, 178, 199
in cystathionine β-synthase deficiency, 233
tissue distribution, 165
transport, 165–166
Homocystinuria, 178
in cystathionine β-synthase deficiency, 228, 401, 408
dietary treatment, 150–151
historical aspects, 1–2
methionine loading test in, 212
and polymorphisms of folate and cobalamin metabolism, 259–265
protein-bound homocysteine levels in, 17
and schizophrenic behavior, 74
vascular pathology in, 33
venous thrombosis in, 217
Hoon Study, 363
Hordaland Homocysteine Study, 341–342, 375
Hormones
affecting homocysteine levels, 332–333
inactivation by methyltransferases, 69
Horse, homocysteine thiolactonase activity in, 30
Hydantoins
affecting folate levels, 278
phenytoin affecting homocysteine levels, 333
Hydralazine as vitamin B6 antagonist, 314, 335
Hydrocortisone, and enzyme activities in methionine metabolism, 96
Hydrogen peroxide
and AdoMet synthase activity, 52
cytotoxic effects of, 33, 427
generation from homocysteine, 33, 39
and lipoprotein lipid peroxidation, 36
Hydrogen sulfide in cystathionine β-synthase deficiency, 234, 236
Hydroxocobalamin, 289
therapy in adenosylcobalamin and methylcobalamin deficiencies, 250, 251
therapy in cystathionine β-synthase deficiency, 238
therapy in transcobalamin II deficiency, 248
Hydroxyindole O-methyltransferase, 67, 69
susceptibility to inhibition by S-adenosylhomocysteine, 72
Hyperhomocysteinemia. See also Plasma levels of homocysteine
animal models, 425–426, 441–444
atherosclerosis in, 32, 365–366
in cancer, 331–332
in cobalamin deficiency, 297–300
cobalamin therapy affecting, 300
in cobalamin metabolism disorders, 248
compared to effects of methyltransferase loss, 73–74
in dementias, 186
in dialysis patients, 321, 323–325
potential adverse effects of, 324
treatment of, 324–325

© Cambridge University Press www.cambridge.org
Hyperhomocysteinemia (continued) diseases associated with, 331–332, 336
INDEX

protein intake, 347
smoking, 342–345
studies of, 342–344
vitamin intake and other nutrients, 346–347
B-vitamins, 346
weight reduction, 349
Lipid-lowering drugs affecting homocysteine levels, 334
Lipoprotein high-density, association with homocysteine thiolactonase, 27–29
low-density homocysteine thiolactone reaction with, 39
homocysteinylated, 27
oxidation of and atherogenesis, 33–34 cellular pathways in, 34–35
promotion by thiols, 35–36
reaction with homocysteine thiolactone, 28
Liquid chromatography and electrospray tandem mass spectrometry, 203
high-performance assays of homocysteine, 203–204
Liver AdoMet and AdoHcy in, 169
AdoMet synthetase in, 48–49 activity regulation, 52–54
deficiency of, 54–55
gene expression regulation, 49–52
diseases of, AdoMet therapy in, 55–57. See also Cirrhosis folate binding proteins in cytosolic, 117 mitochondrial, 118
homocysteine levels in mice and rats, 165
subcellular folate pool distribution, 118
vitamin B6 metabolism, 308–309
Lungs, homocysteine levels in mice and rats, 165
Lupus erythematosus, homocysteine levels in and cardiovascular disease, 375 and thrombosis, 366, 410
Lymphoblasts, AdoMet and AdoHcy in, 169
Lysine affecting protein homocysteinylation, 27 reaction with homocysteine thiolactone, 28
Lysyl oxidase, homocysteine affecting, 42
Lysyl-tRNA synthetase in homocysteine thiolactone formation, 23
Macrocystosis causes of, 274 in cobalamin deficiency, 292 α2-Macroglobulin reaction with homocysteine thiolactone, 28
Magnesium intake affecting homocysteine levels, 347
Malabsorption cobalamin deficiency in, 293 folate deficiency in, 277–278 food-cobalamin, 293, 295, 296 vitamin B6 deficiency in, 313
Malaria parasites, S-adenosylhomocysteine hydrolase inhibitors affecting, 85
Mass spectrometry and capillary gas chromatography, 202
and liquid chromatography electrospray, 203
Megaloblastic anemia, 244, 247, 251, 274–275
in cobalamin deficiency, 292
in folate deficiency, 274–275
and folate levels in liver, 271
Melatonin, methyltransferases affecting, 69
Menopause, homocysteine levels in, 452–454
Menstrual cycle, steroid fluctuations in, 451
Mental status in cystathionine β-synthase deficiency, 228, 230, 236 in folate deficiency, 275–276
Mercaptalbumin, and protein-bound homocysteine formation, 16
2-Mercaptoethanol, acidic dissociation constant for, 14
6-Mercaptopurine affecting homocysteine levels, 335
Metabolism of homocysteine, 1, 92–98
age affecting, 94
alternate and minor pathways, 93–94
in brain, 183–184
orders affecting brain function, 184–187
in children with spina bifida, 457
 clearance rates after oral L-homocysteine, 166–167
after oral methionine, 215–216
concentrations of metabolic effectors and substrates affecting, 97
dietary protein affecting, 94–95
 genetic defects in, 185–186
hormones affecting, 95, 96
 and kidney and liver enzymes in humans and rats, 180
in kidneys, 179–180, 322–323
in methionine loading test, 215
kinetic properties of enzymes in, 95–97
methionine cycle, 92–93
and microbial modeling of human disease, 100–110
oxidation/reduction state affecting, 97–98
regulation of, 94–98
remethylation, 1, 128
betaine-dependence, 145–151
cobalamin-dependent, 135–141
tissue enzyme patterns affecting, 94–95
transfusional pathway, 1, 9, 12, 93–94, 135, 153–159
Metabolism of homocysteine thiolactone in cell cultures and serum, 25–26
Metal ions oxidizing thiols, 14, 33
promoting low-density lipoprotein oxidation, 34
Metalloproteinase activation affected by homocysteine, 433–434
Metformin affecting homocysteine levels, 334 5,10-Methylenecyclohydroxylase
cytosolic, 122
mitochondrial, 123, 124
5,10-Methylenetetrahydrofolate, 114, 122
mitochondrial, 123
Methenyltetrahydrofolate synthetase
in 5Y neuroblastoma cell line, 127
Methionine in anemic fluid, 454, 457
competition with homocysteine, 22
dietary affecting homocysteine metabolism, 97
in cystathionine β-synthase deficiency, 238
intolerance as risk for venous thromboembolism, 403–405
loading test, 212–218
absolute rise in, 213
affecting homocysteine levels, 3, 13, 167
age affecting, 214

501
Methionine (continued)

animal studies, 215, 442–443
in clinical research, 217–218
defining abnormal results in,
213–214
diagnostic uses, 216–217,
311–312
dialysis patients, 215–216
diet affecting, 213
derothelial cells in, 427
gender affecting, 214
genotype affecting, 216
human studies, 215–216
in hyperhomocysteinemia, 216
in inborn errors of metabolism, 217
in neural tube defects, 216–217
normal variations in, 214–215
percent or relative rise in, 213
in peripheral arterial disease,
394, 395
protocols in, 212
race affecting, 214–215
renal metabolism in, 215
timing and dose in, 212–213
in vascular disease, 216–217
in venous thromboembolism, 404
in vitamin B_{6} deficiency, 311–312
vitamin supplements affecting,
216
metabolism, 1, 92, 119–120, 153
cobalam in interaction with, 276
kinetic properties of enzymes
affecting, 95–97
regulation of, 94–98
tissue enzyme patterns affecting,
94–95
oxidation, 93
plasma levels
in cobalamin deficiency, 300
in cytochrome B-7-synthase
deficiency, 234, 235
in folate deficiency, 282
preventing neural tube defects, 456
structure, 9–10
transaminitation, 93
Methionine adenosyltransferase
(MAT), 47, 92
activity regulation, 52–54
conserved through evolution, 47,
49
in Escherichia coli, 47
extrahepatic MAT II, 48
kinetic properties in methionine
metabolism, 95, 96
genes coding for, 48–49
acetylation of histones associated
with promoter, 49–50
at different developmental stages,
49
hormones affecting, 51
MAT1A, 48–49
MAT2A, 49
oxygen supply affecting, 51
promoter methylation patterns,
49–50
regulation of expression, 49–52
hepatic deficiency, 54–55
nitrosylation, 41
rat liver MAT I and MAT III, 47–48
age affecting, 94
dietary protein affecting, 95
hormones affecting, 95
kinetic properties in methionine
metabolism, 95–96
tissue distribution, 163
Methionine sulfoxide, 93
Methionine synthase, 93, 121
activity in methionine metabolism
age affecting, 94
dietary protein affecting, 95
hormones affecting, 95
kinetic properties, 96
assay methods, 137
binding and activation regions
for S-adenosylmethionine, 108
for cobalamin, 108
for homocystine, 117
for 5-methyltetrahydrofolate, 108
chromosomal localization, 138
cobalamin cofactor, 136, 183, 185
deficiency, 135, 250–251
in mouse model, 141
neurological disorders in, 185
domain organization, 138
inactivation by nitrous oxide, 115,
138, 183, 188
inactivity in cobalamin deficiency,
115, 469
in kidney and liver of humans and
rats, 180
kinetic properties, 137–138
in microbial modeling of human
disease, 107–110
modular arrangement, 107–108
mutations
associated with severe
phenotypes, 109
and hyperhomocysteinemia,
139–140
2756A→G, 264
physical properties, 135–136
polymorphisms, 141, 264
Asp91Gly, 108–109
proteins activating, 109–110
redox state affecting, 97
reductive activation system, 136–137
regulation of, 138–139
remethylation defects, 139
methionine synthase reductase,
109–110, 136–137, 251
mutations, 110
and hyperhomocysteinemia, 140
66A→G, 264–265
polymorphisms, 264–265
Methionyl-tRNA synthetase
in homocysteine thiolactone
formation, 22–24
reaction with homocysteine
thiolactone, 28
specificity of, 22
Methotrexate
affecting homocysteine levels, 333
folate deficiency from, 278
neurologic toxicity, 275
N-Methyl-D-aspartate receptors,
homocysteine interaction
with, 166, 187, 236, 434
Methyltetrahydrofolate reductase
hypothosis of cobalamin
deficiency, 115, 135, 292
Methylcobalamin, 289
deficiency of, adenosylcobalamin
deficiency with, 249–250
and homocysteine metabolism, 12,
93
and methionine synthase activity,
136
5,10-Methylene dehydrogenase
cytosolic, 122
mitochondrial, 123, 124
5,10-Methyltetrahydrofolate, 100,
114
and homocysteine metabolism, 93
mitochondrial, 123
Methyltetrahydrofolate reductase
(MTHFR), 121–122
activity in methionine metabolism,
119–120
age affecting, 94
dietary protein affecting, 95
hormones affecting, 95
metabolite activities, 96
Ala177Val mutant in *E. coli*,
102–105
flavin release from, 104
folate affecting, 102, 104–105
structure of, 101
Ala222Val polymorphism in
humans
and homocysteine levels, 128
protection from inactivation by
folates, 105
Arg157Gln mutation, 106
Arg324Cys mutation, 106
and brain serine metabolism, 183
deficiency, 245–246
neurological disorders in, 185
in schizophrenia, 187
INDEX

- gene mutations, 3
- Gly149Val mutation, 107
- Leu322Pro mutation, 107
- maternal, and neural tube defects in children, 4, 102, 458
- in microbial modeling of human disease, 100–107
- 1298A→C mutation, 263–264
- disorders with, 264
- functional aspects, 263–264
- and homocysteine levels, 264
- and neural tube defects, 458
- polymorphisms, 259–264
- affecting one-carbon metabolism, 316
- severe mutations in humans, 105–107
- 677C→T mutation, 260–263, 316, 350–351
- and cardiovascular disease, 261–262
- and colorectal cancer, 263
- Factor V Leiden with, 408–410
- and folate deficiency, 278, 385
- and folic acid therapy affecting homocysteine levels, 470, 471–472
- functional aspects, 260
- and hyperhomocysteinemia, 260–261, 322, 355–356, 467, 468, 469
- and neural tube defects, 262, 457–458
- and ovarian carcinoma, 263
- in placent al abortion, 459–460
- in preeclampsia, 459
- and pregnancy complications, 262
- prothrombin 20210G with, 409, 410
- and psychiatric disorders, 262
- and risk of vascular disease, 261–262, 360–361
- and venous thromboembolism, 405–410
- structure of
 - in Escherichia coli, 101
 - in pig liver, 100–101
- Thr227Met mutation, 106
- Methylenalonic acid levels in cobalamin deficiency, 293, 297
- in folate deficiency, 282–283
- Methylenalonic aciduria in adenosylcobalamin deficiency, 248–249
- Methylenalonyl CoA mutase, cobalamin as cofactor of, 185, 290
- 6-C-Methyleneplanocin as inhibitor of S-adenosylhomocysteine hydrolase, 83
- 5-Methyltetrahydrofolate, 114, 121–122
- binding and activation by methionine synthase, 108
- binding to glycine N-methyltransferase, 128
- in cerebrospinal fluid, 183
- and glycine methylation, 120
- and homocysteine metabolism, 12, 93
- and methionine synthase activity, 136
- in regulation of methionine metabolism, 96
- subcellular distribution in rat, 118–119
- trapping of, in cobalamin deficiency, 115, 135, 292
- Methylthioadenosine formation, 119
- Methyltransferases
 - S-adenosylmethionine-dependent, 63–74
 - in cellular signaling, 70 functions, 68–70
 - in inactivation of hormones and neurotransmitters, 69
 - mammalian types, 64–68
 - in protein synthesis, 70
 - in small molecule biosynthesis, 68–69
 - in stabilization of nucleic acids and proteins, 69–70
 - in homocysteine metabolism, 93, 446
 - inhibition
 - with homocysteine accumulation, 64
 - by S-adenosylhomocysteine, 41, 70–73, 184
 - losses compared to effects of hyperhomocysteinemia, 73–74
 - Microbial modeling of human disease, 100–110
 - methionine synthase, 107–110
 - methylenetetrahydrofolate reductase in, 100–107
 - comparison of human and bacterial reductases, 100–101
 - mutation Ala177Val, 102–105
 - structure of E. coli enzyme, 101
 - Mislocalized homocysteine editing of, 22–23
 - and homocysteine thiolactone formation, 21, 22
- Mitochondria
 - AdoMet and AdoHcy in, 169
 - folate in, 113
 - metabolism, 122–124
 - unidirectional flow of one-carbon units in, 124–128
 - subcellular pool distribution, 118–119
 - folate-binding proteins in liver, 118
 - Molecular target hypothesis of homocysteine pathogenesis, 436–437
- Mouse
 - S-adenosylhomocysteine hydrolase
 - in, 80
 - cystathionine β-synthase knockout, 236
 - genetic models of hyperhomocysteinemia, 444
 - homocysteine thioclotransferase activity, 30
 - methionine synthase deficiency
 - model, 141
 - tissue distribution of homocysteine, 165
- Multiple myeloma, cobalamin levels in, 292
- Multiple Risk Factor Intervention Trial, 357, 362, 373
- Multiple sclerosis, abnormalities of AdoMet and AdoHcy in, 192–193
- Muscle
 - skeletal, AdoMet and AdoHcy in, 169
 - vascular smooth muscle cells affected by homocysteine, 432–434
- Mycoplasma genitalium, AdoMet synthetase in, 47, 49
- Myel it abnormalities in brain
 - homocysteine metabolism disorders, 185, 188
- Myelopathy of spinal cord
 - in folate deficiency, 275
 - vascular, in cobalamin deficiency, 185, 190, 292–293
- Myoglobin reaction with homocysteine thioclotranse, 28
- Myosin lysine N-methyltransferase, 68, 70

National Health and Nutrition Examination Survey (NHANES), 279, 281, 312, 367

Neoplasia and folate deficiency, 276–277
- homocysteine thioclotransferase in breast cancer cells, 24
- hyperhomocysteinemia in, 331–332
- methylenetetrahydrofolate reductase variant in, 263
Neplanocin A as inhibitor of S-adenosylhomocysteine hydrolase, 82

Nervous system affected by homocysteine, 183–193

Brain
direct effects, 187–188
indirect effects, 188–193

Neural tube defects, 455–457

and food fortification with folic acid, 280–281

historical aspects, 435–456

homocysteine affecting development of, 4, 135, 166, 217, 456–457

and homocysteine metabolism in children with spina bifida, 457

methionine synthase reductase variant in, 265

methyltetrahydrofolate reductase variant in, 262, 457–458

predisposing factors, 455

prevention
with folic acid, 456
with methionine, 456

Neuroblastoma SY cell line, methylenetetrahydrofolate synthetase in, 127

Neurological disorders
in cobalamin deficiency, 184–185, 292–293
in cystathionine β-synthase deficiency, 228–229, 236
in folate deficiency, 185, 275–276
in hepatic AdoMet synthetase deficiency, 54–55

homocysteine levels in, 187–193
in vitamin B6 deficiency, 313

Neurotoxicity
of homocysteine, 166, 187–188, 236
of vitamin B6, 314

Neurotransmission, homocysteine role in, 166, 187

Neurotransmitters inactivated by methyltransferases, 69

Niacin affecting homocysteine levels, 334

Nicotinamide adenine dinucleotide as cofactor with S-adenosylhomocysteine hydrolase, 79

Nicotinamide adenine dinucleotide phosphate, reduced, in methionine synthase reductive activation pathway, 136–137

Nicotinamide N-methyltransferase, 67, 69

Nitric oxide and AdoMet synthetase activity, 52

balance with homocysteine, 43–44
deficiency of, and endothelial dysfunction, 40–41

and homocysteine synthesis regulation, 41

interaction with homocysteine, 39

interaction with thiols, 40

production affected by homocysteine, 417, 428–429, 432, 443, 446

reactions with superoxide, 40

Nitrosation of homocysteine, 43–44

S-Nitrosoalbumin levels, 40

S-Nitrosocysteine levels, 40

S-Nitrosoglutathione levels, 40

S-Nitrosohomocysteine, 39–40

beneficial vascular effects, 43

S-Nitrosothiols antiatherogenic properties, 39

beneficial vascular effects, 43

formation of, 40

S-Nitrosylation of proteins, 40

and AdoMet synthetase activity, 52–53

methionine adenosyltransferase, 41

S-Nitrosylhomocysteine formation from nitrates, detection of, 42

Nitrous oxide affecting AdoMet and AdoHcy in tissues, 188

affecting homocysteine levels, 333–334

effects in cobalamin deficiency, 295

and methionine synthase inactivation, 115, 138, 183, 188

and subcellular distribution of folates in rat liver, 118

Nomenclature, 10, 12

Norepinephrine, methyltransferases affecting, 69

North American Symptomatic Carotid Endarterectomy Trial, 387

North Karelia Project, Finland, 362, 373

Norwegian Study of Homocysteine Lowering with B-vitamins in Myocardial Infarction (NORVIT), 481

Nucleic acid stability affected by methyltransferases, 69

Nucleosides as inhibitors of S-adenosylhomocysteine hydrolase, 82–84

Nurses’ Health Study, 312, 367, 377

Nutrition. See Diet

Omega-3 fatty acids affecting homocysteine levels, 349

One-carbon metabolism in liver folate-dependent cytosolic, 116, 121–122
mitochondrial, 116, 122–128

regulation by folate binding proteins, 128

unidirectional flow of 1–C units in, 124–128

vitamin B6 affecting, 313, 315–316

Ornithine in cystathionine β-synthase deficiency, 234

Osteoporosis in cobalamin deficiency, 293
in cystathionine β-synthase deficiency, 228

Ovaries
homocysteine in follicular fluid, 451, 454

methylenetetrahydrofolate reductase variant in carcinoma, 263

Oxidation of choline, 146–147
of homocysteine, 10, 32–33
of low-density lipoprotein atherogenesis in, 33–34

promotion by cellular thiols, 34–35

states of folate one-carbon substrates, 114

of thiols, 10, 14–15, 32–33

Oxidation-reduction. See Redox status

Oxidative stress and AdoMet synthetase activity, 52
homocysteine-induced, 4, 39, 40–41, 434–436, 445

Oxidized homocysteine, 10, 14–15, 32. See also Homocysteine plasma levels, 13

Oxygen affecting AdoMet synthetase gene expression, 51

p21ras activation by S-nitrosylation, 40, 42
decreased carboxyl methylolation, 429
hypomethylation, 42

Pancreas
AdoMet and AdoHcy in, 169
subcellular distribution of folates, 118

Paraoxonase, protective role in homocysteine thiolactone toxicity, 29–30
Index

Parasitic disease, and antiparasitic effects of AdoHcy inhibitors, 85

Parkinson disease, abnormalities of AdoMet and AdoHcy in, 190

Penicillamine
- acidic dissociation constant, 14
- affecting homocysteine levels, 334
- inhibiting homocysteine thiolactonase, 28

Peripheral arterial disease. See also Vascular disorders
- homocysteine levels in, 393–399
- case-control studies, 393–396
- meta-analysis, 396–397
- and severity of atherosclerosis, 397–398

Pernicious anemia, 292, 294–295
- affecting thiol oxidation, 33
- and thiolate ion formation, 14

Phenelzine as vitamin B6 antagonist, 314, 335

Phenytoin affecting homocysteine levels, 333

Phosphatidylethanolamine N-methyltransferase, 67, 69
- susceptibility to inhibition by S-adenosylhomocysteine, 72

Phenylacetate
- affecting homocysteine levels, 333

Phosphatidylethanolamine N-methyltransferase, 65, 68
- susceptibility to inhibition by S-adenosylhomocysteine, 71

Phospholipid methylation inhibited by AdoHcy hydrolase inhibitors, 85

Phosphoribosylaminomimidazole carboxamide transformylase, 122, 128

Physicians’ Health Study, 358, 362, 364, 365, 366, 367, 373, 375, 408

Pig liver, methylenetetrahydrofolate reductase in, 100–101

Placental abruption, homocysteine levels in, 439–460

Plasma levels of AdoMet and AdoHcy, 169, 170

Plasma levels of homocysteine, 12, 29, 164
- affecting renal function, 176
- after myocardial infarction or stroke, 357
- age affecting, 186
- and cerebrovascular disease, 384–389
- in cobalamin deficiency, 297–300, 486–487
- cobalamin therapy affecting, 300
- and coronary artery disease, 371–381
- in cystathionine β-synthase deficiency, 185–186, 233–235
- vitamin B6 affecting, 226, 228
- daily flux of, 435
- desirable concentrations, 485–489
- in vascular disorders, 487–488
- in vitamin supplementation, 487
- diseases affecting, 331–332, 336
- drugs affecting, 332–336
- elevated. See Hyperhomocysteinemia in cystathionine β-synthase deficiency, 485–486
- in folate deficiency, 281, 486–487
- folic acid affecting, 282
- in Hordaland Homocysteine Study, 341–342
- hormones affecting, 332–333
- in humans and rats, 177, 179
- in menopause, 452–454
- and peripheral arterial disease, 393–399
- in pregnancy, 454–455
- relation to creatinine levels, 321
- relation to folate levels, 281–282
- in dialysis patients, 323
- relation to isoprostane levels, 36
- relation to methyltransferase activity, 64
- relation to vascular disease, 357–367. See also Vascular disorders and renal function, 321–322, 331
- testing methodologies, 199–208. See also Tests for plasma homocysteine

Plasma homocysteine levels, 12, 39–40
- and appearance of S-adenosylhomocysteine in urine, 64
- and methyltransferase inhibition, 64
- relation to intracellular S-adenosylhomocysteine levels, 63, 73
- relation to intracellular S-adenosylmethionine levels, 73
- and venous disease, 401–410
- vitamin B6 affecting, 315–316
- in vitamin B6 deficiency, 311
- in vitamin deficiencies, 186
- Plasmin generation, homocysteine affecting, 420

Plasminogen, 420–421

Platelets affected by homocysteine, 415–417

Polyglutamate forms of tetrahydrofolate, 113

Porphyria

Preeclampsia, homocysteine levels in, 438–439

Preexisting diseases, homocysteine levels in, and risk of stroke, 358

Pregnancy
- cobalamin levels in, 292
- cystathionine β-synthase deficiency in, 231, 239
- folate deficiency in, 276
- folate requirements in, 271, 278–279

Homocysteine levels in, 332, 454–455
- and fetal metabolic cycle, 454
- and placental abruption and vasculopathy, 459–460
- and preeclampsia, 458–459
- and neural tube defects in offspring, 455–457. See also Neural tube defects
- outcomes affected by homocysteine levels, 4, 135
- risks from methylenetetrahydrofolate reductase variant, 262
- vitamin B6 deficiency in, 313

Prenatal diagnosis
- cystathionine β-synthase deficiency, 237–238
- transcobalamin II deficiency, 248
INDEX

Prevalence of hyperhomocysteinemia in Hordaland Homocysteine Study, 341–342
Prevention with A Combined Inhibitor and Folate in Coronary heart disease (PACIFIC), 481
Procyclazine as vitamin B6 antagonist, 335
Progestrone and homocysteine-methionine metabolism, 451
in oral contraceptives, 452
Prokaryotic enzymes in microbial modeling of human disease, 100–110
Proparglyglycine inhibiting cystathionine γ-lyase, 157
Prostacyclin activity, homocysteine affecting, 416
Protein dietary affecting homocysteine levels, 347
and enzyme activities in methionine metabolism, 94–95
and transsulfuration rate, 94
dithiothreitol-treated, homocysteine levels in, 27
homocysteinylation, 26–27
S-nitrosylation, 40
stability affected by methyltransferases, 69
Protein arginine N-methyltransferases myelin basic protein, 66, 70
susceptibility to inhibition by S-adenosylhomocysteine, 72
type I, 66, 70
susceptibility to inhibition by S-adenosylhomocysteine, 72
Protein-bound homocysteine, 10, 32, 39, 163–164, 167
mixed disulfide formation, 16, 32
oxidation, 14–15
plasma levels, 13, 199
significance, 17–18
Protein C activation affected by homocysteine, 419, 443
deficiency or resistance and pregnancy complications, 459, 460
in venous thrombosis, 385, 401, 408, 418
Protein-disulfide-linked homocysteine, 16, 32
Protein histidine N-methyltransferase, 66, 70
Protein I-isoaspartate (D-aspartate)
O-methyltransferase, 65, 69
deficiency causing seizures in mice, 69, 74
susceptibility to inhibition by S-adenosylhomocysteine, 71
Protein S-isoprenylcysteine O-methyltransferase, 66, 70
susceptibility to inhibition by S-adenosylhomocysteine, 71
Protein methylase I, 183
Protein methylase II, 183
Protein phosphatase 2A
O-methyltransferase, 66, 70
Prothrombin 20210G→A mutation with thermolabile MTHFR, 409, 410
and venous thrombosis, 401
Proton pump inhibitors affecting homocysteine levels, 335
Psoriasis, hyperhomocysteinemia in, 331
Psychiatric disorders in cystathionine β-synthase deficiency, 229
in folate deficiency, 276
homocysteine levels in schizophrenia, 74, 187
methylenetetrahydrofolate reductase variant in, 262
Purine biosynthesis, 122
folate role in, 113, 119
Pyridoxal, 307
Pyridoxal 5'-phosphate, 307–309
binding to cystathionine β-synthase, 225, 233
and cystathionine β-synthase activity, 155
and cystathionine γ-lyase activity, 157
and erythroid δ-aminolevulinic synthase, 314
in food, 309
plasma levels, 311, 313, 316
in hypophosphatasia, 313
and transsulfuration pathway, 12, 93
Pyridoxamine, 307
4-Pyridoxic acid, 307
urinary, 311
Pyridoxine. See Vitamin B6
Pyridoxine-5’-β-D-glucoside, 308
Pyridoxine-β-D-glucuronate supplements, 310
Pyroglutamatic aciduria in cystathionine β-synthase deficiency, 234
Quality assessment of tests for homocysteine, 207–208
R binders, cobalamin, 290
deficiency, 247
and intrinsic factor deficiency, 247
Rabbit homocysteine thiocytocanase activity, 30
tissue distribution of homocysteine, 165
Race and cobalamin levels, 291
and folate deficiency, 279–280
and methionine loading test results, 214–215
Raloxifene, and homocysteine levels, 452–454
Rat S-adenosylhomocysteine hydrolase structure, 81
AdoMet synthetase in liver, 47–48
cystathionine γ-lyase in, 157
factors affecting methionine metabolism in liver, 94–95
folate binding proteins in liver, 117–118
kidney and liver enzymes for homocysteine metabolism, 180
plasma levels of homocysteine, 177, 179
subcellular distribution of folates, 118–119
tissue distribution of homocysteine, 165
Recommended Daily Allowance cobalamin, 289–290
folate, 271
vitamin B6, 310–312
Redox status of aminothiols in plasma, 12–13
and homocysteine metabolism regulation, 97–98
Reduced homocysteine, plasma levels of, 13
Reducants used for homocysteine measurements, 201
Reference intervals in tests for homocysteine, 206
Remethylation of homocysteine, 1, 12
betaine-dependent, 145–151
in brain, 183
and cobalamin in amniotic cavity, 454
cobalamin-dependent, 135–141
in cystathionine β-synthase deficiency, 234
defects in, 1–2
inborn errors in, 185
polymorphisms in pathway for, 259–265
INDEX

methionine synthase, 264
methionine synthase reductase, 264–265
methylene-tetrahydrofolate reductase, 259–264
vitamin B₆ affecting, 315
Renal failure
S-adenosylhomocysteine hydrolase levels in, 80
and folate deficiency in dialysis patients, 279
hyperhomocysteinemia in, 4, 321–327, 331, 360
in dialysis patients, 321, 323–325, 375, 469
after methionine loading, 215
pathogenesis, 322–323
in transplant recipients, 315, 326–327, 375
treatment of, 469
vitamin B₆ affecting, 315, 322
ratio of AdoHcy to AdoMet in, 64, 80, 324
Reoxidation affecting homocysteine measurements, 201
Reproduction. See also Pregnancy
cobalamin deficiency affecting, 293
cystathionine β-synthase deficiency affecting, 231
homocysteine affecting, 451–460
and oral contraceptive use, 451–452. See also Contraceptives, oral
Rheumatoid arthritis, hyperhomocysteinemia in, 332
Riboflavin deficiency of, 467
in hyperhomocysteinemia, 272, 473
mRNA (guanine-N₇)-methyltransferase, 65, 69
tRNA (adenine-N₁)-methyltransferase, 65
susceptibility to inhibition by S-adenosylhomocysteine, 71
tRNA (cytosine-S)-methyltransferase, 65
susceptibility to inhibition by S-adenosylhomocysteine, 71
tRNA (guanine-N₁)-methyltransferase, 65
susceptibility to inhibition by S-adenosylhomocysteine, 71
tRNA (guanine-N₂)-methyltransferase, 65
susceptibility to inhibition by S-adenosylhomocysteine, 71
tRNA (2′ribose-O)-methyltransferase, 65
susceptibility to inhibition by S-adenosylhomocysteine, 71
RNase A reaction with homocysteine thiolactone, 28
Rotterdam Study, 363
Saccharomyces cerevisiae
AdoMet synthetase in, 47, 49
enzyme mutants affecting folate metabolism, 123
homocysteine thiolactone in, 24
from conversion of endogenous and exogenous homocysteine, 26
methyltransferases in, 44
transsulfuration pathway, 153
yeast assay for human cystathionine β-synthase, 136–157
Sarcosine, 120
and methionine metabolism, 94
Sarcosine dehydrogenase, 122
in choline oxidation pathway, 146
tetrahydrofolate binding to, 128
Sarcosinemia, 122
Schilling test of cobalamin absorption, 247
Schizophrenia, homocysteine levels in, 74, 187
Screening of newborns for cystathionine β-synthase deficiency, 236–237
Seizures
and S-adenosylhomocysteine hydrolase accumulation in brain of epileptic mice, 80
in cystathionine β-synthase deficiency, 229
in methylcobalamin deficiency, 251
in methylene tetrahydrofolate reductase deficiency, 245, 275
from protein L-isoaspartate (D-aspartate) O-methyltransferase deficiency in mice, 69, 74
Serine metabolism of, 119–120
in brain, 183
renal, 177
plasma levels in humans and rats, 177
Serine hydroxymethyltransferase
cytosolic, 121, 122, 125–128
mitochondrial, 122–123, 124–127
vitamin B₆ affecting, 315
Sex factors. See Gender
Sex hormones affecting homocysteine levels, 332–333
Sickle cell anemia, folate requirements in, 279
Sideroblastic anemia, and vitamin B₆ deficiency, 314
Signal transduction pathways, homocysteine activity in, 434
Simvastatin affecting homocysteine levels, 334
Skeletal abnormalities in cystathionine β-synthase deficiency, 228, 235–236
Smith-Magenis syndrome, 122
Smoking, and homocysteine levels, 342, 344–345, 359, 375, 395
Sodium intake affecting homocysteine levels, 347
transport affected by S-adenosylhomocysteine hydrolase inhibitors, 86
Spina bifida. See Neural tube defects
Spinal cord myelopathy in folate deficiency, 275
vacuolar, in cobalamin deficiency, 185, 190, 292–293
Spleen, AdoMet and AdoHcy in, 169
Sprue
cobalamin deficiency in, 295
tropical, folate deficiency in, 278
vitamin B₆ deficiency in, 313
Statins affecting homocysteine levels, 334
Storage of blood samples affecting homocysteine levels, 358
Streptomycin reaction with homocysteine thiolactone, 28
Strokes
in cystathionine β-synthase deficiency, 228
homocysteine as risk factor, 384–386
homocysteine levels after, 357
hyperhomocysteinemia in, 186
lacunar, 384, 386
Structure of homocysteine and related thiols, 9–10
Study of the Effectiveness of Additional Reductions in Cholesterol and Homocysteine (SEARCH), 481
Sulfasalazine affecting folate levels, 278
affecting homocysteine levels, 335
Sulfate produced in cysteine metabolism, 159–159
Sulfation, biological functions of, 159
Sulfur, chemical properties of, 13
Superoxide formation of, 33, 40
and low-density lipoprotein oxidation, 34, 35
nitric oxide reactions with, 40
Surgical patients, cystathionine \(\beta \)-synthase deficiency in, 239
Switch activation of \(S \)-adenosylmethionine, 96 of metalloproteinases, 434, 436
Tamoxifen affecting homocysteine levels, 333, 452, 453
Taurine in cystathionine \(\beta \)-synthase deficiency, 234 produced in cysteine metabolism, 158
Temperature affecting homocysteine measurements, 200–201
Testosterone, and enzyme activities in methionine metabolism, 95, 96
Tests for plasma homocysteine, 199–208
capillary electrophoresis, 204–205
capillary gas chromatography, 202 and mass spectrometry, 202–203
evaluation of methods, 206–208
quality assessment in, 207–208
quality goals in, 206–207
free homocysteine, 199
high-performance liquid chromatography assays, 203–204
colorimetric detection, 204
electrochemical detection, 204 fluorescence detection, 203–204
immunoassays, 205–206
interpretation of results, 206
intraindividual and interindividual variations in, 206
reference intervals in, 206
liquid chromatography electrospray tandem mass spectrometry, 203
preanalytical variables, 200–201
anticoagulant choice, 201
posture, 200
temperature, 200–201
venous stasis, 200
reduction in, 201
reoxidation in, 201
total homocysteine, 199–200
Tetrahydrofolate (THF), 113
binding to enzymes in liver, 128
chemistry of, 113–115
and methionine synthase activity, 136
polyglutamate forms, 113, 115, 121
subcellular distribution in rat, 118–119
Tetrahydrofolate –pentaglutamate binding to 10-formyltetrahydrofolate dehydrogenase, 128
Theophylline interaction with vitamin \(\text{B}_\text{6} \), 314, 315, 335
Thiobeta S-methyltransferase, 67, 69 susceptibility to inhibition by \(S \)-adenosylhomocysteine, 72
Thiol S-methyltransferase, 67, 69
Thiolactonase. See Homocysteine thiolactonase
Thiolactone. See Homocysteine thiolactone
Thiolate anions albumin, 16
cysteine, 14, 16 homocysteine, 14, 16
interaction with cystine, 17
Thiolate/disulfide exchange, 15–17
Thiols, 32. See also Aminothiols; Nitrosothiols autoxidation of, 10,14–15, 33 interaction with nitric oxide, 40 nitrosation of, 40
promoting low-density lipoprotein oxidation, 35–36
structure of, 9–10
Thiopurine S-methyltransferase, 67, 69
susceptibility to inhibition by \(S \)-adenosylhomocysteine, 72
Thrombin generation in hyperhomocysteinemia, 417–418
Thrombomodulin, homocysteine affecting, 418, 419–420
Thrombophilia, inherited, obstetrical complications in, 450
Thrombosis arterial, homocysteine levels in, 366
and homocysteine role in homestasis, 415–422
in homocystinuria, platelets in, 415 venous. See Venous thromboembolism
Thromboxane \(A_2 \) synthesis, homocysteine affecting, 416
Thymidylate synthase, 122, 271, 277
Thyroxine, and enzyme activities in methionine metabolism, 95, 96
Tissue distribution \(S \)-adenosylhomocysteine, 169–171
\(S \)-adenosylhomocysteine hydrolyase, 163
\(S \)-adenosylmethionine, 169–171
tetrahydrofolate methyltransferase, 94–95, 147–148

cystathionine \(\beta \)-synthase, 93, 156, 163, 180
cystathionine \(\gamma \)-lyase, 93, 158
folate, 115–117
homocysteine, 164–165, 167–169
homocysteine, 165
methionine adenosyltransferase, 163
Tissue factor activity affected by homocysteine, 418
pathway inhibitor affected by homocysteine, 418–419
Tourniquet application affecting homocysteine levels, 200
Toxicity of homocysteine cytotoxicity, 33, 427–428 neurotoxicity, 166, 187–188, 236
Transcobalamin I, 290
deficiency, 257, 295
cobalamin levels in, 292
Transcobalamin II, 290
deficiency, 248, 295
Transferrin reaction with homocysteine thiolactone, 28
Transport and uptake AdoMet and AdoHcy, 170–171
homocysteine, 165–166
Transsulfuration pathway, 1, 9, 12, 93, 135, 153–159
biological functions of, 159
cystathionine \(\gamma \)-lyase in, 157–158
cystathionine \(\beta \)-synthase in, 154–156
deficiency of, 1
forward, 153
reverse, 153
Treatment of hyperhomocysteinemia, 467–474
clinical trials of vitamin supplements, 477–482
cobalamin in, 300, 472
in cystathionine \(\beta \)-synthase deficiency, 238–239, 468
folic acid in, 282, 377–380, 469–472
in genetic mutations, 245, 246, 248, 250, 468–469
in renal disease, 327, 469
riboflavin in, 473
vitamin \(\text{B}_6 \) in, 316, 472–473
Triaminocline affecting AdoMet synthetase gene expression, 51
Trimethoprim affecting homocysteine levels, 333
Trimethoprim-sulfamethoxazole affecting folate levels, 278
Tromse Health Study, 362, 373
Trypsin reaction with homocysteine thiolactone, 28
INDEX

Tryptamine, methyltransferases affecting, 69
Tumor necrosis factor-α production affected by AdoHcy hydrolase inhibitors, 85
spinal cord, in cobalamin deficiency, 189–190
Tumors. See Neoplasia

Ubiquinone synthesis, methyltransferases in, 65, 68
Urine cystinuria, 178–179
excess homocysteine in. See Homocystinuria
homocysteine in, 164, 167, 178
methylmalonic aciduria in adenosylcobalamin deficiency, 248–249
pyroglutamic aciduria in cystathionine β-synthase deficiency, 234
vitamin B₆ excretion, 311

Valproate affecting homocysteine levels, 333
Valyl-tRNA synthetase in homocysteine thiolactone formation, 22, 23

Vascular disorders arterial thrombosis, 366
in atherosclerosis. See Atherosclerosis
cerebrovascular, 228, 262, 372, 384–389. See also Strokes
coronary, 365–366, 371–381. See also Coronary artery disease
in cystathionine β-synthase deficiency, 228, 236
desirable homocysteine concentrations in, 487–488
folate levels in, 276, 366–367
in homocystinuria, 33
in hyperhomocysteinemia, 33
and adverse pregnancy outcomes, 4, 458–460
in Alzheimer disease, 4–5
historical aspects, 1–4
in postmenopausal women, 332, 452–454
in renal insufficiency, 4, 324
vitamin B₆ affecting, 316
methionine loading test in, 216–217
methyltetrahydrofolate reductase variant in, 261–262
peripheral arterial disease, 393–399
in pregnancy, homocysteine levels in, 458–460
relation to homocysteine case-control studies, 357–358
confounders in, 359–360
data from clinical trials, 477–482
epidemiological studies, 357–360
as marker for low B-vitamin status, 361, 366–367
molecular target hypothesis, 436–437
not a causal factor, 360–364
oxidative stress hypothesis, 434–436
prospective studies, 358–359, 362–363
as risk only in high risk groups, 361, 364–365
in thrombosis but not atherosclerosis, 361, 365–366
in renal insufficiency, 4, 324
venous thrombosis. See Venous thromboembolism
vitamin B₆ levels in, 366–367
Vascular smooth muscle cells, homocysteine affecting, 432–434
Vasodilatation, endothelial-dependent, homocysteine levels affecting, 4
Vasodilator reserve, methionine loading test affecting, 217
Venous stasis affecting homocysteine levels, 200
Venous thromboembolism. See also Vascular disorders
in cystathionine β-synthase deficiency, 228, 230
factor V Leiden mutation in, 217, 262, 385, 401, 408–410, 418
gene abnormalities in, 405–410
homocysteine levels in, 2, 366
methionine intolerance in, 403–405
methionine loading test in, 217
in moderate hyperhomocysteinemia, 401–403
recurrence rate in, 405
MTHFR 677C→T mutation in, 262, 405–410
Factor V Leiden with, 408–410
prothrombin 20210G with, 409, 410
protein C in, 385, 401, 408, 418
Virus infections and antiviral effects of S-adenosylhomocysteine hydrolase inhibitors, 83, 84

HIV infection abnormalities of AdoMet and AdoHcy in, 190, 192
cobalamin levels in, 292
Vitamin A intake affecting homocysteine levels, 346
Vitamin B₂. See Riboflavin
Vitamin B₆ antagonists, 313–314
affecting homocysteine levels, 335
bioavailability, 310
chemistry and nomenclature, 307–308
in cystathionine B-synthase deficiency, 238–239
vitamin B₆ responsiveness in, 226–228, 229, 231–233, 238
vitamin B₆ unresponsiveness in, 2, 229, 239
deficiency, 307–316, 467
causes of, 312–314
consequences of, 313
in foods and supplements, 309
and homocysteine levels, 315–316, 377
indicators in status assessment, 310–312
intake affecting homocysteine levels, 346
kinetics in vivo, 310
metabolism, 308–309
in muscle, 310
nonphosphorylated, 308
phosphorylated, 308
plasma levels, 311
preventing thromboembolism, 401
properties of, 307
recommended daily allowance, 312
and risk of vascular disease, 366–367
therapy, 2
clinical trials, 479–480
in coronary artery disease, 378
in cystathionine β-synthase deficiency, 226–228, 231–233, 238, 468, 472
dialysis patients, 325, 469
folic acid with, 473–474
in hyperhomocysteinemia, 472–473
and stroke prevention, 389
unresponsive patients, 2, 239
toxicity, 314
urinary, 311
Vitamin B₁₂. See also Cobalamin, therapy with cyanocobalamin, 289
510

Vitamin B_{12} (continued)
and methionine synthase
regulation in culture
medium, 138–139

Vitamin C
affecting homocysteine levels, 335,
346, 347
protective effects of, 445

Vitamin deficiencies, homocysteine
levels in, 186

Vitamin E
intake affecting homocysteine
levels, 346
and reduction of copper by low-
density lipoprotein, 36

Vitamin Intervention for Stroke
Prevention (VISP), 389,
481

Vitamin supplements
clinical trials of, 473–474, 477–482
cobalamin in, 296
and desirable homocysteine
concentrations, 487
folic acid in, 280–281, 468,
469–472
and homocysteine levels after
methionine loading, 216
multivitamins affecting
homocysteine levels,
348–349, 473–474
in stroke prevention, 389
in venous thromboembolism, 405
vitamin B_{6} in, 309–310, 316,
472–473
von Willebrand factor, homocysteine
affecting, 416–417

Weight reduction affecting
homocysteine levels,
349

Western Norway B-Vitamin Trial
(WENBIT), 481

Women’s Antioxidant and
Cardiovascular Disease
Study (WACS), 481

Women’s Health Study, 363,
364

Zinc
and betaine:homocysteine
methyltransferase activity,
148, 467
deficiency, 467
Zutphen Elderly Study, 363, 365